
Kripke Completeness of First-Order
Constructive Logics with Strong

Negation

ICHIRO HASUO and RYO KASHIMA, Department of Mathematical
and Computing Sciences, Tokyo Institute of Technology, O-okayama,
Meguro, Tokyo 152-8552, Japan.
E-mail: {hasuo2, kashima}@is.titech.ac.jp

Abstract

This paper considers Kripke completeness of Nelson’s constructive predicate logic N3 and its several
variants. N3 is an extension of intuitionistic predicate logic Int by an contructive negation operator
∼ called strong negation. The variants of N3 in consideration are by omitting the axiom A →
(∼A → B), by adding the axiom of constant domain ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, by adding
(A → B) ∨ (B → A), and by adding ¬¬(A ∨ ∼A); the last one we would like to call the axiom of
potential omniscience and can be interpreted that we can eventually verify or falsify a statement,

with proper additional information. The proofs of completeness are by the widely-applicable tree-
sequent method; however, for those logics with the axiom of potential omniscience we can hardly
go through with a simple application of it. For them we present two different proofs: one is by
an embedding of classical logic, and the other by the TSg method, which is an extension of the
tree-sequent method.

Keywords: Strong Negation, Quantified Constructive Logic, Kripke-type Semantics, Intermediate

Logics

1 Introduction

1.1 Strong negation

Strong (or constructive) negation, denoted by ∼ in this paper, is a negation operator
in constructive logics introduced by Nelson [16], Markov [15], and von Kutschera [29].1

In intuitionistic logic, the negation operator ¬A, which we would like to call Heyt-
ing’s negation to make it distinct from the strong one, is an abbreviation for A → ⊥,
i.e. A implies absurdity. This kind of treatment of negation is justified by such a
viewpoint as Grzegorczyk’s one, “the compound sentences are not a product of ex-
periment, they arise from reasoning. This concerns also negation: we see that the
lemon is yellow, we do not see that it is not blue” [8].

However, such an example as Kracht cites yields an alternative definition of nega-
tion, especially for constructivists: “we can not only verify a simple proposition such
as This door is locked. by direct inspection, but also falsify it” [13]. This motivates the
idea of strong negation, that is, taking negative information as primitive as positive
one.

1Markov refers to Nelson [16] in his short note from 1950, nevertheless it is claimed by many authors that they

introduced strong negation independently.

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–32 0000 c© Oxford University Press

2 Kripke Completeness of First-Order Constructive Logics with Strong Negation

Wansing [31] argues that constructive logics with strong negation and without some
of structural rules (in Gentzen-style sequent systems) can be candidates for the logic
of information structure, due to the character of strong negation stated above. And
in recent years, constructive logics have been paid attention to in the field of logic
programming, e.g. [10], [19], [20], [30] and [1].

Nelson’s constructive logic N3 is an extension of intuitionistic logic Int by the strong
negation operator ∼, where the word logic designates a pair of a formal language and
a set of its formulas which are admitted as theorems. ∼ is axiomatized in the Hilbert-
style system as follows:

A → (∼A → B),
∼(A ∧ B) ↔ ∼A ∨ ∼B, ∼(A ∨ B) ↔ ∼A ∧ ∼B,

∼(A → B) ↔ A ∧ ∼B, ∼∼A ↔ A, ∼¬A ↔ A,

∼∀xA ↔ ∃x∼A, ∼∃xA ↔ ∀x∼A.

Introduced by the axioms above, strong negation ∼ and Nelson’s logic N3 enjoys
several properties reflecting its motivation. In what follows we shall see three exam-
ples.

One is the principle of constructible falsity,

	 ∼(A ∧ B) iff 	 ∼A or 	 ∼B,

which can be regarded as the negative counterpart of disjunction property,

	 A ∨ B iff 	 A or 	 B.

While the former does not hold as to Heyting’s negation (i.e. in Int), it holds as to
strong negation (i.e. in N3) by Kripke completeness of N3. This is one of the facts
that imply that positive and negative information have equal importance in N3.

Another example is logical equivalence in N3. As is shown in [28], if logical equiv-
alence in N3 (denoted by A ∼=N3 B here) is defined by N3 	 A ↔ B (just like in
logics without ∼), then the equivalence theorem fails, i.e. A ∼=N3 B does not neces-
sarily imply C[A] ∼=N3 C[B]. However, if both N3 	 A ↔ B and N3 	 ∼A ↔ ∼B
hold, that is, if A and B are equivalent in both positive and negative senses, then
N3 	 C[A] ↔ C[B].

The last is seen in the Kripke-type possible world semantics characterizing N3,
which is an extension of that for Int by an extra interpretation I−. I− is the falsum
interpretation, designating which formula is falsified at each possible world. In a
Kripke-model for N3 (we would like to call it an N3-model), the falsity of an atomic
formula is not reducible to the verum interpretation I+, but can only be shown by
I−. About N3-models we shall see in detail later.

There have been many suggestions for an interpretation of intuitionistic logic Int:
Kripke’s one of development of knowledge [14], Grzegorczyk’s one of scientific research
[8], Brouwer-Heyting-Kolmogorov (BHK) interpretation in terms of proofs [11] [27],
and so on. Those three cited above can be easily modified into interpretations of N3,
as Wansing shows in [31].

Kripke Completeness of First-Order Constructive Logics with Strong Negation 3

1.2 The axiom of potential omniscience

Since N3 is a conservative extension of Int, it is natural to consider extensions of
intermediate logics (which include Int and are included by classical logic Cl) by the
strong negation operator.2 However, the study of extra axioms which are peculiar to
logics with strong negation seems to have been paid less attention to. We will consider
one of such axioms in this paper: ¬¬(A∨∼A), which we would like to call the axiom
of potential omniscience. Intuitively it is interpreted that we can eventually verify or
falsify any statement, with proper additional information. Now we shall see what can
be implied by the axiom.

In the Kripke-type interpretation, the axiom of potential omniscience corresponds
to the following statement: for every closed formula A and every state of information
a, there is a state b which is reachable from a and where A is either verified or refuted.
Hence the axiom, especially when combined with the axiom (A → B)∨(B → A) which
can be interpreted that the set of information states is linearly ordered, seems useful
to formalize such cases as some kind of games, e.g. cryptography; consider a game
where one player (or a dealer, say Alice) knows the answer and the other player (say
Bob) tries to find it. In such a game Bob can reach the correct answer if he obtains
the information that Alice has.

The axiom may also be considered as one of the weaker versions of the law of
excluded middle, A ∨ ∼A.3

1.3 What is shown in this paper

This paper is to show Kripke completeness of several variants of Nelson’s constructive
logic N3, for the quantified case. The proofs are by the usage of a tree-sequent,
which is a labelled tree each node of which is associated with a sequent. The tree-
sequent method can be regarded as a kind of semantic tableaux, and since it aims
at completeness as to Kripke-models of a tree-shape, a tree-sequent has its shape.
Needless to say the method is also applicable to Kripke completeness of Int and some
intermediate predicate logics; the results can be found in [12].

The logics whose Kripke completeness is proved in this paper are presented in Fig.
1, enclosed in a box.4 For those four logics which are not enclosed, we shall see the
difficulty therein in the last section.

Here the basic logics are N3 and N4: N4 is obtained from N3 by omitting the axiom
A → (∼A → B), which is one of those which axiomatize ∼ and may be considered
as the constructive version of the ex falso rule ⊥ → B. In Kripke-type semantics for
N3 the verum interpretation I+ and the falsum one I− are always disjoint, hence for
each formula A and each possible world a we have one of the following three: A is
verified at a, A is falsified at a, or A is neither verified nor falsified at a. For N4
where I+ and I− may intersect, we have another possibility: A is both verified and
falsified at a. Hence the name of the logics; N4 is for four-valued. N4 is known to be

2For example, Goranko [6], Sendlewski [22], [23], [24], and Kracht [13] discuss unquantified cases using algebraic

methods.
3¬A∨¬¬A is said to be the weak law of excluded middle and characterizes intermediate logics. Corsi and Ghilardi

[4] considers Kripke completeness of Int plus the axiom and its extensions, for the quantified case.
4Almukdad and Nelson [2] consider ¬-free fragments of N3d, N4 and N4d (denoted by N+, N− and N+− respec-

tively) and gives Gentzen-style sequent systems for them.

4 Kripke Completeness of First-Order Constructive Logics with Strong Negation

N4lo � N4dlo N3lo � N3dlo

���� ���� ��
��

��
��

N4l �

�

N4dl N3l �

�

N3dl

N4o � N4do

�

N3o � N3do

�

���+o
�

���� ��
�
+o
�

��
��

N4

+l

�

+d
� N4d

�

N3

+l

�

+d
� N3d

�

Fig. 1. The N-family

paraconsistent.5

Each of the additional letters d, l, and o designates what follows:

d Adding the axiom of constant domain, ∀x(A(x)∨B) → ∀xA(x)∨B, where x have
no free occurrences in B. The intermediate logic CD, which is Int plus this axiom,
is characterized by the class of Kripke models whose domain is a constant map,
as Görnemann [7] shows. d is for Domain.

l Adding the axiom (A → B)∨(B → A). Dummett’s logic LC, which is Int plus this
axiom, is characterized by the class of linearly ordered Kripke models, as Corsi [3]
shows.6 l is for Linear.

o Adding the axiom of potential omniscience, ¬¬(A ∨∼A). o is for Omniscience.

The family of sixteen logics presented in the lattices above we would like to call the
N-family in this paper.

While the completeness proofs for those without o are easy by simple applications
of the tree-sequent method, the proofs for those with o are not, since the axiom of
potential omniscience refers to, so to speak, upper-bounds of a Kripke model. For
them we present two different proofs. One proof is applicable only to N3o and N3lo;
it is by an embedding of Cl into N3o, and omniscient possible worlds (where every
formula is either verified or falsified) are induced by Cl-models (or structures). The
other is by an extension of the tree-sequent method which we would like to call the
tree-sequent with guardians (abbreviated TSg) method.

There are some logics in the N-family whose Kripke completeness is already shown:
N3 is by Gurevich [9] and by van Dalen [28], N3d is by Thomason [25], and N4
is by Odintsov and Wansing [18]. Nevertheless the authors do not take their own
tree-sequent-based proofs as useless; the method used in them is applicable to other
logics.

