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Abstract. We show that, for functors with suitable mild restrictions,
the initial algebra in the category of sets and functions gives rise to
the final coalgebra in the (Kleisli) category of sets and relations. The
finality principle thus obtained leads to the finite trace semantics of non-
deterministic systems, which extends the trace semantics for coalgebras
previously introduced by the second author. We demonstrate the use of
our technical result by giving the first coalgebraic account on context-
free grammars, where we obtain generated context-free languages via
the finite trace semantics. Additionally, the constructions of both finite
and possibly infinite parse trees are shown to be monads. Hence our
extension of the application domain of coalgebras identifies several new
mathematical constructions and structures.

1 Introduction

Context-free grammars and context-free languages are undoubtedly among the
most fundamental notions in computer science. Introduced by Chomsky [Cho56],
they have come to serve as a theoretical basis for formal (programming) lan-
guages [ASU86]. This paper presents the first steps in a coalgebraic analysis of
those notions. In a sense it extends previous coalgebraic work [Jac05a,Rut03] on
regular languages.

A context-free grammar is a clear example of a coalgebra: the state space
consists of its non-terminal symbols and the coalgebraic structure is defined by
its generation rules. Then the context-free language generated by the grammar
should be the “behavior” of the coalgebra. Our motivation is to find a suitable
setting which gives that behavior by coinduction, i.e. an argument using finality.

What is unusual here is that we are concerned only with the finite behavior
(i.e. generated strings of only finite length). This suggests that the domain of the
semantics might be the initial algebra, as the subcoalgebra of the final coalgebra
consisting of all the finite behavior.

Interestingly, it turns out that for functors with mild restrictions, the initial
algebra in Sets gives rise to the final coalgebra in the category Rel of sets and
relations. The finality principle in Rel is called the finite trace semantics in this



paper, in contrast to the (possibly infinite) trace semantics from [Jac04b] where
the final coalgebra in Sets gives rise to a weakly final coalgebra in Rel.

A context-free grammar is identified as a coalgebra in Rel because of its non-
deterministic nature. Now our technical result of finite trace semantics allows us
to obtain the set of generated finite skeletal parsed trees (finite strings with
additional tree structure) via finality. After applying the flattening function it
yields the set of generated strings.

The category Rel can also be described as the Kleisli category SetsP of the
powerset monad. This view is relevant in generalization of our work to other
monads other than P , such as the subdistribution functor D.

The remainder of this paper is organized as follows. Later on this section
gives a “sneak preview” of the technical result and its applications. Section 2
formulates context-free grammars as coalgebras, and introduces the notion of
skeletal parse trees (SPTs) as strings with tree structure. It is shown in Section
3 that (finite) SPTs carry the initial algebra/final coalgebra for an appropriate
functor, and that their formations have monad structures, related to one another
via the “fundamental span” of monad maps. The details of our technical result
of finite trace semantics for coalgebras are presented in Section 4. Section 5
puts the current work in the context of the previous work [Jac04b] of (possibly
infinite) trace semantics for coalgebras. Section 6 is for conclusions and future
work.

It is assumed that the reader is familiar with the basic categorical theory of
algebras and coalgebras for both functors and monads. For these preliminaries
see e.g. [Jac05b,Rut00,BW83].

1.1 Sneak preview

As motivation we briefly present our main technical result and two illustrating
examples of non-deterministic automata and context-free grammars. The details
of constructions, definitions and proofs will follow later. For a functor F : Sets →
Sets with mild restrictions, we have an initial algebra in Sets and a canonical
lifting F : Rel → Rel.

Theorem 1.1 (Finite trace semantics for coalgebras) Let α : FA
∼=→ A

be the initial F -algebra in Sets. The coalgebra graph(α−1) : A
∼=→ FA in Rel is

final for the lifted functor F . Hence, given a coalgebra c : X → FX in Rel there
exists a unique arrow ftc : X → A which makes the following diagram in Rel
commute.

FX
F (ftc)

FA

X

c

ftc
A

graph(α−1) (1)

The relation ftc thus obtained is called the finite trace of c.



Translating back to the category Sets, Theorem 1.1 assigns to each non-
deterministic coalgebra c : X → PFX its finite trace ftc : X → PA into the
powerset of the carrier of the initial F -algebra.

Example 1.2 (Non-deterministic automata) A non-deterministic automa-
ton over alphabet Σ can be described as a coalgebra X → (PX)Σ × 2, or equiv-
alently as c : X → P(1 + Σ × X) in Sets. The set c(x) then contains the
unique element X of 1 = {X} if and only if x is an accepting state. For the
functor F = 1 + Σ ×− involved, the initial F -algebra (in Sets) consists of the

strings (or lists) over Σ, as in: [nil, cons] : 1 + Σ × Σ∗ ∼=→ Σ∗. Hence, given a
non-deterministic automaton c : X → PFX , Theorem 1.1 yields its finite trace
ftc : X → PΣ∗. It is shown later in Example 4.13 that the set ftc(x) ⊆ Σ∗ is
indeed the language accepted by the automaton when it starts in state x.

