Mathematical Semantics of Computer Systems, MSCS (4810-1168) Handout for Lecture 6 (2016/11/7)

Ichiro Hasuo, Dept. Computer Science, Univ. Tokyo http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro

Video recording of the lectures is available at: http://www-mmm.is.s.u-tokyo.ac.jp/videos/mscs2016

Part I: Adjuction (ctn'd)

1 Today's Agenda

1.1 Adjunction

Lemma 1. 1. Adjoint functors determine each other uniquely up-to canonical natural isomorphisms.

2. Composition of adjoints.

1.2 Limits and Colimit

Definition. Diagram, cone, cocone

Definition. Limit, colimit

Proposition 1. Limits from products and equalizers

Corollary 1. Concrete presentation of (co)limits in Sets

1.3 Limits as Adjoints

Definition. Functor category

Proposition 2. A limit gives rise to an adjunction.

2 Exercises

1. Formulate and prove the following statement.

A right adjoint preserves limits.

2. Prove the following: in an adjunction $F \dashv G$, G is faithful if and only if every component of the counit ε is an epi. [5, Thm. IV.3.1]

Report Assignments (CANCELED)

CANCELED. No report assignments.

Deadline: at the beginning of the next lecture.

- 1. Let (E,e) be an equalizer in the situation $E \xrightarrow{e} X \xrightarrow{g} Y$. Prove that the arrow e is necessarily a mono.
- 2. Let $X \times Y$ denote a product of X and Y; and 1 be a terminal object. Prove that there exist the following canonical isomorphisms.

(a)
$$(X \times Y) \times Z \stackrel{\cong}{\to} X \times (Y \times Z)$$

(b)
$$1 \times X \stackrel{\cong}{\to} X$$

Part II: the Yoneda Lemma

Remember: we loosely follow [3], but it hardly serves as an introductory textbook. More beginner-friendly ones include [1, 4]; other classical textbooks include [5, 2]. nLab (ncatlab.org) is an excellent online information source.

3 Today's Goal

Familiarize yourself with the *Yoneda lemma*. Identify it as a category theory analogue of the *Cayley representation theorem*:

Theorem (Cayley). Every group G is isomorphic to a subgroup of $\pi(|G|)$.

4 Today's Agenda

4.1 Equivalence of Categories

Definition. Subcategory, faithful functor, full functor

Lemma 2. Any functor preserves isomorphisms.

A full and faithful functor reflects isomorphisms.

Definition. Equivalence of categories

Proposition 3. Equivalence from a full, faithful and iso-dense functor.

4.2 The Yoneda Lemma

Definition. Covariance, contravariance

Theorem (Yoneda). The Yoneda lemma, the Yoneda embedding as a full and faithful functor

Definition. end, coend

Theorem. The Yoneda lemma, the (co)end form

Lemma 3. Ends as limits [5, Prop. IX.5.1]

Lemma 4. Homfunctors preserve (co)limits, hence also (co)ends

5 Exercises

1. Formulate the "naturality" of the Yoneda correspondence

$$\operatorname{Nat}(\mathbb{C}(_,X),F) \cong FX$$

and prove it.

References

- [1] S. Awodey. Category Theory. Oxford Logic Guides. Oxford Univ. Press, 2006.
- [2] M. Barr and C. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Available online.
- [3] J. Lambek and P.J. Scott. *Introduction to higher order Categorical Logic*. No. 7 in Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, 1986.
- [4] T. Leinster. Basic Category Theory. Cambridge Univ. Press, 2014.
- [5] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 2nd edn., 1998.