5Priest and Routley [21] give an introduction to paraconsistent logics. See also Odintsov [17], Odintsov and

Wansing [18]
6Kripke completeness of CD or LC can be proved more easily using the tree-sequent method. The proof is just

the same as that for N3d or N3l, and presented in [12].

Kripke Completeness of First-Order Constructive Logics with Strong Negation 5

1.4 Notations

In this paper we adopt Gentzen-style sequent systems for the formal presentation of
logics;7 a sequent system for logic L is denoted by GL. And later we will introduce
tree-sequent systems and TSg systems for the proofs of Kripke completeness; the
tree-sequent system for logic L is denoted by TL, and the TSg system is by TgL.

We often denote logics by such a form as N3
4[d]: this is for “N3, N3d, N4 and N4d”.

N4d[o] is for “N4d and N4do”.
We do not consider constants or function symbols, which makes the argument

simpler without essential loss of generality.
Syntactical equivalence is denoted by ≡. For example, A∧B and B∧A are logically

equivalent in those logics considered in this paper; however, A ∧ B �≡ B ∧ A.
A[y/x] is a substitution, obtained by replacing every free occurrences of x in A by

y. It is not preferable that by substitution new bound variables come to existence;
we avoid such cases by taking variants, i.e. replacing bound variables.

As in Tarski-type semantics for classical logic Cl, in defining |= and its variants we
will introduce temporary constants each of which designates a certain individual u.
This kind of constant is said to be the name of u and denoted by u.

For a finite set of formulas Γ = {A1, . . . , Am},
∧

Γ (or
∨

Γ) is an abbreviation for
A1 ∧ . . . ∧ Am (or A1 ∨ . . . ∨ Am). If Γ = ∅, it is
 (or ⊥), which is an abbreviation
for A → A (or ¬(A → A), respectively).

2 Syntax and semantics

2.1 Gentzen-style sequent systems GN3
4[d][l][o]

Here we introduce Gentzen-style sequent systems for logics in the N-family. They
share one formal language, consisting of the following symbols: countably many vari-
ables, x1, x2, . . . ; countably many m-ary predicate symbols for each m ∈ N, pm

1 , pm
2 ,

. . . ; and logical connectives, ∧, ¬, →, ∼ and ∀. ∨ and ∃ are introduced as defined
symbols:

A ∨ B :≡ ∼(∼A ∧∼B), ∃xA :≡ ∼∀x∼A.

A ↔ B is an abbreviation of (A → B)∧ (B → A). Terms and formulas are composed
in the same way as those of Cl, and note that ∼ is unary. The binding strength of
the connectives are: ∀,¬,∼ ≥ ∧ ≥ →.

A sequent is defined as an ordered pair of finite sets of formulas separated by the
symbol ⇒, hence the rule of exchange or contraction can be omitted.

Now we present the initial sequents and derivation rules of a Gentzen-style sequent
system GN3 for the logic N3:

A ⇒ A
(Identity, Id)

A,∼A ⇒ (Ex Falso, Fal)

Γ ⇒ ∆
Σ, Γ ⇒ ∆, Π

(Weakening, W)
Γ ⇒ ∆, A A, Γ ⇒ ∆

Γ ⇒ ∆
(Cut, C)

7The duality of positive and negative information, syntactically A and ∼A, motivates another choice of for-

mal presentation of N3: Wansing [32] introduces higher-arity Gentzen systems using four-place sequents, based on

Belnap’s display logic

6 Kripke Completeness of First-Order Constructive Logics with Strong Negation

A, B, Γ ⇒ ∆
A ∧ B, Γ ⇒ ∆

(∧L)
Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧ B
(∧R)

Γ ⇒ ∆, A B, Γ ⇒ ∆
A → B, Γ ⇒ ∆

(→L)
A, Γ ⇒ B

Γ ⇒ A → B
(→R)S

Γ ⇒ ∆, A

¬A, Γ ⇒ ∆
(¬L)

A, Γ ⇒
Γ ⇒ ¬A

(¬R)S

A[y/x], Γ ⇒ ∆
∀xA, Γ ⇒ ∆

(∀L)
Γ ⇒ A[z/x]
Γ ⇒ ∀xA

(∀R)S, VC

∼A, Γ ⇒ ∆ ∼B, Γ ⇒ ∆
∼(A ∧ B), Γ ⇒ ∆

(∼∧L)
Γ ⇒ ∆,∼A,∼B

Γ ⇒ ∆,∼(A ∧ B)
(∼∧R)

A,∼B, Γ ⇒ ∆
∼(A → B), Γ ⇒ ∆

(∼→L)
Γ ⇒ ∆, A Γ ⇒ ∆,∼B

Γ ⇒ ∆,∼(A → B)
(∼→R)

A, Γ ⇒ ∆
∼¬A, Γ ⇒ ∆

(∼¬L)
Γ ⇒ ∆, A

Γ ⇒ ∆,∼¬A
(∼¬R)

A, Γ ⇒ ∆
∼∼A, Γ ⇒ ∆

(∼∼L)
Γ ⇒ ∆, A

Γ ⇒ ∆,∼∼A
(∼∼R)

∼A[z/x], Γ ⇒ ∆
∼∀xA, Γ ⇒ ∆

(∼∀L)VC

Γ ⇒ ∆,∼A[y/x]
Γ ⇒ ∆,∼∀xA

(∼∀R)

Here the subscript S indicates the condition of no side formulas, that is, the succedent
of the lower sequent must consist of only one formula, and VC the eigenvariable
condition, i.e. the eigenvariable z must not have free occurrences in the lower sequent.

The initial sequents and derivation rules which do not involve ∼ precisely coincides
with those of Maehara’s LJ′, which is equivalent to LJ and one of sequent systems
for Int.

If a sequent Γ ⇒ ∆ is derived using the initial sequents and rules above, Γ ⇒ ∆
is provable in GN3, denoted by GN3 	 Γ ⇒ ∆. A formula A is provable in GN3,
denoted GN3 	 A, if GN3 	 ⇒ A.

For variants of N3,8 we can obtain sequent systems by the following modifications:

N4 Omit the initial sequents (Fal).

d Allow side formulas in the rule (∀R), resulting in the new rule

Γ ⇒ ∆, A[z/x]
Γ ⇒ ∆, ∀xA

(∀R)VC

This is equivalent to adding ⇒ ∀x(A(x) ∨ B) → ∀xA(x) ∨ B as initial sequents,
as is well-known about the intermediate logic CD.

l Add the initial sequents

⇒ (A → B) ∨ (B → A)
(Li)

o Add the initial sequents

⇒ ¬¬(A ∨ ∼A)
(Potential Omniscience, Om)

There are a couple of equivalent additional rules; we shall see them later.
8When we speak of variants of N3 they include N4[d][l][o].

Kripke Completeness of First-Order Constructive Logics with Strong Negation 7

2.2 Kripke-type possible world semantics

Kripke-type semantics for logics in the N-family are extensions of that for Int, as
stated in the previous section. First we shall describe the precise definitions, and
then proceed to explain how the definitions are justified by our intuition.

Let (M,≤) be a poset, W a non-empty set, and U be a map of M into PW ,
satisfying: U(a) �= ∅ for all a ∈ M ; a ≤ b implies U(a) ⊆ U(b).

For every predicate symbol p (we assume p is m-ary), we define two interpretations
of p at a ∈ M , denoted by pI+(a) and pI−(a), as subsets of U(a)m, satisfying:

1. a ≤ b implies pI+(a) ⊆ pI+(b) and pI−(a) ⊆ pI−(b);
2. pI+(a) ∩ pI−(a) = ∅.

Then the quintuple M = (M,≤, U, I+, I−) is said to be an N3-model.
Given an N3-model M, we extend two interpretations I+ and I− into two relations

between an element in M and a closed formula, a |=+ A and a |=− A, inductively on
the construction of a closed formula A:

a |=+ p(u1, . . . , um) iff (u1, . . . , um) ∈ pI+(a) ;

a |=− p(u1, . . . , um) iff (u1, . . . , um) ∈ pI−(a) ;

a |=+ A ∧ B iff a |=+ A and a |=+ B ;

a |=− A ∧ B iff a |=− A or a |=− B ;

a |=+ A → B iff for every b ≥ a, b |=+ A implies b |=+ B ;

a |=− A → B iff a |=+ A and a |=− B ;

a |=+ ¬A iff for every b ≥ a, b �|=+ A ;

a |=− ¬A iff a |=+ A ;

a |=+ ∼A iff a |=− A ;

a |=− ∼A iff a |=+ A ;

a |=+ ∀xA iff for every b ≥ a and every u ∈ U(b), b |=+ A[u/x] ;

a |=− ∀xA iff for some u ∈ U(a), a |=− A[u/x] .

We write a �|=+− A if neither a |=+ A nor a |=− A holds.
A formula A of N3 is valid in an N3-model M, denoted by M |= A, if a |=+ ∀�xA for

every a ∈ M , where ∀�xA is a universal closure of A. A is valid, denoted by N3 |= A,
if A is valid in every N3-model.

A sequent Γ ⇒ ∆ of GN3 is valid (or valid in M), denoted by N3 |= Γ ⇒ ∆ (or
M |= Γ ⇒ ∆), if the formula (

∧
Γ) → (

∨
∆) is valid (or valid in M, respectively).

Now we describe how the definitions above can be understood.
The elements of M can be considered as “points in time (or ‘evidential situations’),

at which we may have various pieces of information” [14], and are often called possible
worlds. Then the relation a ≤ b can be interpreted that a possible world a can develop
into b.

U(a) is the domain of individuals at a, more precisely, individuals whose existence
is recognized at a. pI+(a) (or pI−(a)) designates atomic formulas which are verified
(or falsified) at a, by direct inspections. If a ≤ b, then it is natural to assume that

8 Kripke Completeness of First-Order Constructive Logics with Strong Negation

b inherits all the information available at a, hence U(a) ⊆ U(b), pI+(a) ⊆ pI+(b) and
pI−(a) ⊆ pI−(b).

a |=+ A, a |=− A or a �|=+− A is interpreted that a verifies, falsifies or neither
verifies nor falsifies A. While whether Heyting’s negation holds is reduced (through
reasoning) to verum interpretation I+, strong negation is reduced to falsum inter-
pretation I−, which is primitive and independent of I+. We can see the constructive
character of N3-models in I− and |=−, comparing with Int-models.

Note that (M,≤) need not be linearly-ordered; a may develop into different possible
worlds.