Example 1.3 (Context-free grammars) A context-free grammar (CFG) con-
sists of a set Σ of terminal symbols, a set X of non-terminal symbols, and a
relation R ⊆ X × (Σ + X)∗ consisting of generation rules. It is described as a
coalgebra c : X → P

(

(Σ + X)∗
)

in Sets.
For the functor F = (Σ+−)∗, the initial algebra Σ4 consists of finite skeletal

parse trees (finite SPTs), which are strings with tree structure. An example of
a finite SPT is given below on the left: it describes the formula s(x) = 0. The
initial algebra structure on Σ4 is illustrated below on the right, where S1 and
S2 are finite SPTs.

s

x

=

0

(Σ + Σ4)∗
αΣ

∼=
Σ4

〈

a1, S1 , a2, a3, S2

〉 a1

S1

a2 a3

S2

Given a CFG c : X → PFX , via the finite trace semantics we obtain a function
ftc : X → PΣ4. Later in Example 4.14 it is shown that, for a non-terminal
x ∈ X , the set ftc(x) consists of all the finite SPTs that can be generated
from x. By applying the flattening function Σ4 → Σ∗, which is defined via the
initiality of Σ4, we obtain the set of strings generated from x.

1.2 Notations

The i-th coprojection into a coproduct
∐

i∈I Xi is denoted by κi. If the index
set I is finite the coproduct will be written as Xi1 + Xi2 + · · · + Xin

.
The operator (−)∗ defined by X∗ =

∐

n<ω Xn is so-called the Kleene star.
The set X∗ consists of all the strings of finite length over X . It is standard that
the Kleene star has a monad structure with unit

∗

η creating a string of length
one and multiplication

∗

µ “flattening” a string of strings into a string. We denote
a string of length n by 〈a1, a2, . . . , an〉; 〈〉 is then the empty string of length zero.



We write a symbol on top of the unit η and multiplication µ to indicate the
relevant monad. E.g.

∗

ηΣ is the Σ-component of the unit of Kleene monad (−)∗.
Hence (

∗

ηΣ)∗ is the application of the functor (−)∗ to the arrow
∗

ηΣ .
We will heavily use two powerset functors: one is covariant P and the other

is contravariant P. They act the same on objects. For a function f : X → Y , Pf

maps a subset of X to its direct image under f , and Pf maps a subset u ⊆ Y

to its inverse image f−1(u).
It is standard that there is a bijective correspondence between a relation

R ⊆ X × Y and a function f : X → PY , given by fR(x) = {y ∈ Y | (x, y) ∈ R}
(relation-into-function). In this paper we identify a relation with the correspond-
ing function, and vice versa. Hopefully this will not cause any confusion.

2 Context-free grammars as coalgebras

In this section we give a precise coalgebraic formulation of context-free gram-
mars and context-free languages. For more about traditional treatment of those
notions the reader is referred to [LP81].

A (traditional) context-free grammar, described as a triple of terminals, non-
terminals and generation rules R ⊆ X × (Σ + X)∗, is described as a coalgebra:

X
c

P
(

(Σ + X)∗
)

, namely x {s ∈ (Σ + X)∗ | 〈x, s〉 ∈ R}.

Definition 2.1 (Context-free grammar) In this paper a P
(

(Σ +−)∗
)

-coal-
gebra in Sets is called a context-free grammar (CFG in short) over Σ. Equiva-
lently, via the relation-into-function, a CFG is a (Σ + −)∗-coalgebra in Rel.

Notice that not all P
(

(Σ + −)∗
)

-coalgebras are context-free grammars in the
traditional sense, due to the lack of finiteness conditions on Σ, X and the gen-
eration rules. The above definition, which is more liberal and natural from the
coalgebraic perspective, ignores algorithmic aspects of context-free grammars.
They are not relevant in this paper.

Example 2.2 Consider the following CFG for the syntax of Peano arithmetic.

Σ = {0, s, =,∧,∨,⊃,¬, ∀, ∃} ∪ Var , X = {T,Q,F},

T → 0, T → x (x ∈ Var), T → sT,

Q → ∀x (x ∈ Var), Q → ∃x (x ∈ Var),

F → T=T, F → F∧F, F → F∨F, F → F⊃F, F → ¬F, F → QF.

The induced CFG c : X → P
(

(Σ + X)∗
)

is as follows.

c(T) = {0} ∪ Var ∪ {sT}, c(Q) = {∀x | x ∈ Var} ∪ {∃x | x ∈ Var},
c(F) = {T=T,F∧F,F∨F,F⊃F,¬F,QF}.



Usually a context-free grammar over Σ is considered as a machine which
generates strings over Σ, i.e. elements of Σ∗. However, from a coalgebraic per-
spective it is more natural to first obtain finite SPTs (i.e. strings with tree
structure), and then by flattening obtain strings. In the following the precise
definition of finite SPTs is presented, together with a few related notions.

The next definition is a bit complicated; the reader may find an alternative
characterization (Proposition 3.1) in terms of initial algebra/final coalgebra.

Definition 2.3 ((Skeletal) parse trees) Let c : X → P
(

(Σ+X)∗
)

be a CFG
over Σ. A parse tree generated by c from x ∈ X is a (possibly infinite-depth)
tree which satisfy the following:

1. All leaf nodes are labelled from Σ + X;
2. All internal (i.e. non-leaf) nodes are labelled from X ;
3. The root is labelled with x;
4. If a leaf node is labelled from X , say with y, then the empty string 〈〉 belongs

to c(y);
5. For each internal node let y ∈ X be its label and let its immediate successors

be labelled with c1, c2, . . . , cm (ci ∈ Σ+X) from left to right. Then the string
〈c1, c2, . . . , cm〉 is an element of c(y).1

Condition 5 ensures that a parse tree is finitely-branching. A parse tree is finite
if its depth is finite.

