Mathematical Semantics of Computer Systems, MSCS (4810-1168) Handout for Lecture 13 (2017/1/23)

Ichiro Hasuo, Dept. Computer Science, Univ. Tokyo http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro

Video recording of the lectures is available at: http://www-mmm.is.s.u-tokyo.ac.jp/videos/mscs2016

1 Cartesian Closed Categories as Models of Typed λ -Calculus

Definition. Interpretation $[\![\]\!]$ of typed λ -calculus. Interpreting types, type derivation trees, type judgments, and terms.

Definition. Substitution lemma: interpretation of s[t/x] is given by composition of arrows.

Theorem. Soundness of categorical semantics: if $s =_{\beta \eta} t$, then [s] = [t].

2 Categorical Modeling of State-Based Dynamics by Coalgebras

Our principal reference is:

[Jacobs 2012] Bart Jacobs, Introduction to Coalgebra: Towards Mathematics of States and Observations. Draft of a book, available online. 2012

Definition. F-coalgebra, F-coalgebra morphism, the category $\mathbf{Coalg}(F)$ of F-coalgebras.

Example. Exhibit coalgebras, coalgebra morphisms, for:

 $F = A \times (_)$; $F = 1 + A \times (_)$; $F = A \times (_) \times (_)$; $F = 2 \times (_)^A$ (deterministic automata); $F = 2 \times (\mathcal{P}__)^A \cong \mathcal{P}(1 + A \times _)$ (nondeterministic automata); and polynomial functors in general.

Definition. Final coalgebra.

Example. Final coalgebras for: $F = A \times (_)$; $F = 1 + A \times (_)$; $F = A \times (_) \times (_)$;

Lemma. Lambek's lemma. It follows that final coalgebras need not exist.

Compare with: algebra, initial algebra (understood as datatype). Consider $F = 1 + (_)$ (induction). This leads to our interests in coinduction.

Example. Coinduction as a definition principle. $A = \{0,1\}, F = A \times (_),$ for which a final coalgebra is $\langle \mathsf{hd}, \mathsf{tl} \rangle \colon A^\omega \to A \times A^\omega$. Consider various recursive definitions:

$$evens(\sigma) = hd(\sigma) : (evens(tl(tl(\sigma))))$$
(1)

$$\mathsf{odds}(\sigma) = \mathsf{hd}(\mathsf{tl}(\sigma)) : \big(\mathsf{odds}(\mathsf{tl}(\mathsf{tl}(\sigma)))\big) \tag{2}$$

$$ones = 1 : ones \tag{3}$$

$$\mathsf{bad} = \mathsf{bad} \tag{4}$$

Well-definedness is ensured once you express the definition as a coalgebra.

How about $merge(a_0 : a_1 : ..., b_0 : b_1 : ...) = a_0 : b_0 : a_1 : b_1 : ...$?

Example. Coinduction as a proof principle. To see odds = evens \circ tail, we check that evens \circ tail makes the finality diagram for odds commute.

The examples might look easy... but imagine you want to *implement* the definitions and proofs on proof assistants like Coq!

A structure result (cf. [Prop. 5.2, Jacobs 2012]):

Theorem. Let $F: \mathbb{C} \to \mathbb{C}$. The forgetful functor $U: \mathbf{Coalg}(F) \to \mathbb{C}$ creates colimits. \square

3 Lectures Remaining

Coalgebras and State-Based Transition Systems. We will follow [Jacobs 2012, Chapters 1-3]

• 2017.1.30 (Mon)

4 Final Report Assignment

Due: 23:59 JST, Friday 10 February, 2017

Submit to the lecturer's mailbox (on the corridor), to the (official) report box of the department, or by email to ichiro@is.s.u-tokyo.ac.jp

You can choose questions to answer. Each question is assigned points; and you are expected to answer 100 points worth. However, in case you have not submitted some of the previous report assignments, you can make it up by answering more.

- 1. (40) Prove the substitution lemma.
- 2. (30) Let $f: A \to B$ be an arrow in a Cartesian closed category \mathbb{C} . It induces natural transformations: $A \times (_) \Rightarrow B \times (_)$, and $(_)^B \Rightarrow (_)^A$. Show that the adjunctions $A \times (_) \dashv (_)^A$ and $B \times (_) \dashv (_)^B$ are "compatible" with those natural transformations. (You first have to formalize what "compatibility" means.)
- 3. We are interested in the CCC structure of a presheaf category $[\mathbb{C}^{op}, \mathbf{Sets}]$. Here \mathbb{C} is a small category.
 - (a) (30) Prove that $[\mathbb{C}^{op}, \mathbf{Sets}]$ has all small limits and colimits. (Hint: they are computed "pointwise.")
 - (b) (40) The category $[\mathbb{C}^{op}, \mathbf{Sets}]$ has exponentials, too. Let $P, Q \colon \mathbb{C}^{op} \to \mathbf{Sets}$ be presheaves; Q^P be an exponential; and $C \in \mathbb{C}$. Describe the set $(Q^P)(C)$. (Hint: this is an interesting one. Use the Yoneda lemma!)
 - (c) (30) Specialize the above answer to the case when \mathbb{C} is the following category with two objects and four arrows.

$$V \xrightarrow{d \atop c} E$$

Here the identity arrows are implicit. Discuss the relationship with the notion of graph homomorphism.

- 4. End is a notion that generalizes that of limit.
 - (a) (30) Describe its definition, and show that limits are special cases of ends.
 - (b) (40) Let \mathbb{C} be a small category; and $F, G: \mathbb{C}^{op} \to \mathbf{Sets}$ be presheaves. Describe the set $\mathbf{Nat}(F,G)$ of natural transformations as a limit.
- 5. (50) Let \mathbb{C} be a small category and consider the presheaf category $[\mathbb{C}^{op}, \mathbf{Sets}]$. Prove that any presheaf $P \colon \mathbb{C}^{op} \to \mathbf{Sets}$ is a colimit of a certain diagram that consists solely of representable presheaves (i.e. those presheaves of the form $\mathbf{y}C = \mathbb{C}(\underline{\ }, C)$).

(Hint: You have to find a suitable diagram. It is given by so-called the category of elements.)

6. (40) Let evens, odds and merge be the stream functions earlier in this handout. Use the coinduction proof principle to prove, for each $\sigma \in A^{\omega}$,

$$merge(evens(\sigma), odds(\sigma)) = \sigma$$
.

(Draw a suitable finality diagram)