Kripke-type semantics for the logics other than N3 is obtained by the following
modifications:

N4 Omit the condition pI+(a) ∩ pI−(a) = ∅.
d Add the condition that the domain U : M → PW is a constant map.

l Add the condition that (M,≤) is linearly ordered, that is, for every a, b ∈ M
either a ≤ b or b ≤ a holds.

o Add the condition that for every a ∈ M and every closed formula A, there exists
b ≥ a where either b |=+ A or b |=− A holds.

In fact completeness shown later is often for smaller class of models; first, we
can assume a set of possible worlds (M,≤) to be a tree, since every model M can
be transformed into an equivalent tree-shape model Mt by taking each path of M
as a node of Mt. Second, the additional condition for o shall be strengthened as
follows: for every a ∈ M , there exists ag ≥ a (we will often call ag the guardian
of a) which is omniscient, that is, for every predicate symbol p (which is m-ary),
pI+(ag) ∪ pI−(ag) = U(ag)m. Moreover, such ag shall be restricted to be a node which
is an immediate successor of a and maximal in (M,≤) for N3o and N3do, or restricted
to be the maximum of (M,≤) for N3lo and N3dlo.

Several examples of models for logics in the N-family are presented in Fig. 2, where
a circle is a possible world, an arrow from a to b denotes that a ≤ b, the upper colored
part of a circle designates the closed formulas verified there, and the lower one those
fasified.

The following lemmas which are true to our intuition are easily obtained by induc-
tion.

Lemma 2.1 (Heredity)
Let A a closed formula of N3 (or equivalently N3

4[d][l][o]), M = (M,≤, U, I+, I−) be
an N3

4[d][l][o]-model, a, b ∈ M and a ≤ b. Then a |=+ A (or a |=− A) implies b |=+ A
(or b |=− A, respectively).

Lemma 2.2
Let A a closed formula of N3, M = (M,≤, U, I+, I−) be an N3[d][l][o]-model and
a ∈ M . Then it is impossible that both a |=+ A and a |=− A hold.

Soundness of the sequent systems introduced in the previous section is again easily
obtained by induction on the derivation.

Theorem 2.3 (Kripke soundness of GN3
4[d][l][o])

If GN3
4[d][l][o] 	 Γ ⇒ ∆, then N3

4[d][l][o] |= Γ ⇒ ∆, respectively.

Kripke Completeness of First-Order Constructive Logics with Strong Negation 9

Int-model N3-model N3d-model N3l-model

N3o-model N3lo-model N4-model

Fig. 2. Kripke models

3 Kripke completeness of GN3
4[d][l]

3.1 Tree-sequent system TN3
4[d][l]

In this section we present proofs of Kripke completeness of eight logics, N3
4[d][l], which

are by the usage of the tree-sequent method. In fact, the proofs are just the same as
that for Int, CD or LC. In what follows, the word tree-sequent is often abbreviated as
TS.

First we introduce the TS systems TN3
4[d][l]. Recall that TN3

4 is for “TN3 and
TN4”.

Definition 3.1 (Tree-sequent of TN3
4)

A tree-sequent T of TN3
4 is a finite labelled tree, each node a of which is associated

with a sequent Γa ⇒ ∆a of GN3 (or equivalently of GN3
4[d][l]) and a finite set of

variables αa, denoted by (a : Γa
αa⇒ ∆a), satisfying the following conditions:

1. Let 0 be the root of T , and a0(= 0), a1, . . . , an be an arbitrary path in T , and
(ai : Γi

αi⇒ ∆i) for each i ∈ [0, n]. Then α0, α1, . . . , αn are disjoint. The (disjoint)
union α0 ∪α1 ∪ · · · ∪αn is said to be the set of available variables at the node an.

2. Every variable which has free occurrences in the sequent associated to a is available
at a.

In other words, for (a : Γa
αa⇒ ∆a) αa is the set of variables which are available at a

10 Kripke Completeness of First-Order Constructive Logics with Strong Negation

for the first time in tracing from the root.

Definition 3.2 (Pre-tree-sequent of TN3
4)

Omitting the condition 2, we obtain the definition of pre-tree-sequent, abbreviated as
pTS, of TN3

4.

pTS’s emerge as subtrees of TS’s.

Definition 3.3 (Tree-sequent of TN3
4d)

A tree-sequent T of TN3
4d is simply a finite labelled tree each node of which is as-

sociated with a sequent, just like (a : Γa ⇒ ∆a). The definition does not concern
availability of variables.

Definition 3.4 (Tree-sequent and pre-tree-sequent of TN3
4[d]l)

A tree-sequent (or pre-tree-sequent) of TN3
4[d]l is that of TN3

4[d] which is linearly
ordered, i.e. each node of which has at most one successor.

As seen in the following proof of compleness, the set of available variables works
as a seed of the domain at the node; hence the concept is unnecessary for the case of
constant domain models, i.e. logics with d.

Here is an example of a TS of TN3
4:

{x}⇒ ¬¬(p(x) ∨ ∼p(x)) a

¬(p(x) ∨ ∼p(x)) ∅⇒ p(x) ∨ ∼p(x)

b

∀z.(q(y) ∨ r(z, y))
{y}⇒ q(y) ∨ ∀z.r(z, y) c

{z}⇒ r(z, y)

d

where the sets of available variables at the node a, b, c and d are {x}, {x}, {x, y} and
{x, y, z}, respectively.

In what follows, we adopt the notation below of a TS, for economy of space:
[{x}⇒ ¬¬(p(x) ∨∼p(x)) |

[
¬(p(x) ∨ ∼p(x)) ∅⇒ p(x) ∨ ∼p(x)

]
[
∀z.(q(y) ∨ r(z, y))

{y}⇒ q(y) ∨ ∀z.r(z, y) | {z}⇒ r(z, y)
]]

,

that is,

Γ α⇒ ∆

T1 T2 · · · Tm

is denoted by [Γ α⇒ ∆ | T1 . . .Tm].

However, this notation hardly clarifies the structure of a TS; it will be helpful for to
rewrite it in the tree-style.

Kripke Completeness of First-Order Constructive Logics with Strong Negation 11

Since a TS of TN3
4[d]l is a linearly ordered finite tree, which is nothing but a finite

sequence, we often omit [and] in its notation. Hence it is denoted in the form

Γ1
α1⇒ ∆1 | Γ2

α2⇒ ∆2 | · · · | Γk
αk⇒ ∆k.

Definition 3.5 (Tree-sequent system TN)
Initial tree-sequents and derivation rules of TN are presented below, followed by some
remarks which describe what they designate.

· · · [A α⇒ A | · · ·
(Id)

· · · [A,∼A
α⇒| · · ·

(Fal)

· · · [Γ α⇒ ∆ | · · ·
· · · [Σ, Γ α⇒ ∆, Π | · · ·

(W)
· · · [Γ α⇒ ∆ | · · · [A, Σ

β⇒ Π | · · ·] · · ·] · · ·

· · · [A, Γ α⇒ ∆ | · · · [Σ β⇒ Π | · · ·] · · ·] · · ·
(Drop, D)

· · · [A, B, Γ α⇒ ∆ | · · ·
· · · [A ∧ B, Γ α⇒ ∆ | · · ·

(∧L)
· · · [Γ α⇒ ∆, A | · · · · · · [Γ α⇒ ∆, B | · · ·

· · · [Γ α⇒ ∆, A ∧ B | · · ·
(∧R)

· · · [Γ α⇒ ∆, A | · · · · · · [B, Γ α⇒ ∆ | · · ·
· · · [A → B, Γ α⇒ ∆ | · · ·

(→L)
· · · [Γ α⇒ ∆ | · · · [A ∅⇒ B] · · ·] · · ·

· · · [Γ α⇒ ∆, A → B | · · ·
(→R)T

· · · [Γ α⇒ ∆, A | · · ·
· · · [¬A, Γ α⇒ ∆ | · · ·

(¬L)
· · · [Γ α⇒ ∆ | · · · [A ∅⇒] · · ·] · · ·

· · · [Γ α⇒ ∆,¬A | · · ·
(¬R)T

· · · [A[y/x], Γ α⇒ ∆ | · · ·
· · · [∀xA, Γ α⇒ ∆ | · · ·

(∀L)
· · · [Γ α⇒ ∆ | · · · [{z}⇒ A[z/x]] · · ·] · · ·

· · · [Γ α⇒ ∆, ∀xA | · · ·
(∀R)T

· · · [∼A, Γ α⇒ ∆ | · · · · · · [∼B, Γ α⇒ ∆ | · · ·
· · · [∼(A ∧ B), Γ α⇒ ∆ | · · ·

(∼∧L)
· · · [Γ α⇒ ∆,∼A,∼B | · · ·
· · · [Γ α⇒ ∆,∼(A ∧ B) | · · ·

(∼∧R)

· · · [A,∼B, Γ α⇒ ∆ | · · ·
· · · [∼(A → B), Γ α⇒ ∆ | · · ·

(∼→L)
· · · [Γ α⇒ ∆, A | · · · · · · [Γ α⇒ ∆,∼B | · · ·

· · · [Γ α⇒ ∆,∼(A → B) | · · ·
(∼→R)

· · · [A, Γ α⇒ ∆ | · · ·
· · · [∼¬A, Γ α⇒ ∆ | · · ·

(∼¬L)
· · · [Γ α⇒ ∆, A | · · ·

· · · [Γ α⇒ ∆,∼¬A | · · ·
(∼¬R)

· · · [A, Γ α⇒ ∆ | · · ·
· · · [∼∼A, Γ α⇒ ∆ | · · ·

(∼∼L)
· · · [Γ α⇒ ∆, A | · · ·

· · · [Γ α⇒ ∆,∼∼A | · · ·
(∼∼R)

· · · [∼A[z/x], Γ
α∪{z}⇒ ∆ | · · ·

· · · [∼∀xA, Γ α⇒ ∆ | · · ·
(∼∀L)VC

· · · [Γ α⇒ ∆,∼A[y/x] | · · ·
· · · [Γ α⇒ ∆,∼∀xA | · · ·

(∼∀R)

In the above, a tree-structure and undisplayed nodes are arbitrary; (Id) can be read
as every TS which has a node of the form A

α⇒ A is an initial TS.
In the derivation rules, tree-structures and undisplayed nodes are the same between

the conclusion and the hypothesis (or hypotheses); (W) is adding formulas to one node
of the upper TS.

12 Kripke Completeness of First-Order Constructive Logics with Strong Negation

The rules which are unique to TS’s, namely the structural rule Drop (D) and the
logical rules with the subscript T, are displayed in the tree-style:

...