A skeletal parse tree (SPT for short) generated by c from x is a parse tree
generated by c from x, with all of its labels from X deleted. It is finite if its depth
is finite. A skeletal parse tree (SPT) over Σ is a skeletal parse tree generated
by some CFG c over Σ. Equivalently, it is a finitely-branching, possibly infinite-
depth tree with some of its leaves labelled from Σ and its internal nodes not
labelled, and if it is trivial (i.e. root-only) then the sole node is not labelled.2

An SPT is finite if its depth is finite.
The set of all the (possibly infinite) SPTs over Σ is denoted by Σ∧, and the

set of the finite SPTs is denoted by Σ4.

Example 2.4 Below are two parse trees generated by the context-free grammar
in Example 2.2, from the non-terminal symbol F. The one on the left is finite.

F

Q

∀ x

F

¬ F

T

s T

x

= T

0

F

T

s T

s T

s ...

= T

0

1 Condition 4 may be considered as an instance of Condition 5 when m = 0.
2 Since an SPT is generated from a non-terminal symbol.



Forgetting about the non-terminal symbols from X , we obtain the following
SPTs generated by the grammar from F.

∀ x ¬

s

x

=

0

s

s

s ...

=

0

The infinite one on the right has no corresponding well-formed formula, while
the other one can be read as ∀x.¬(s(x) = 0).

3 Monad structures on languages

In this section we first investigate (co)algebraic structures on the set of fi-
nite/infinite SPTs. Then it turns out that the formation of finite SPTs Σ4

and SPTs Σ∧, from Σ, are all monads just like that of strings Σ∗. Moreover,
the embedding Σ4 � Σ∧ and the flattening function Σ4 � Σ∗ are shown to
be both maps of monads [BW83].

The following observation is the first step. It may also be read as a definition
of Σ4 and Σ∧. The proof is standard and left to the reader.

Proposition 3.1 The set Σ4 of all finite SPTs over Σ carries the initial (Σ +
−)∗-algebra. The algebraic structure αΣ makes a sequence 〈c1, c2, . . . , cn〉 (where
ci ∈ Σ + Σ4) into a tree by adding a fresh root whose immediate successors
are c1, c2, . . . , cn. An example is found in Example 1.3. The empty string 〈〉 is
mapped by αΣ to the trivial tree which is not labelled.

The set Σ∧ of (possibly infinite) SPTs over Σ carries the final (Σ + −)∗-
coalgebra. The coalgebraic structure ζΣ removes the root and returns the sequence
of its immediate successors. For example,3

Σ∧
ζΣ

∼=
(Σ + Σ∧)∗

a1

S1

a2 a3

S2

〈

a1, S1 , a2, a3, S2

〉

The trivial tree is mapped to the empty string 〈〉. ut

Remark 3.2 We can think of the functor (Σ + −)∗ as a “signature” in the
sense of traditional universal algebra. Let ? be a fresh symbol, and for each

3 An open triangle designates a tree with a possibly infinite depth, while a closed one
is a tree with a finite depth. This conforms to the notation Σ

∧ and Σ
4.



s ∈ (Σ + {?})∗ let ‖s‖ denote the number of ?’s appearing in s. Then we have
an obvious isomorphism

(Σ + X)∗ ∼=
∐

s∈(Σ+{?})∗X
‖s‖ .

Hence (Σ+−)∗ describes a signature such that (Σ+{?})∗ is the set of operations
and each operation s ∈ (Σ + {?})∗ is ‖s‖-ary.

The notation (−)
4

: Σ 7→ Σ4 and (−)
∧

: Σ 7→ Σ∧ is used to suggest an
analogy with the Kleene (or list, string) monad (−)∗. Indeed, these constructions
are closely related, as is shown in the sequel.

Each of the mappings (−)
4

and (−)
∧

extends to a functor, using standard
results about initial algebras and final coalgebras for a functor F (Σ,−), where
F is a bifunctor—in this case F (X1, X2) = (X1 + X2)

∗. Moreover, it turns

out that both functors (−)4 and (−)∧ have a monad structure. The formation

of units
4

η,
∧

η and multiplications
4

µ,
∧

µ is much like for the free monad and free
iterative monad generated by a functor [AAMV03,Jac04a]. The difference is
that here the parameter set Σ is inside the Kleene monad (−)∗, which adds
some complexity. The concrete constructions are described in Appendix A.1.
It is straightforward, but laborious, to show that the constructions satisfy the
requirements of a monad.

Proposition 3.3 The triples
(

(−)4,
4

η,
4

µ
)

and
(

(−)∧,
∧

η,
∧

µ
)

are monads. ut

Let ιΣ : Σ4 � Σ∧ be the canonical embedding of the initial algebra into
the final coalgebra. It is a mono by [Bar93, Theorem 3.2].