Γ
α⇒ ∆

· · · A, Σ
β⇒ Π

· · · · · ·

...

A, Γ
α⇒ ∆

· · · Σ
β⇒ Π

· · · · · · (D),
...

Γ
α⇒ ∆

· · · {z}⇒ A[z/x]

.

..

Γ
α⇒ ∆,∀xA

· · · (trimmed)
(∀R)T

.

In (D), a formula A in the antecedent of a node is dropped to that of its immedeate

successor. In (∀R)T a leaf (i.e. a maximal node)
{z}⇒ A[z/x] is trimmed. Note that the

formula ∀xA must obtain its occurrence in the immediate successor of the trimmed
leaf, and that the variable z has no free occurrence in Γ α⇒ ∆ since z is available for

the first time at
{z}⇒ A[z/x]. The former remark is also true of the rules (¬R)T and

(→R)T.
In the rule (∼∀L)VC, VC is for the condition that the eigenvariable z have no free

occurrences in any node of the upper TS.
It is seen that except (D) and those rules with the subscript T (which correspond to

the rules of GN with the subscript S), the rules are of the form that the corresponding
rules of GN are applied to one node of the upper TS (or TS’s).

TN3
4[d][l] enjoy one remarkable property: they are cut-free. Although it may imply

some other proof-theoretical results, they are not considered in this paper.

Definition 3.6 (Tree-sequent system TN3
4[d][l])

Tree-sequent systems TN3
4[d][l] for the logics N3

4[d][l] are obtained from TN3 through
the following modifications:

4 Omit the initial TS’s (Fal).

d TS’s do not involve the concept of availability of variables, as stated above. And
the rule (∀R)T is replaced by the new rule:

· · · [Γ ⇒ ∆, A[z/x] | · · ·
· · · [Γ ⇒ ∆, ∀xA | · · ·

(∀R)VC.

l Those rules with subscript T are replaced. (∀R)T is replaced by

T1 T2 · · · Tk

· · · | Γ1
α1⇒ ∆1, ∀xA | Γ2

α2⇒ ∆2 | · · · | Γk
αk⇒ ∆k

(∀R)K

Kripke Completeness of First-Order Constructive Logics with Strong Negation 13

where

T1 ≡ · · · | Γ1
α1⇒ ∆1 | {z}⇒ A[z/x] | Γ2

α2⇒ ∆2 | · · · | Γk
αk⇒ ∆k,

T2 ≡ · · · | Γ1
α1⇒ ∆1 | Γ2

α2⇒ ∆2 | {z}⇒ A[z/x] | · · · | Γk
αk⇒ ∆k,

· · · ,

Tk ≡ · · · | Γ1
α1⇒ ∆1 | Γ2

α2⇒ ∆2 | · · · | Γk
αk⇒ ∆k | {z}⇒ A[z/x].

The subscript K is for sKip. Note that the eigenvariable z has no free occurrences
in the lower TS, because of the shape of Tk and the definition of a TS. (→R)T
and (¬R)T are also replaced by (→R)K and (¬R)K respectively, which are of the
same form as (∀R)K. For example in (→R)K,

Ti ≡ · · · | Γ1
α1⇒ ∆1 | · · · | Γi

αi⇒ ∆i | A
∅⇒ B | · · · | Γk

αk⇒ ∆k.

In TN3
4dl, the rule (∀R)VC remains the same as that of TN3

4d.

3.2 Proof of Kripke completeness

The proofs of Kripke completeness of GN3
4[d][l] are by a simple application of the

tree-sequent method. The sketch is as follows. First we prove Kripke completeness of
the corresponding TS system; given an unprovable TS T (i.e. TN3

4[d][l] �	 T), we can
extend T into a TN3

4[d][l]-saturated (possibly infinite) tree-sequent Tω , which induces
a counter N3

4[d][l]-model for T . Then we define the formulaic translation of a TS T ,
which we denote by T f . With the lemma that TN3

4[d][l] 	 T implies GN3
4[d][l] 	 T f

and Kripke completeness of TN3
4[d][l], we can conclude that if GN3

4[d][l] �	 A then the
TS [α⇒ A] has a counter N3

4[d][l]-model, hence Kripke completeness of GN3
4[d][l].

Definition 3.7 (Counter model for tree-sequent)
Let M = (M,≤, U, I+, I−) be an N3

4[d][l]-model, U : M → PW , and T a TS of
TN3

4[d][l]. M is said to be a counter model for T if:

1. the tree-structure of T can be embedded in (M,≤);
2. the set of all variables can be embedded in W ;
3. for each node (a : Γa

αa⇒ ∆a) of T , a |=+ A[�x/�x] for each A ∈ Γa, and a �|=+ B[�y/�y]
for each B ∈ ∆a, where �x or �y is an enumeration of the free variables in A or B.

If T has no counter models, then T is said to be unrefutable.

It is easily seen that every TS derived in TN3
4[d][l] is unrefutable, which justifies such

unfamiliar rules as (D), (∀R)T and (∀R)K.
An infinite tree-sequent is a TS whose tree-structure, associating sequents, and asso-

ciating sets of variables are all possibly infinite, satisfying the condition on availability
of variables.

TN3
4[d][l]-saturatedness is introduced as a natural extension of LK-saturatedness.

Here LK is meant to be a sequent system used to formalize classical logic.9 The con-
9To be precise, LK is meant to be the system G1c in [26], with the definition of a sequent modified to be just

as in this paper and ¬ taken primitive instead of ⊥.

14 Kripke Completeness of First-Order Constructive Logics with Strong Negation

cept of saturated sequent with respect to a certain sequent system is often introduced
for completeness proofs; see e.g. [12].

Definition 3.8 (TN3
4[d][l]-saturatedness)

An infinite tree-sequent T of TN3
4[l] is TN3

4[l]-saturated if it satisfies the following
conditions:

1. If (b : Γb
αb⇒ ∆b) is a successor of (a : Γa

αa⇒ ∆a) in T , then Γa ⊆ Γb ;

2. For each node (a : Γa
αa⇒ ∆a) of T ,

(a) [(∧L)-saturated] If A ∧ B ∈ Γa, then A ∈ Γa and B ∈ Γa ;
(b) [(∧R)-saturated] If A ∧ B ∈ ∆a, then A ∈ ∆a or B ∈ ∆a ;
(c) [(→L)-saturated] If A → B ∈ Γa, then A ∈ ∆a or B ∈ Γa ;
(d) [(→R)T-saturated] If A → B ∈ ∆a, then there exists a successor (b : Γb

αb⇒ ∆b)
of a such that A ∈ Γb and B ∈ ∆b ;

(e) [(¬L)-saturated] If ¬A ∈ Γa, then A ∈ ∆a ;
(f) [(¬R)T-saturated] If ¬A ∈ ∆a, then there exists a successor (b : Γb

αb⇒ ∆b) of a
such that A ∈ Γb ;

(g) [(∀L)-saturated] If ∀xA ∈ Γa, then A[y/x] ∈ Γa for every y available at a ;
(h) [(∀R)T-saturated] If ∀xA ∈ ∆a, then there exist a successor (b : Γb

αb⇒ ∆b) of a
and a variable y such that A[y/x] ∈ ∆b ;

(i) [(∼∧L)-saturated] If ∼(A ∧ B) ∈ Γa, then ∼A ∈ Γa or ∼B ∈ Γa ;
(j) [(∼∧R)-saturated] If ∼(A ∧ B) ∈ ∆a, then ∼A ∈ ∆a and ∼B ∈ ∆a ;
(k) [(∼→L)-saturated] If ∼(A → B) ∈ Γa, then A ∈ Γa and ∼B ∈ Γa ;
(l) [(∼→R)-saturated] If ∼(A → B) ∈ ∆a, then A ∈ ∆a or ∼B ∈ ∆a ;

(m) [(∼¬L)-saturated] If ∼¬A ∈ Γa, then A ∈ Γa ;
(n) [(∼¬R)-saturated] If ∼¬A ∈ ∆a, then A ∈ ∆a ;
(o) [(∼∼L)-saturated] If ∼∼A ∈ Γa, then A ∈ Γa ;
(p) [(∼∼R)-saturated] If ∼∼A ∈ ∆a, then A ∈ ∆a ;
(q) [(∼∀L)-saturated] If ∼∀xA ∈ Γa, then ∼A[y/x] ∈ Γa for some variable y ;
(r) [(∼∀R)-saturated] If ∼∀xA ∈ ∆a, then ∼A[y/x] ∈ ∆a for every y available at

a.

An infinite tree-sequent T of TN3
4d[l] is TN3

4d[l]-saturated if it satisfies the conditions
above, replacing “for every y available at a” by “for every variable y”.

Lemma 3.9 (Kripke completeness of TN3
4[d][l])

Let TN3
4[d][l] �	 T and at least one variable is available at the root of T . Then T has

a counter model.

Proof. First we extend T into a TN3
4[d][l]-saturated (possibly infinite) tree-sequent

Tω. We construct an infinite sequence of (finite) TS’s T0, T1, . . . and the union of
them (now it possibly becomes infinite) is what we would like to obtain.

Let B1, B2, . . . be an enumeration of all the formulas of N3. We rearrange the
sequence and obtain another sequence

B1 | B1, B2 | B1, B2, B3 | . . . ,

which we denote by A1, A2, In A1, A2, . . . every formula of N3 appears infinitely
many times. Since every term of N3 is nothing but a variable we can enumerate them
as x1, x2,

Kripke Completeness of First-Order Constructive Logics with Strong Negation 15

First we consider the case of TN3. The modifications of the proof for its variants
we shall describe later.

Let T0 :≡ T . The i-th step, which is the step of extension from Ti−1 to Ti, consists
of inheritance and reduction of the formula Ai, using a finite number of variables
x1, x2, . . . , xi (hence the step involves only a finite number of operations). Note that
in each operation unprovability of the TS is preserved. The operations executed in
the i-th step are as follows:

1. [inheritance] For each node (a : Γa
αa⇒ ∆a) such that Ai ∈ Γa, add Ai to the

antecedents of all the successors of a. Unprovability is preserved because of the
rule (D) of TN3.

2. [reduction] According to the shape of Ai, one of the following operations is exe-
cuted for each node (a : Γa

αa⇒ ∆a):
(a) [Ai ≡ B ∧ C] If Ai ∈ Γa, then add B and C to Γa. Unprovability is preserved

because of the rule (∧L) of TN3. If Ai ∈ ∆a, then add either B or C to ∆a,
so that unprovability is preserved. This is possible because of the rule (∧R);
if neither choice preserves unprovability, then by the rule the original TS must
be provable, which is a contradiction. Each operation below also preserves
unprovability because of the corresponding rule of TN3, although we do not put
explicitly.

(b) [Ai ≡ B → C] If Ai ∈ Γa, then add B to ∆a or C to Γa, so that unprovability

is preserved. If Ai ∈ ∆a, then make a new leaf (b : B
∅⇒ C) as an immediate

successor of a:

...

Γ α⇒ ∆, B → C

· · ·

=⇒ ...

Γ α⇒ ∆, B → C

· · · B
∅⇒ C

.

(c) [Ai ≡ ¬B] If Ai ∈ Γa, then add B to ∆a. If Ai ∈ ∆a, then make a new leaf

(b : B
∅⇒) as an immediate successor of a.

(d) [Ai ≡ ∀xB] If Ai ∈ Γa, then add B[xj/x] to Γa, for each xj ∈ {x1, . . . , xi} which
is available at a. If Ai ∈ ∆a, then take a fresh variable xm and make a new leaf

(b :
{xm}⇒ B[xm/x]) as an immediate successor of a; we can take fresh xm since

the original TS is finite.
(e) [Ai ≡ ∼(B ∧ C)] If Ai ∈ Γa, add ∼B or ∼C to Γa so that unprovability is

preserved. If Ai ∈ ∆a, add ∼B and ∼C to ∆a.
(f) [Ai ≡ ∼(B → C)] If Ai ∈ Γa, add B and ∼C to Γa. If Ai ∈ ∆a, add B or ∼C

to ∆a so that unprovability is preserved.
(g) [Ai ≡ ∼¬B or Ai ≡ ∼∼B] If Ai ∈ Γa (or ∆a), add B to Γa (or ∆a, respectively).
(h) [Ai ≡ ∼∀xB] If Ai ∈ Γa, then take a fresh variable xm, add ∼B[xm/x] to Γa, and

also add xm to αa. If Ai ∈ ∆a, add ∼B[xj/x] to ∆a, for each xj ∈ {x1, . . . , xi}
which is available at a.

For variants of N3, the following modifications are to be made:

16 Kripke Completeness of First-Order Constructive Logics with Strong Negation

4 Nothing.

d Omit conditions which involves availability of variables, and the operation (2d) is
replaced by

(d) [Ai ≡ ∀xB] If Ai ∈ Γa, then add B[xj/x] to Γa, for each xj in {x1, . . . , xi}. If
Ai ∈ ∆a, then take a fresh variable xm and add B[xm/x] to ∆a; unprovability
is preserved because of the rule (∀R)VC.

l The operations (2b), (2c) and (2d) are replaced: (2d) is replaced by
(d) [Ai ≡ ∀xB] If Ai ∈ Γa, then add B[xj/x] to Γa, for each xj ∈ {x1, . . . , xi} which

is available at a. Assume Ai ∈ ∆a. Let the TS to which the operation is about
to be applied denoted by

· · · | Γ1
α1⇒ ∆1(≡ Γa

αa⇒ ∆a) | Γ2
α2⇒ ∆2 | · · · | Γk

αk⇒ ∆k.

Now take a fresh variable xm and let the TS’s S1, . . . ,Sk be

Sl :≡ · · · | Γ1
α1⇒ ∆1 | · · · | Γl

αl⇒ ∆l |
{xm}⇒ B[xm/x] | · · · | Γk

αk⇒ ∆k. (l ∈ [1, k])

Take an unprovable Sl as a new TS; this is possible because of the rule (∀R)K.
The modified (2b) and (2c) are just the same as above, inserting a new node in
such a position that unprovability is preserved.

Let Tω be the union of T0, T1, . . . , i.e. the tree-structure, associating sequents and
associating sets of variables of Tω are the unions of those of T0, T1, It is easily
verified that Tω is TN3

4[d][l]-saturated.
We construct an N3-model M = (M,≤, U, I+, I−) using syntactical objects, namely

the TN3-saturated Tω obtained above. Let (M,≤) be the tree-structure of Tω, U(a)
be the set of available variables at a. For each node (a : Γa

αa⇒ ∆a) of Tω and each
predicate symbol p (which is m-ary), the verum / falsum interpretation of p at a is
defined by:

pI+(a) := {(y1, . . . , ym) | p(y1, . . . , ym) ∈ Γa},

pI−(a) := {(y1, . . . , ym) | ∼p(y1, . . . , ym) ∈ Γa}.

It is easily verified that M satisfies the conditions for N3-model. Indeed, the condition
on T that some variables are available at its root yields that U(a) �= ∅ for every
a ∈ M . If a ≤ b and (y1, . . . , ym) ∈ pI+(a), then p(y1, . . . , ym) ∈ Γa and by the
operation [inheritance] p(y1, . . . , ym) ∈ Γb, hence (y1, . . . , ym) ∈ pI+(b). And the fact
that every finite sub-tree-sequent of Tω is unprovable in TN3 and the initial TS (Fal)
yield that pI+(a) ∩ pI−(a) = ∅.

For N3
4[l] M is constructed in the same way. For those with d (i.e. N3

4d[l]), U(a) is
defined to be just the set of all variables for every a ∈ M .

Since T is a sub-tree-sequent of Tω, we can take the identity map as an embedding
of the tree-structure of T in (M,≤), and also can take the set of all variables as W ,
where U : M → PW . Then it is again easily verified by induction on the construction
of formulas that M is a counter model for T .

Kripke Completeness of First-Order Constructive Logics with Strong Negation 17

Definition 3.10 (Formulaic translation of TS)
Let T be a pre-tree-sequent of N3

4[l]. The formulaic translation of T , denoted by T f ,
is defined inductively on the height of T :

[Γ α⇒ ∆ | T1 . . . Tm]f :≡ ∀−→α
(

(
∧

Γ) → (
∨

∆) ∨ T f
1 ∨ · · · ∨ T f

m

)
.

Let T be a TS of N3
4d[l]. The formulaic translation of T , again denoted by T f , is a

universal closure of T p, which in turn is defined inductively on the height of T :

[Γ ⇒ ∆ | T1 . . . Tm]p :≡ (
∧

Γ) → (
∨

∆) ∨ T p
1 ∨ · · · ∨ T p

m

Lemma 3.11
If TN3

4[d][l] 	 T , then GN3
4[d][l] 	 T f .

To prove this lemma we prove a couple of sublemmas, whose proofs are easy by
induction on the height of a in T .

Sublemma 3.12
Let T be a TS of TN3

4[l], a a node of T , T ′ be a pTS which consists of a and all of
its successors, T ′

1 , . . . , T ′
k pre-tree-sequents of TN3

4[l], and T1, . . . , Tk be a tree-sequent
obtained by replacing T ′ by T ′

1 , . . . , T ′
k , respectively (Fig. 3).

�
�
�
�

�
�

�
�

�
�
�

�
�

�

�
�
�
�

�
�

�
�

�
�
�

�
�

�

�
�
�
�

�
�

�
�

�
�
�

�
�

�

T

T ′

T1

T ′
1

Tk

T ′
k

. . .

Fig. 3. T , T1, . . . , Tk

If GN3
4[l] 	 T ′

1
f
, . . . , T ′

k
f ⇒ T ′f , then GN3

4[l] 	 T f
1 , . . . , T f

k ⇒ T f .
Let T be a TS of TN3

4d[l], T ′, T ′
1 , . . . , T ′

k , T1, . . . , Tk be just as above. If GN3
4d[l] 	

T ′
1

p
, . . . , T ′

k
p ⇒ T ′p, then GN3

4d[l] 	 T p
1 , . . . , T p

k ⇒ T p.

Sublemma 3.13
Let T and T ′ be just as in the sublemma above. If GN3

4[d][l] 	 T ′f , then GN3
4[d][l] 	

T f .

Proof. (of Lemma 3.11) The case for N3
4 is easy. The proof is by induction on the

derivation of T in TN3
4. When T is an initial TS, use the second sublemma. For the

step cases where T is derived by a derivation rule with a hypothesis (or hypotheses),
use the first sublemma.

For those logics with l the proofs are just the same; however, the step case where
T is derived by the rule (→R)K, (¬R)K or (∀R)K is rather complicated. Here we
present the case for (→R)K. It suffices to prove that

GN4l (hence GN3
4[d]l) 	 E → F ∨ ∀�x(C → D ∨ (A → B)),

E → F ∨ (A → B ∨ ∀�x(C → D)) ⇒ E → F ∨ (A → B) ∨ ∀�x(C → D) (♣)

18 Kripke Completeness of First-Order Constructive Logics with Strong Negation

where �x have their free occurrences only in C or D. Using this fact repeatedly, we
can finish the proof.

(A → B) → ∀�x(C → D), ∀�x(C → D ∨ (A → B)) ⇒ ∀�x(C → D) (♦)
∀�x(C → D) → (A → B), A → B ∨ ∀�x(C → D) ⇒ A → B (♥)

The above two sequents are derivable in GN3
4[d]l, as is easily verified.

((A → B) → ∀�x(C → D)) ∨ (∀�x(C → D) → (A → B))
(Li) (♦) (♥)

· · · (∨L)

∀�x(C → D ∨ (A → B)), A → B ∨ ∀�x(C → D) ⇒ (A → B) ∨ ∀�x(C → D)
(C)

(♣)

For those logics with d, the proof is again almost the same; however, we cannot
apply the first sublemma when T is derived by the rule (∀R)VC. Instead we use the
character of logics with D, that is:

∀x(B → C(x)) ∼=N3
4d[l]

B → ∀xC(x), ∀x(B ∨ C(x)) ∼=N3
4d[l]

B ∨ ∀xC(x),

where x has no free occurrences in B and ∼= denotes logical equivalence. Suppose
GN3

4d[l] 	 (· · · [Γ ⇒ ∆, A[z/x] | · · ·)f as an induction hypothesis. Then (· · · [Γ ⇒
∆, A[z/x] | · · ·)f is in the form

∀�x∀z(B1 → C1 ∨ (B2 → C2 ∨ (· · · ∨ (Bn → Cn ∨ A[z/x]) · · ·))),

where z has no free occurrence in any Bi or Ci. We repeatedly apply the logical
equivalences above and obtain

(· · · [Γ ⇒ ∆, A[z/x] | · · ·)f ≡ ∀�x∀z(B1 → C1 ∨ (· · · ∨ (Bn → Cn ∨ A[z/x]) · · ·))
∼=N3

4d[l]
∀�x(B1 → C1 ∨ (· · · ∨ (Bn → Cn ∨ ∀xA) · · ·))

≡ (· · · [Γ ⇒ ∆, ∀xA | · · ·)f .