(Σ + Σ4)∗

αΣ ∼=

(Σ + ιΣ)∗
(Σ + Σ∧)∗

Σ4
ιΣ

Σ∧

ζΣ
∼=

It is straightforward to show that ιΣ is natural in Σ, and is compatible with
monad structures, i.e., is a map of monads.

The flattening function ϕΣ : Σ4 → Σ∗, which maps a finite SPT to a flat
string demolishing the tree structure, is obtained via initiality of αΣ .

(Σ + Σ4)∗
(Σ + ϕΣ)∗

∼=αΣ

(Σ + Σ∗)∗

∗

µΣ ◦ [
∗

ηΣ , Σ∗ ]∗

Σ4
ϕΣ

Σ∗

It is easy to see that the flattening map is a map of monads. Moreover, it is
obviously an epi: for a sequence 〈a1, a2, . . . , an〉 ∈ Σ∗ take the finite SPT of
depth 2 that has leaves a1, a2, . . . , an from left to right.

Hence we have obtained the following result.



Proposition 3.4 The embedding ιΣ and the flattening map ϕΣ both form a
map of monads. They yield the following “fundamental span of languages”.

Σ∗ Σ4
ϕΣ ιΣ

Σ∧ ut

4 Finite trace semantics for coalgebras

This section presents the main technical result (already previewed as Theorem
1.1) that an initial algebra in Sets (of a suitable functor) yields a final coalgebra
in Rel. Examples 1.2 and 1.3 are also fully elaborated in greater detail.

4.1 Shapely functors

The family of endofunctors F in Sets we are interested in is that of shapely
functors [Jay95]. The following inductive definition is equivalent to the original
one.

Definition 4.1 (Shapely functors) The family of shapely functors is defined
inductively by the following BNF notation:

F, G, Fi ::= id | Σ | F × G |
∐

i∈I Fi ,

where Σ denotes the constant functor into Σ.

Notice that we can take the exponentiation (−)Σ to the power of a finite
set Σ in building a shapely functor, because XΣ is isomorphic to the |Σ|-fold
product of X ’s. A shapely functor is different from a polynomial functor in the
following points: we cannot take an exponentiation with an infinite set (because
it makes Lemma 4.2.2 fail), but we can take an infinite coproduct—so that we
can form the Kleene star (−)∗ =

∐

n<ω(−)n. A shapely functor has the following
properties needed for our purpose.

Lemma 4.2 Let F : Sets → Sets be a shapely functor.

1. F preserves weak pullbacks.
2. For an arrow ?X : 0 � X with domain 0, F ?X : F0 → FX is mono. Hence

F preserves all monos in Sets.
3. F preserves ω-colimits and ωop-limits. Hence F has both the initial algebra

and the final coalgebra. They are, together with the canonical embedding,
denoted as follows.

FA

α ∼=

Fι
FZ

A ι Z

ζ∼=

Proof. The proofs are easy by induction on the construction of F . The preser-
vation of ω-colimits (or ωop-limits) allows us to obtain the initial F -algebra (or
the final F -coalgebra) as the colimit (or limit) of the initial sequence of length
ω (or final sequence, respectively): see e.g. [Bar93,AK95]. ut



4.2 Relation lifting, distributive law and Kleisli category

An endofunctor F yields a relation lifting : given a relation 〈r1, r2〉 : R � X×Y ,
a lifted relation RelF (R) � FX × FY is defined by image factorization.

FR

〈Fr1, F r2〉

RelF (R)

FX × FY

The following compatibility results hold for a functor F which preserves weak
pullbacks, hence in particular for a shapely F (Lemma 4.2).

Lemma 4.3 Relation lifting is compatible with such operations on relations as:

1. Composition: for R � X × Y , S � Y × Z and their composition S ◦ R =
{(x, z) ∈ X × Z | ∃y ∈ Y.(x, y) ∈ R and (y, z) ∈ Z} we have RelF (S ◦ R) =
RelF (S) ◦ RelF (R).

2. Graph of a function and functor application: for a function f : X → Y

and its graph graph(f) = {(x, f(x)) | x ∈ X} we have RelF (graph(f)) =
graph(Ff).

3. Inverse image and direct image: for functions f1 : X1 → Y1, f2 : X2 → Y2

and relations R � X1 × X2, S � Y1 × Y2, let us denote the inverse image
and the direct image by (f1 × f2)

−1(S) =
{

(x1, x2) |
(

f1(x1), f2(x2)
)

∈ S
}

,

and
∐

f1×f2
(R) = {

(

f1(x1) , f2(x2)
)

| (x1, x2) ∈ R}. Then we have

RelF
(

(f1 × f2)
−1(S)

)

= (Ff1 × Ff2)
−1

(

RelF (S)
)

,

RelF
(
∐

f1×f2
(R)

)

=
∐

Ff1×Ff2

(

RelF (R)
)

. ut

The membership relation ∈X � X×PX on a set X is lifted to RelF (∈X) �

FX × FPX . By transposition we obtain the following function λX .

FPX
λX

PFX u {a ∈ FX | 〈a, u〉 ∈ RelF (∈X)}

Then the map λX is: 1) natural in X , and 2) compatible with the monad struc-
ture of P : when we denote the unit (singleton map) by {−} and the multiplication
(union) by

⋃

, the following diagrams commute.