Then the induction hypothesis yields GN3
4d[l] 	 (· · · [Γ ⇒ ∆, ∀xA | · · ·)f .

Using Kripke completeness of TN3
4[d][l] and the results on translations obtained

above, we can conclude Kripke completeness of GN3
4[d][l].

Theorem 3.14 (Kripke completeness of GN3
4[d][l])

If N3
4[d][l] |= A, then GN3

4[d][l] 	 A.

Proof. Let GN3
4[d][l] �	 A, and T be a TS which consists of only its root; for N3

4[l]
T :≡ [α⇒ A] where α is a nonempty finite set of variables which contains every free
variable in A, and for N3

4d[l] T :≡ [⇒ A]. Then TN3
4[d][l] �	 T by Lemma 3.11, and

by Lemma 3.9 there exists a counter model M for T , which is also a counter model
for A, i.e. M �|= A.

4 Kripke completeness of GN3[d][l]o

4.1 Proof by an embedding of Cl – for GN3[l]o

As stated in the introduction, Kripke completeness of GN3[d][l]o can hardly be shown
by a simple application of the tree-sequent method. For GN3[d][l]o we present two

Kripke Completeness of First-Order Constructive Logics with Strong Negation 19

different proofs in this section; given an unprovable formula A, we construct a counter
N3[d][l]o-model for it. Again as stated above, a counter model M = (M,≤, U, I+, I−)
we shall construct is such that: each a ∈ M which is not omniscient has an imme-
diate successor ag which is maximal in (M,≤) and is omniscient. Since GN3[d][l]o
is stronger than GN3[d][l], A is also unprovable in GN3[d][l]; hence by completeness
in the previous section there exists a counter GN3[d][l]-model M′. The problem is
how to obtain an omniscient possible world ag which will be associated to each node
a of M′. The first proof, presented in this subsection, utilizes an embedding of Cl
in GN3[l]o for this purpose. As we point out later, this method is not applicable to
GN3d[l]o.

First we present some derivations possible in GN3
4[d][l]o:

Lemma 4.1
In GN4o (hence also in GN3

4[d][l]o), we can make the following derivations:

¬∼A,¬A ⇒ (Om1)
∼A, Γ ⇒
¬A, Γ ⇒ (Om2)

A → B ⇒ ¬¬(∼A ∨ B)
(Om3)

Proof. (Om1)

⇒ ¬¬(A ∨ ∼A)
(Om)

A ⇒ A
(Id)

A,¬∼A,¬A ⇒ (W)(¬L)
∼A ⇒ ∼A

(Id)

∼A,¬∼A,¬A ⇒
A ∨ ∼A,¬∼A,¬A ⇒ (∨L)

¬¬(A ∨∼A),¬∼A,¬A ⇒ (¬R)(¬L)

¬∼A,¬A ⇒ (C)

(Om2)

¬∼A,¬A ⇒ (Om1)

¬A ⇒ ¬¬∼A
(¬R)

∼A, Γ ⇒ hyp.

¬¬∼A, Γ ⇒ (¬R, L)

¬A, Γ ⇒ (C)

(Om3)

(Om)

A ⇒ A
(Id)

B ⇒ B
(Id)

A → B, A ⇒ ∼A ∨ B
(→L)

A → B, A,¬(∼A ∨ B) ⇒ (¬L)

∼A ⇒ ∼A
(Id)

A → B,∼A ⇒ ∼A ∨ B

A → B,∼A,¬(∼A ∨ B) ⇒ (¬L)

A → B, A ∨ ∼A,¬(∼A ∨ B) ⇒ (∨L)

A → B,¬¬(A ∨∼A),¬(∼A ∨ B) ⇒ (¬R)(¬L)

A → B,¬¬(A ∨ ∼A) ⇒ ¬¬(∼A ∨ B)
(¬R)

A → B ⇒ ¬¬(∼A ∨ B)
(C)

In fact (Om) is equivalent to (Om3): take B ≡ A in (Om3), and use (C) with
⇒ A → A. Moreover, where (Fal) is available (i.e. in N3[d][l]o), (Om1), (Om2) and
(Om) are all equivalent. Since the proof above shows that (Om)⇒(Om1)⇒(Om2), it

20 Kripke Completeness of First-Order Constructive Logics with Strong Negation

suffices to show (Om2)⇒(Om):

∼A,∼∼A ⇒ (Fal)

∼(A ∨ ∼A) ⇒ (∼∨L)

¬(A ∨∼A) ⇒ (Om2)

⇒ ¬¬(A ∨ ∼A)
(¬R)

Now we make some remarks. All of ∨, → and ∃ can be introduced as defined
symbols in Cl in terms of ∧, ¬ and ∀; however in this paper we assume the logical
connectives of Cl include →, to make correspondence with N3[d][l]o. In what follows
a structure in Tarski-type semantics for Cl is often called a Cl-model. Cl-model can
be regarded as an Int-model consisting of only one possible world. We denote the
domain of a Cl-model A by |A|, and the interpretation of a predicate symbol p by pA.
We will often denote a formula of Cl by A¬ in order to make clear that A contains no
∼’s. A∼¬ is a formula of N3 which is obtained by replacing some (possibly all or no)
¬’s in A by ∼. The subscript ∼¬ is also often used to make clear that it is a formula
of N3. Then A¬ is a formula obtained from A∼¬ by replacing every ∼ therein by ¬.

Lemma 4.2
Let A be a Cl-model, and MA = (M,≤, U, I+, I−) an N3[d][l]o-model defined by
M := {0}, U(0) := |A|, pI+(0) := pA and pI−(0) := U(0)m \ pA. Then for an
arbitrary closed formula A¬ of Cl, A |= A¬ iff 0 |=+ A∼¬ (or equivalently M |= A∼¬).
Moreover, A �|= A¬ iff 0 |=− A∼¬.

Proof. It is easily verified by induction that, for an omniscient possible world a (i.e.
pI+(a) ∪ pI−(a) = U(a)m) which is maximal in (M,≤) and a closed formula A of N3,
exactly one of a |=+ A or a |=− A holds; hence the first iff instantly yields the second
one.

The first iff is shown by induction on the construction of A; we present just one
step case. Assume A¬ ≡ ¬B¬. Then A∼¬ ≡ ¬B∼¬ or ∼B∼¬. A |= A¬ iff A �|= B¬,
which is equivalent to 0 �|=+ B∼¬ by the induction hypothesis. This is equivalent to
0 |=+ ¬B∼¬ since 0 has no successors, and is also equivalent to 0 |=+ ∼B∼¬ by the
above argument.

Using the lemmas above, we can introduce the main lemma in this subsection:

Lemma 4.3 (Embedding of LK in GN3[d][l]o)
The following are all equivalent:

1. LK 	 Γ¬ ⇒ ∆¬;
2. GN3[d][l]o 	 Γ∼¬,∼∆∼¬ ⇒ ;
3. GN3[d][l]o 	 Γ∼¬,¬∆∼¬ ⇒ .

Proof. [2 ⇔ 3] is obvious by (Om2) of Lemma 4.1 and GN3[d][l]o 	 ∼A ⇒ ¬A.
[2 ⇒ 1] is shown semantically. Let A an arbitrary Cl-model. Kripke soundness of

GN3[d][l]o yields MA |= Γ∼¬,∼∆∼¬ ⇒ , and by Lemma 4.2 we have A |= Γ¬,¬∆¬ ⇒
, hence A |= Γ¬ ⇒ ∆¬. Then by completeness of LK, LK 	 Γ¬ ⇒ ∆¬.

[1 ⇒ 2] is by the induction on derivation in LK. Note that we can restrict initial
sequents (Id) of LK to the form p(�x) ⇒ p(�x), an atomic formula in each side. In the

Kripke Completeness of First-Order Constructive Logics with Strong Negation 21

following A∼¬ is denoted by A′ to avoid proofs being too wide. The derivation rule
of LK applied at last is presented in the left, and the corresponding proof figure in
GN3[d][l]o is in the right:

p(�x) ⇒ p(�x)
(Id)

p(�x),∼p(�x) ⇒ (Fal)

The case of (W) or a rule introducing ∧ or ∀ is easy.

Γ ⇒ ∆, A

¬A, Γ ⇒ ∆
(¬L)

ind. hyp.
Γ′,∼∆′,∼A′ ⇒
¬A′, Γ′,∼∆′ ⇒ (Om2)

and
ind. hyp.

∼A′, Γ′,∼∆′ ⇒

A, Γ ⇒ ∆
Γ ⇒ ∆,¬A

(¬R)
ind. hyp.

Γ′,∼∆′, A′ ⇒
Γ′,∼∆′,∼¬A′ (or ∼∼A′) ⇒ (∼¬L) or (∼∼L)

Γ ⇒ ∆, A B, Γ ⇒ ∆
A → B, Γ ⇒ ∆

(→L)
(Om3)

ind. hyp.
∼A′, Γ′,∼∆′ ⇒

ind. hyp.
B′, Γ′,∼∆′ ⇒

∼A′ ∨ B′, Γ′,∼∆′ ⇒ (∨L)

¬¬(∼A′ ∨ B′), Γ′,∼∆′ ⇒ (¬R)(¬L)

A′ → B′, Γ′,∼∆′ ⇒ (C)

A, Γ ⇒ ∆, B

Γ ⇒ ∆, A → B
(→R)

ind. hyp.
Γ′,∼∆′, A′,∼B′ ⇒

Γ′,∼∆′,∼(A′ → B′) ⇒ (∼→L)

Corollary 4.4
If GN3[d][l]o �	 Γ∼¬ ⇒ ∆∼¬, then LK �	 Γ¬ ⇒.

We prove another several lemmas needed later.

Lemma 4.5
Let Γ ⇒ ∆ be an infinite sequent of LK which is consistent, that is, for every finite
subsets Γ′ ⊆ Γ and ∆′ ⊆ ∆ we have LK �	 Γ′ ⇒ ∆′. Then there exists a Cl-model A
such that :

1. the set of all variables can be embedded in |A| ;
2. A |= A[�x/�x] for every A ∈ Γ ;
3. A �|= B[�x/�x] for every B ∈ ∆.