FX
F{−}X

{−}FX

FPX

λX

PFX

FP2X
λPX

F
⋃

X

PFPX
PλX

P2FX
⋃

FX

FPX
λX

PFX

This says that the natural transformation λ : FP ⇒ PF is a distributive law.4

4 The use of a distributive law in coalgebraic settings is investigated elaborately in
[Bar04].



Lemma 4.4 ([Jac04b]) The maps λX thus defined form a distributive law of
a functor F over a monad P. It is called the “power law”. ut

Example 4.5 For the functor F = 1 + Σ × −, where 1 = {X}, the lifted
membership relation is as follows.

Rel1+Σ×−(∈X) = {(X, X)} ∪
{(

(a, x), (a, u)
)

| a ∈ Σ, x ∈ u
}

.

For the functor F = (Σ+−)∗, the lifted membership relation Rel(Σ+−)∗(∈X)
between (Σ + X)∗ and (Σ + PX)∗ is described concretely as follows: a pair
〈 c1c2 . . . cm, d1d2 . . . dm 〉 belongs to Rel(Σ+−)∗(∈X) if and only if for each i =
1, 2, . . . , m,

– if ci ∈ Σ then di is also from Σ and ci = di;
– if ci ∈ X then di is in PX and ci ∈ di.

The distributive law λ : FP ⇒ PF gives rise to a lifting F : SetsP → SetsP
of a functor F in the Kleisli category by

F :
(

X
f

Y
)

7→
(

FX
λY ◦ Ff

FY
)

.

In the sequel we identify the category Rel with the Kleisli category SetsP of
the powerset monad. It is justified by the following straightforward observation.

Lemma 4.6 The category Rel of sets and relations is isomorphic to the Kleisli
category SetsP via the relation-into-function correspondence.

Moreover, let F be an endofunctor in Sets which preserves weak pullbacks.
Then the canonical lifting of F in Rel in the sense of [CKW91], which maps an
arrow R : X → Y to RelF (R) : FX → FY , coincides with the lifting of F in
SetsP defined above via the distributive law. ut

Remark 4.7 As is already noted, working in the Kleisli category SetsP makes
it easier to generalize to other monads than P . A similar finality result holds for
the subdistribution monad D such that DX = {d : X → [0, 1] |

∑

x∈X d(x) ≤ 1}.
In that case we do not have the counterpart of the notion of relation lifting but
start with a distributive law FD ⇒ DF . Details will be published later.

4.3 Contravariant powerset functor

We use the contravariant powerset functor P in our construction. The following
properties are used there.

Lemma 4.8 1. For a mono m : X � Y , Pm is a split mono with its left
inverse Pm, i.e. Pm ◦ Pm = idPX .

2. For an iso i : X
∼=→ Y , Pi is again an iso with inverse Pi.

3. The union maps
⋃

X : P2X → PX form a natural transformation PP ⇒ P.
4. For each n, the maps λn

X : F nPX → PF nX in Lemma 4.9 form a natural
transformation F nP ⇒ PF n.

Proof. See Appendix A.2. ut



4.4 Construction of finite trace via composition of coalgebra

In the construction of the finite trace, we use the n-fold composition cn : X →
PF nX of a coalgebra c : X → PFX in Sets. Intuitively, one transition of cn

corresponds to n successive transitions of the original coalgebra c. It is defined
inductively on n as follows.

c0 = {−}X ,
X

c

cn+1

PFX
PFcn

PFPF nX
PλF nX

P2F n+1X
⋃

F n+1X

PF n+1X

.

The next observation is basic for the n-fold composition of a coalgebra.

Lemma 4.9 ([Wor]) The distributive law λ : FP ⇒ PF extends to n-fold
distributive law λn : F nP ⇒ PF n in the following way.

λ0
X = idPX ,

F n+1PX
F nλX

λn+1
X

F nPFX

λn
FX

PF n+1X

.

Let c : X → PFX be a coalgebra in Sets. For each n, m the following diagrams
commute.

F n+mPX
F nλm

X

F mλn
X λn+m

X

F nPF mX

λn
F mX

F mPF nX
λm

F nX

PF n+mX

X
cn

cn+m

PF nX
PF ncm

PF nPF mX

Pλn
F mX

P2F n+mX
⋃

F n+mX

PF n+mX

Proof. By induction. ut

Now we are ready to prove our main technical result.

Theorem 4.10 (Finite trace semantics for coalgebras, Theorem 1.1) Let

F be a shapely functor, and α : FA
∼=→ A be the initial F -algebra in Sets. The

coalgebra {−}FA ◦ α−1 : A
∼=→ FA in SetsP is final for the lifted functor F .

Proof. Given a coalgebra c : X → FX in SetsP , we construct an arrow ftc :
X → A, and show that it is the unique arrow which makes the diagram in SetsP



on the left (equivalently, the diagram in Sets on the right) commute.

FX
F ftc

FA

X

c

ftc
A

{−}FA ◦ α−1

,

PFX
PF ftc

PFPA

PλA

P2FA
⋃

FA

PFA
∼= Pα

X

c

ftc
PA .

(2)

In the rest of the proof we work in the category Sets.
As is stated in Lemma 4.2, the initial F -algebra in Sets for shapely F is

obtained via the initial sequence 0 → F0 → F 20 → · · · as follows.

A

α−1∼=· · · F n0

σn

Fσn−1

F n?F0
F n+10

σn+1

Fσn

· · ·

FA

α (3)

The cocone {σn : F n0 → A}n<ω is by construction the colimit of the initial
sequence. Since a shapely F preserves ω-colimits the cocone {?FA : 0 → FA} ∪
{Fσn : F n+10 → FA}n<ω is again a colimit, yielding the initial algebra α as
the mediating iso arrow. Lemma 4.2.2 shows that each σn is mono.

We define the n-th trace tracen
c : X → PA of c by the following composite.

The n-th trace tracen
c (x) ⊆ A is understood as the set of behavior of x which

terminates within n steps.

X
cn

tracen
c

PF nX
PF n?X

PF n0

Pσn

PA

For n-th traces the following equality holds, which says that all behavior within
n steps are already included in tracen. For n ≤ m,

Im σn ∩ tracem
c (x) = tracen

c (x) , (4)

where Im σn is the direct image σn[F n0]. The proof is given in Appendix A.3.
Finally, we define the finite trace ftc : X → PA of c as the union of n-th

traces: for each x ∈ X ,

ftc(x)
def
=

⋃

n<ωtracen
c (x) .



By the equality (4) we have another characterization of ftc(x): for each n and
tn ∈ F n0, σn(tn) ∈ ftc(x) if and only if σn(tn) ∈ tracen

c (x). Hence, by Lemma
4.8.1, for each n we have the following equality of functions X → F n0.

Pσn ◦ ftc = Pσn ◦ tracen
c = PF n?X ◦ cn . (5)

In the following Lemmas 4.11 and 4.12 we show that the arrow ftc thus con-
structed is indeed the unique arrow that makes the diagram (2) commute. ut

Lemma 4.11 The arrow ftc : X → PA in Sets, as defined in the proof of
Theorem 4.10, makes the diagram (2) commute.

Proof. By the construction of the initial algebra as the colimit (i.e. coequalizer
of coproduct), it suffices to prove that: for each n < ω and tn ∈ F n0,

σn(tn) ∈ ftc(x) ⇐⇒ σn(tn) ∈ (Pα ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x) .

When n = 0, we have F n0 = 0 hence the equivalence trivially holds. When
n > 0, we proceed as follows.

σn(tn) ∈ (Pα ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x)

⇐⇒ tn ∈ (Pσn ◦ Pα ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x)

⇐⇒ tn ∈ (Pσn ◦ Pα−1 ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x)

(Pα = (Pα−1)−1 = Pα−1 by Lemma 4.8.2)

⇐⇒ tn ∈ (PFσn−1 ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x) (α−1 ◦ σn = Fσn−1)

⇐⇒ tn ∈ (
⋃

F n0
◦ PλF n−10 ◦ PFPσn−1 ◦ PF ftc ◦ c)(x) (Lemma 4.8.3,4)

⇐⇒ tn ∈ (
⋃

F n0
◦ PλF n−10 ◦ PFPF n−1?X ◦ PFcn−1 ◦ c)(x) (By (5))

⇐⇒ tn ∈ (PF n?X ◦
⋃

F nX
◦ PλF n−1X ◦ PFcn−1 ◦ c) (Lemma 4.8.4,3)

⇐⇒ tn ∈ (PF n?X ◦ cn) (Definition of cn)

⇐⇒ σn(tn) ∈ ftc(x) . (By (5))

This concludes the proof. ut

Lemma 4.12 If an arrow f : X → PA in Sets makes the diagram (2) commute
in place of ftc, then f is equal to ftc as defined in the proof of Theorem 4.10.

Proof. It suffices to show that

Pσn ◦ f = Pσn ◦ ftc , (6)

since, if it holds, for each x ∈ X , n < ω and tn ∈ F n0 we have

σn(tn) ∈ f(x) ⇐⇒ σn(tn) ∈ ftc(x)



which yields the lemma. We show (6) by induction on n.

When n = 0 the claim trivially holds. For n + 1,

Pσn+1 ◦ f = Pσn+1 ◦ Pα ◦
⋃

FA
◦ PλA ◦ PFf ◦ c

(f makes the diagram (2) commute)

=
⋃

F n+10
◦ PλF n0 ◦ PFPσn ◦ PFf ◦ c

(As in the proof of Lemma 4.11)

=
⋃

F n+10
◦ PλF n0 ◦ PFPσn ◦ PF ftc ◦ c

(Pσn ◦ f = Pσn ◦ ftc by induction hypothesis)

= Pσn+1 ◦ ftc . (Same calculation as above, but now backwards)

This concludes the proof. ut

Example 4.13 (Non-deterministic automata) We continue from Example
1.2. For the functor F = 1+Σ×−, the commutation of the diagram (2) amounts
to the following conditions.

〈〉 ∈ ftc(x) ⇐⇒ X ∈ c(x) ,

cons(a, s) ∈ ftc(x) ⇐⇒ ∃x′ ∈ X. (a, x′) ∈ c(x) ∧ s ∈ ftc(x
′) .

These conditions indeed (corecursively) characterize the language ftc(x) accepted
by the non-deterministic automaton c when we start from x.

Bartels [Bar04] gives an alternative characterization of the accepted language,
using a different distributive law. The precise relationship with our work is yet
to be determined.