Proof. First increase variables twofold, adding x′
i for each original variable xi. Then

an infinite number of variables x′
1, x

′
2, . . . have no occurrence in Γ ⇒ ∆, which is

an (infinite) sequent of the original formal language. Now with the condition that
Γ ⇒ ∆ is consistent we can extend it to a LK-saturated infinite sequent Γ̃ ⇒ ∆̃,
which induces a Cl-model A where |A| = {x1, x

′
1, x2, x

′
2, . . . } and the conditions 2.

and 3. are satisfied.

22 Kripke Completeness of First-Order Constructive Logics with Strong Negation

Definition 4.6 (Tree-sequent system TN3[l]o)
A tree-sequent of TN3[l]o is the same as that of TN3[l], respectively, and initial se-
quents and derivation rules of TN3[l]o are those of TN3[l] plus

· · · [α⇒ ¬¬(A ∨ ∼A) | · · ·
(Om)

,

· · · [Γ α⇒ ∆, A | · · · · · · [A, Σ α⇒ Π | · · ·
· · · [Γ, Σ α⇒ ∆, Π | · · ·

(C)
.

The cut rule (C) is necessary in the proof of the following lemma. If it is the case (we
do not know whether or not) that (C) can be eliminated in GN3[l]o, then so is (C) of
TN3[l]o.

Lemma 4.7
Let T be a tree-sequent of TN3[l]o. If T has a node (a : Γa

α⇒ ∆a) such that
GN3[l]o 	 Γa ⇒ ∆a, then TN3[l]o 	 T .

Proof. By induction on derivation in GN3[l]o. For initial sequents (Li) of GN3lo,

T1 · · ·
Ti,1 · · · Ti,k+1

Ti
(→R)K · · · Tk

· · · | α1⇒ (A → B) ∨ (B → A) | Γ2
α2⇒ ∆2 | · · · | Γk

αk⇒ ∆k

(→R)K, (∨R)

where

Ti ≡ · · · | α1⇒ B → A | · · · | Γi
αi⇒ ∆i | A

∅⇒ B | · · · | Γk
αk⇒ ∆k, i ∈ [1, k]

Ti,j ≡ · · · | α1⇒ | · · · | A
∅⇒ B | · · · | B

∅⇒ A | · · · | Γk
αk⇒ ∆k. j ∈ [1, k + 1]

Every Ti,j is provable in TN3lo by (Id), (W) and (D).
It is easy to check the cases for the other initial sequents or the rules which admit

side formulas in its conclusion, i.e. other than ()S. For the rule (C) of GN3[l]o we
need (C) of TN3[l]o.

We present only the case for (→R)S; for (¬R)S and (∀R)S, VC proofs are just the
same.

For A, Γ ⇒ B

Γ ⇒ A → B
(→R)S, we have

ind. hyp.

· · · [α⇒ | · · · [A, Γ ∅⇒ B] · · ·] · · ·

· · · [Γ α⇒ | · · · [A ∅⇒ B] · · ·] · · ·
(D)

· · · [Γ α⇒ A → B | · · ·
(→R)T

in GN3o.

In GN3lo, the proof is similar; first drop Γ, then apply (→R)K.

We define the formulaic translation of a TS T of TN3[l]o, denoted by T f , as that
of TN3[l]: [Γ α⇒ ∆ | T1 . . .Tm]f :≡ ∀−→α

(
(
∧

Γ) → (
∨

∆) ∨ T f
1 ∨ · · · ∨ T f

m

)
.

Lemma 4.8
If TN3[l]o 	 T , then GN3[l]o 	 T f .

Proof. Similar to that of Lemma 3.11.

Theorem 4.9 (Kripke completeness of GN3[l]o)
If N3[l]o |= A, then GN3[l]o 	 A.

Kripke Completeness of First-Order Constructive Logics with Strong Negation 23

Proof. Let GN3[l]o �	 A. We shall construct a counter N3[l]o-model for A in the
following way. The case of GN3o is presented ahead of GN3lo.

For GN3o, first we construct a counter N3-model M′ by extending the TS T :≡
[α⇒ A] into a TN3-saturated infinite TS Tω, as in the proof of Kripke completeness
of TN3. By Lemma 4.8 T is unprovable in TN3o, and obviously the procedures of
extension preserve unprovability of the TS; hence every finite sub-tree-sequent of Tω

is unprovable in TN3o. Now Lemma 4.7 yields that for each node (a : Γa
αa⇒ ∆a) of

Tω, an infinite sequent Γa ⇒ ∆a is consistent in GN3o, i.e. every finite subsequent of
Γa ⇒ ∆a is unprovable in GN3o.

Next we associate an omniscient possible world ag to each node a of N3-model M′

and obtain a counter N3o-model M. Such omniscient worlds are obtained as follows:
the fact stated above that every Γa ⇒ ∆a (which is a node of Tω) is consistent in
GN3o and Corollary 4.4 yield that an infinite sequent (Γa)¬ ⇒ is consistent in LK.
Now by Lemma 4.5 we obtain a counter Cl-model for (Γa)¬ ⇒ with a sufficiently
large domain, which in turn induces an omniscient possible world ag of N3o-model by
Lemma 4.2. For each node a of M′, we refer to the node (a : Γa

αa⇒ ∆a) of Tω which
induces it, then add an omniscient world ag obtained as above (i.e. by the fact that
(Γa)¬ ⇒ is consistent in LK) as an immediate successor of a (see Fig. 4.1).

Tω
· · ·

a : Γa
αa⇒ ∆a

...

M′ · · ·

a

...

M · · ·

a

...

ag

LK �	 (Γa)¬ ⇒

counter Cl-model omniscient world

induces

Lem. 4.5 Lem. 4.2

GN3o �	 Γa ⇒ ∆a,

Cor. 4.4

For GN3lo, the proof is just the same. First extend the TS T :≡ [α⇒ A] into a TN3l-
saturated infinite TS Tω , just as in the proof of completeness of TN3l. Let M′ be a
counter N3l-model for A induced by Tω . Let us denote Tω by Γ1

α1⇒ ∆1 | Γ2
α2⇒ ∆2 | · · ·

and Γω :=
⋃

i Γi, ∆ω :=
⋃

i ∆i. Then by Lemma 4.7 each Γi ⇒ ∆i is consistent in
GN3lo, hence Γω ⇒ ∆ω is also. Corollary 4.4 yields that (Γω)¬ ⇒ is consistent in
LK, and induces an omniscient world g in the same way as above. By adding g to
M′ as the maximum, we obtain a counter N3lo-model M for A.

It remains to be proved that M is certainly an N3[l]o-model, and M �|= A. In the
following only the case for GN3o is in consideration; for GN3lo the proof is just the
same.

24 Kripke Completeness of First-Order Constructive Logics with Strong Negation

Since U(a) is the set of the available variables and U(ag) is {x1, x
′
1, x2, x

′
2, . . . } by

Lemma 4.5, U(a) ⊆ U(ag). If �x ∈ pI+(a) (or �x ∈ pI−(a)), then by the definition of
M′, p(�x) ∈ Γa (or ∼p(�x) ∈ Γa) where (a : Γa

αa⇒ ∆a) is the corresponding node of Tω;
hence p(�x) is in (Γa)¬ (or not in (Γa)¬, respectively). By the construction of ag, i.e.
by Lemma 4.2, �x ∈ pI+(ag) (or �x ∈ pI−(ag)). It is easy to verify that M satisfies the
other conditions of N3o-models.

In order to show M �|= A, it suffices to show that: for each node (a : Γa
αa⇒ ∆a) of

Tω, B ∈ Γa (or B ∈ ∆a) implies that a |=+ B[�x/�x] (or a �|=+ B[�x/�x], respectively)
holds also in M (it holds in M′ by definition). The proof is easy by induction; the
point is that the addition of ag does not affect such conditions as that for a �|=+ ¬B,
that is, “there exists at least one world b ≥ a such that b |=+ B”.

Remark 4.10
The method above is not applicable to GN3d[l]o. The problem lies in the proof of
Lemma 4.5; we cannot construct a counter Cl-model without infinitely many addi-
tional variables.

4.2 Proof by TSg method – for GN3[d][l]o

The method in the previous subsection is not applicable to GN3d[l]o; that is because
in the method we must construct omniscient possible worlds after we have finished
extending an unprovable formula into an infinite TS. To avoid this problem, it seems
reasonable to consider a method in which we extend both the TS and the seeds
of omniscient possible worlds simultaneously; this is the idea of the proofs in this
subsection.

In the proofs here we make usage of a tree-sequent with guardians, TSg in short.
Roughly speaking, a TSg is a TS each node of which has an extra sequent and a finite
set of variables; we denote a node a which is associated with Γa

αa⇒ ∆a and an extra
Σa

βa⇒ Πa by (a : Γa
αa⇒ ∆a ↑ Σa

βa⇒ Πa). An extra sequent Σa
βa⇒ Πa (presented in the

right) is said to be the guardian of a, and is the seed of an omniscient world ag which
will be assigned to a. The TS-translation of a TSg, which we shall define later, will
make clear the idea of TSg.

Using TSg’s, we can prove Kripke completeness in the same way as that of GN3
4[d][l].

Completeness of the corresponding TSg system is shown by extending an unprovable
TSg into a saturated one, which induces a counter model. Then using the formulaic
translation of a TSg, we can conclude completeness of the Gentzen-style sequent
system.

Now we proceed to precise arguments, defining TSg systems TgN3[d][l]o.

Definition 4.11 (TSg of TgN3[d][l]o)
A tree-sequent with guardians G of TgN3o is a finite tree, each node a of which
is associated with two sequents of GN3o and finite sets of variables, denoted by
(a : Γa

αa⇒ ∆a ↑ Σa
βa⇒ Πa), and satisfies the following condition:

Let Gt be a labelled tree obtained by, for each node a, omitting the guardian

Kripke Completeness of First-Order Constructive Logics with Strong Negation 25

Σa
βa⇒ Πa and adding a new immediate successor (ag : Σa

βa⇒ Πa) to a:

G · · ·

a : Γa
αa⇒ ∆a ↑ Σa

βa⇒ Πa

...

Gt · · · ag : Σa
βa⇒ Πa

a : Γa
αa⇒ ∆a

...

Then Gt is a tree-sequent of TN3; that is, Gt satisfies the conditions as to
availability of variables.