Example 4.14 (Context-free grammar) We continue from Example 1.3. For
the functor F = (Σ +−)∗, the commutation of the diagram (2) amounts to the
following conditions. For each element

c1 c2 . . . cn

of ftc(x) (here c1, c2, . . . , cn ∈ Σ + Σ4), there exists a string 〈d1, d2, . . . , dn〉 ∈
c(x) such that for each i:

– if ci ∈ Σ then di is also in Σ and ci = di ;

– if ci ∈ Σ4 then di is in X and ci ∈ ftc(di).

Hence we obtain the set of finite SPTs generated by c from x as ftc(x) via finality
in SetsP .



5 (Possibly infinite) trace semantics

In this section we relate our current work to earlier work [Jac04b], where the
final coalgebra in Sets gives rise to a weakly final coalgebra in Rel.

Theorem 5.1 (Main result of [Jac04b]) Let F be a shapely functor, and ζ :

Z
∼=→ FZ be the final coalgebra in Sets.

1. The coalgebra graph(ζ) : Z → FZ is weakly final for the lifted functor F in
Rel. That is, given a coalgebra c : X → FX, there exists a (not necessarily
unique) relation t : X → Z that makes the following diagrams commute.

FX
Ft

FZ

X

c

t
Z

graph(ζ) (7)

2. There is a canonical choice mtc (maximum trace) of a trace of c, namely the
maximum one with respect to the inclusion order. ut

It turns out that the finite trace of a coalgebra gives rise to the smallest trace
via canonical embedding ι : A � Z.

Corollary 5.2 Let F be a shapely functor, and c : X → PFX be a coalgebra in
Sets.

1. Each trace t of c gives rise to the finite trace of c by X
t

PZ
Pι

PA

in Sets.

2. The finite trace ftc gives rise to a trace of c by X
ftc

PA
Pι

PZ in

Sets. Moreover, this trace is the smallest among the traces of c.

Proof. A trace induces the finite trace, and vice versa, since the following dia-
gram in Sets commutes. For the former take the three squares on the left and
put them on the right of the definition of a trace, and for the latter take those
on the right.

PFPZ

PλZ

PFPι

(i)

PFPA
PFPι

PλA (iv)

PFPZ

PλZ

P2FZ
⋃

FZ

PPFι
(ii)

P2FA

(v)
P2Fι

⋃

FA

P2FZ
⋃

FZ

PFZ

Pζ
PFι
(iii)∼=

PFA

(vi)
PFι

Pα∼=

PFZ

PZ

Pζ

Pι
PA

Pι

Pα

PZ

Pζ∼=



Square (i) commutes by Lemma 4.8.4, (ii) by Lemma 4.8.3, (iii) is the definition
of ι mapped by P, (iv) commutes by naturality of λ, (v) by naturality of

⋃

, and
(vi) is the definition of ι.

It remains to be shown that the trace Pι ◦ ftc is the smallest trace. Take
an arbitrary trace t : X → PZ of c. It induces the finite trace by Pι ◦ t, and
by Theorem 4.10 (uniqueness of the finite trace) we have ftc = Pι ◦ t. Since in
general (Pf ◦ Pf)(u) ⊆ u holds, we have Pι ◦ ftc = Pι ◦ Pι ◦ t ⊆ t. ut

6 Conclusions and future work

We have presented that under suitable mild restrictions the initial algebra in
Sets gives rise to the final coalgebra in Rel. The relation induced by the finality
in Rel extracts the set of finite behavior of non-deterministic systems. The
technical result is applied to non-deterministic automata and the first coalgebraic
account of context-free grammars/languages. The (co)algebraic and monadic
structures on strings and skeletal parse trees have been also elaborated.

The well-known relationship between context-free languages and pushdown
automata (see e.g.[LP81]) would be an interesting topic to consider from a coal-
gebraic perspective. So is the problem of parsing, which is a partial inverse of
the flattening function ϕΣ in Section 3.

As mentioned in Remark 4.7 we are now applying the current approach to
another monad than P , namely the subdistribution monad.
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A Appendix

A.1 Functor/monad structure of (−)4 and (−)∧

On a function f : Σ → Φ, the action of (−)
4

and (−)
∧

is obtained as follows.

(Σ + Σ4)∗
(Σ + f4)∗

αΣ ∼=

(Σ + Φ4)∗

(f + Φ4)

(Φ + Φ4)∗

αΦ∼=

Σ4

f4
Φ4

and

(Φ + Σ∧)∗
(Φ + f∧)∗

(Φ + Φ∧)∗

(Σ + Σ∧)∗
(f + Σ∧)∗

Σ∧

ζΣ
∼=

f∧ Φ∧

∼= ζΦ

The monad structure is constructed as follows.

Σ
κ1

4

ηΣ

Σ + Σ4

∗

ηΣ+Σ4

(Σ + Σ4)∗

αΣ∼=

Σ4

(Σ + Σ)∗
(Σ +

∧

ηΣ)∗
(Σ + Σ∧)∗

Σ + Σ

∗

ηΣ+Σ

Σ

κ1

∧

ηΣ

Σ∧

ζΣ
∼=



(Σ4 + Σ44)∗

αΣ4∼=

(Σ4 +
4

µΣ)∗
(Σ4 + Σ4)∗

[α−1
Σ ,

∗

ηΣ+Σ4 ◦ κ2]
∗

(Σ + Σ4)∗∗
∗

µΣ+Σ4

(Σ + Σ4)∗

αΣ∼=

Σ44
4

µΣ

Σ4

The definition of
∧

µ is rather complicated. Let aΣ be the following composite on
the left.

Σ∧∧
ζΣ∧

∼=
aΣ

(Σ∧ + Σ∧∧)∗
(ζΣ + Σ∧∧)∗

∼=

(

(Σ + Σ∧)∗ + Σ∧∧
)∗

[κ∗
1,

∗

η(Σ+Σ∧)+Σ∧∧ ◦ κ2]
∗

(

Σ + (Σ∧ + Σ∧∧)
)∗ (

(Σ + Σ∧) + Σ∧∧
)∗

[Σ + κ1, κ2 ◦ κ2]
∗

(

(Σ + Σ∧) + Σ∧∧
)∗∗

∗

µ(Σ+Σ∧)+Σ∧∧

This map aΣ is used in the coalgebraic structure map on the left in:

(

Σ + (Σ∧ + Σ∧∧)
)∗ (Σ + bΣ)∗

(Σ + Σ∧)∗

Σ∧ + Σ∧∧

[(Σ + κ1)
∗ ◦ ζΣ , aΣ]

bΣ
Σ∧

∼= ζΣ

Σ∧∧

κ2

∧

µΣ .

By finality one easily obtains bΣ ◦ κ1 = Σ∧.

A.2 Proof of Lemma 4.8

Points 1 and 2 are straightforward. Point 3 is equivalent to saying that union is
preserved by taking an inverse image. For Point 4, we show the proof for n = 1.
The case for general n is easy by induction. Let s ∈ FX and r ∈ FPY . Then

s ∈ (λX ◦ FPf)(r) ⇐⇒ ( s, (FPf)(r) ) ∈ RelF (∈X) (Definition of λ)

⇐⇒ (s, r) ∈ (id × FPf)−1 RelF (∈X)

⇐⇒ (s, r) ∈ RelF
(

(id ×Pf)−1(∈X)
)

(Lemma 4.3.3)

⇐⇒ (s, r) ∈ RelF
(

(f × id)−1(∈Y )
)

(†, see below)

⇐⇒ ( (Ff)(s), r ) ∈ RelF (∈Y ) (Lemma 4.3.3)

⇐⇒ (Ff)(s) ∈ λY (r) (Definition of λ)

⇐⇒ s ∈ (PFf ◦ λY )(r) ,



where (†) holds because

(x, u) ∈ (id ×Pf)−1(∈X) ⇐⇒ x ∈ (Pf)(u)

⇐⇒ f(x) ∈ u

⇐⇒ (x, u) ∈ (f × id)−1(∈Y ) . ut

A.3 Proof of Theorem 4.10

First we show that, for each n,

Im σn ∩ tracen+1
c (x) = tracen

c (x) . (8)

It is proved as follows.

Im σn ∩ tracen+1
c (x)

= (Pσn ◦ Pσn ◦ tracen+1
c )(x)

= (Pσn ◦ PF n?F0 ◦ Pσn+1 ◦ tracen+1
c )(x) (σn = σn+1 ◦ F n?F0 by (3))

= (Pσn ◦ PF n?F0 ◦ PF n+1?X ◦ cn+1)(x)
(Definition of tracen+1

c , and Pσn ◦ Pσn = id by Lemma 4.8.1)

= (Pσn ◦ PF n?FX ◦ cn+1)(x) (F ?X ◦?F0 =?FX)

= (Pσn ◦ PF n?FX ◦
⋃

F n+1X
◦ Pλn

FX ◦ PF nc ◦ cn)(x)

= (Pσn ◦
⋃

F n0
◦ Pλn

0 ◦ PF nP?FX ◦ PF nc ◦ cn)(x) (Lemma 4.8.3,4)

= (Pσn ◦
⋃

F n0
◦ Pλn

0 ◦ PF nP?X ◦ PF n{−}X ◦ cn)(x)

(P?FX ◦ c = P?X ◦ {−}X : X → P0, with terminal codomain 1 = P0)

= (Pσn ◦ PF n?X ◦
⋃

F nX
◦ Pλn

X ◦ PF n{−}X ◦ cn)(x) (Lemma 4.8.4,3)

= (Pσn ◦ PF n?X ◦
⋃

F nX
◦ P{−}F nX ◦ cn)(x)

(λn is compatible with the unit of P)

= (Pσn ◦ PF n?X ◦ cn)(x) (Unit law of the monad P)

= tracen
c (x) .

Obviously the sequence {Imσn}n<ω of subsets of A is increasing, since σn =
σn+1 ◦ F n?F0. Now, for arbitrary n ≤ m,

Im σn ∩ tracem
c (x) = Im σn ∩ Im σn+1 ∩ · · · ∩ Im σm−1 ∩ tracem

c (x)
(Since Im σn ⊆ Im σn+1 ⊆ · · · ⊆ Im σm−1)

= Im σn ∩ Im σn+1 ∩ · · · ∩ tracem−1
c (x) (By (8))

= · · ·

= tracen
c (x) . ut