We shall call Γa
αa⇒ ∆a the sequent (or left sequent) of a, and Σa

βa⇒ Πa the guardian
(or guardian sequent). The TS Gt is called the TS-translation of a TSg G. A variable
x is said to be l-available at a node a of G if it is available at a in Gt. x is g-available
at a if it is available at ag in Gt.

For variants, the definition is modified as follows:

d A TSg is just a labelled tree each node of which is associated with two sequents.

l A TSg G and its TS-translation Gt are simpler:

G ≡ Γ1
α1⇒ ∆1 | Γ2

α2⇒ ∆2 | · · · | Γk
αk⇒ ∆k ↑ Σ

β⇒ Π,

Gt ≡ Γ1
α1⇒ ∆1 | Γ2

α2⇒ ∆2 | · · · | Γk
αk⇒ ∆k | Σ

β⇒ Π,

for TgN3lo. For TgN3dlo, omit the sets of variables. Here Σ
β⇒ Π is the only

guardian of G, and denoted by g.

For example, it follows immediately from the definition above that αa ∩ βa = ∅ for
each node (a : Γa

αa⇒ ∆a ↑ Σa
βa⇒ Πa) of a TSg.

Omitting the condition which involves availability of variables, we obtain the def-
inition of pre-TSg of TgN3[l]o, pTSg in short. Again pTSg’s emerge as subtrees of
TSg’s.

In what follows we denote a TSg in the same way as we do a TS, using [,] and |.

Definition 4.12 (TSg system TgN3[d][l]o)
Initial TSg’s and derivation rules of TgN3o are presented below, ahead of those for
its variants, followed by some remarks:

· · · [A α⇒ A ↑ Σ
β⇒ Π | · · ·

(Id)
· · · [A,∼A

α⇒ ↑ Σ
β⇒ Π | · · ·

(Fal)

· · · [Γ α⇒ ∆ ↑ A
α⇒ A | · · ·

(gId)
· · · [Γ α⇒ ∆ ↑ A,∼A

α⇒ | · · ·
(gFal)

· · · [Γ α⇒ ∆ ↑ β⇒ A ∨ ∼A | · · ·
(gOm)

TgN3o has all the derivation rules of TN3, which are applied only to left sequents:

26 Kripke Completeness of First-Order Constructive Logics with Strong Negation

(W), (D), (∧L), (∧R), (→L), (→R)T, (¬L), (¬R)T, (∀L), (∀R)T, (∼∧L),
(∼∧R), (∼→L), (∼→R), (∼¬L), (∼¬R), (∼∼L), (∼∼R), (∼∀L)VC and (∼∀R).

For example, (W) of TgN3o is:
· · · [Γ α⇒ ∆ ↑ Σ

β⇒ Π | · · ·

· · · [Γ′, Γ α⇒ ∆, ∆′ ↑ Σ
β⇒ Π | · · ·

(W)

(S) is a structural rule unique to TSg’s; considering the TS-translations, (S) can be
regarded as a special case of (D).

· · · [Γ α⇒ ∆ ↑ A, Σ
β⇒ Π | · · ·

· · · [A, Γ α⇒ ∆ ↑ Σ
β⇒ Π | · · ·

(Slide, S)

The rules (g· · ·) involve only guardians but no left sequents; for them we indicate
only guardians.

· · · ↑ Σ
β⇒ Π | · · ·

· · · ↑ Σ′, Σ β⇒ Π, Π′ | · · ·
(gW)

· · · ↑ Σ
β⇒ Π, A | · · · · · · ↑ A, Σ

β⇒ Π | · · ·

· · · ↑ Σ β⇒ Π | · · ·
(gC)

· · · ↑ A, B, Σ
β⇒ Π | · · ·

· · · ↑ A ∧ B, Σ
β⇒ Π | · · ·

(g∧L)
· · · ↑ Σ

β⇒ Π, A | · · · · · · ↑ Σ
β⇒ Π, B | · · ·

· · · ↑ Σ
β⇒ Π, A ∧ B | · · ·

(g∧R)

· · · ↑ Σ
β⇒ Π, A | · · · · · · ↑ B, Π

β⇒ Σ | · · ·

· · · ↑ A → B, Σ
β⇒ Π | · · ·

(g→L)
· · · ↑ A, Σ

β⇒ Π, B | · · ·

· · · ↑ Σ
β⇒ Π, A → B | · · ·

(g→R)

· · · ↑ Σ
β⇒ Π, A | · · ·

· · · ↑ ¬A, Σ
β⇒ Π | · · ·

(g¬L)
· · · ↑ A, Σ

β⇒ Π | · · ·

· · · ↑ Σ
β⇒ Π,¬A | · · ·

(g¬R)

· · · ↑ A[y/x], Σ
β⇒ Π | · · ·

· · · ↑ ∀xA, Σ
β⇒ Π | · · ·

(g∀L)
· · · ↑ Σ

β∪{z}⇒ Π, A[z/x] | · · ·

· · · ↑ Σ
β⇒ Π, ∀xA | · · ·

(g∀R)VC

· · · ↑ ∼A, Σ
β⇒ Π | · · · · · · ↑ ∼B, Σ

β⇒ Π | · · ·

· · · ↑ ∼(A ∧ B), Σ
β⇒ Π | · · ·

(g∼∧L)

· · · ↑ Σ
β⇒ Π,∼A,∼B | · · ·

· · · ↑ Σ
β⇒ Π,∼(A ∧ B) | · · ·

(g∼∧R)

· · · ↑ A,∼B, Σ
β⇒ Π | · · ·

· · · ↑ ∼(A → B), Σ
β⇒ Π | · · ·

(g∼→L)

· · · ↑ Σ
β⇒ Π, A | · · · · · · ↑ Σ

β⇒ Π,∼B | · · ·

· · · ↑ Σ
β⇒ Π,∼(A → B) | · · ·

(g∼→R)

· · · ↑ A, Σ
β⇒ Π | · · ·

· · · ↑ ∼¬A, Σ
β⇒ Π | · · ·

(g∼¬L)
· · · ↑ Σ

β⇒ Π, A | · · ·

· · · ↑ Σ
β⇒ Π,∼¬A | · · ·

(g∼¬R)

Kripke Completeness of First-Order Constructive Logics with Strong Negation 27

· · · ↑ A, Σ
β⇒ Π | · · ·

· · · ↑ ∼∼A, Σ
β⇒ Π | · · ·

(g∼∼L)
· · · ↑ Σ

β⇒ Π, A | · · ·

· · · ↑ Σ
β⇒ Π,∼∼A | · · ·

(g∼∼R)

· · · ↑ ∼A[z/x], Σ
β∪{z}⇒ Π | · · ·

· · · ↑ ∼∀xA, Σ
β⇒ Π | · · ·

(g∼∀L)VC

· · · ↑ Σ
β⇒ Π,∼A[y/x] | · · ·

· · · ↑ Σ
β⇒ Π,∼∀xA | · · ·

(g∼∀R)

It may be seen that the logical rules applied to guardians are just as those of LK;
it is reasonable in view of the fact that a guardian sequent is a seed of a guardian
possible world, which is omniscient and maximal in the tree-structure.

For variants, the following modifications are made:

d Replace the rule (∀R)T by (∀R)VC.

l (→R)T, (¬R)T and (∀R)T are replaced by (→R)K, (¬R)K and (∀R)K, respectively.
And (S) is replaced by

· · · | Γ α⇒ ∆ | · · · ↑ A, Σ
β⇒ Π

· · · | A, Γ α⇒ ∆ | · · · ↑ Σ
β⇒ Π

(S)

First we prove Kripke completeness of the TSg systems.

Definition 4.13 (Counter model for TSg)
An N3[d][l]o-model M is a counter model for a TSg G of TgN3[d][l]o if M is a counter
model for the TS-translation Gt in the sense of Definition 3.7.

Definition 4.14 (TgN3[d][l]o-saturatedness)
An infinite TSg G is TgN3[d][l]o-saturated if it satisfies the following conditions:

1. the TS-translation, Gt, is TN3[d][l]-saturated;

2. for each guardian Σ
β⇒ Π and every atomic formula p(�x), if �x are available there,

then either p(�x) or ∼p(�x) is in Σ.

The second condition is necessary for a guardian to induce an omniscient possible
world.

Lemma 4.15 (Kripke completeness of TgN3[d][l]o)
Let TgN3[d][l]o �	 G and at least one variable is l-available at the root of G. Then G
has a counter model.

Proof. We extend G into a TgN3[d][l]o-saturated infinite TSg step by step, just as the
proof of Lemma 3.9. Let A1, A2, . . . the same sequence, x1, x2, . . . also, and G0 :≡ G.
The operation done in the i-th step, the step from Gi−1 to Gi as to the formula Ai, is
as follows. Again note that unprovability is preserved in each operation.

1. Apply the same operations [inheritance] and [reduction] to the left-sequents of G.

For example, if (a : Γa
αa⇒ ∆a ↑ Σa

βa⇒ Πa) and Ai ∈ Γa, then add Ai to the
antecedent of the left sequent of each successor of a, not involving guardians;

2. [slide] For each node (a : Γa
αa⇒ ∆a ↑ Σa

βa⇒ Πa), if Ai ∈ Γa then add Ai to Σa.
This operation preserves unprovability because of the rule (S), and can again be

28 Kripke Completeness of First-Order Constructive Logics with Strong Negation

regarded as a special case of [inheritance], considering Gt. For those logics with l,

the operation is as follows: if · · · | Γ α⇒ ∆ | · · · ↑ Σ
β⇒ Π and Ai ∈ Γ, then add Ai

to Σ;

3. [g-reduction] Reduction of Ai which appears in guardians. According to the shape
of Ai, one of the following operations is executed to each node (a : Γa

αa⇒ ∆a ↑
Σa

βa⇒ Πa), or ↑ Σ
β⇒ Π for those logics with l:

(a) [Ai ≡ p(�x)] If �x are g-available at a, then add p(�x) or ∼p(�x) to Σa, so that
unprovability is preserved. The choice is possible: if not, we can derive a con-
tradiction as follows.

(gOm)

· · · ↑ p(�x), Σa
βa⇒ Πa | · · · · · · ↑ ∼p(�x), Σa

βa⇒ Πa | · · ·

· · · ↑ p(�x) ∨∼p(�x), Σa
βa⇒ Πa | · · ·

(g∨L)

· · · ↑ Σa
βa⇒ Πa | · · ·

(gC)

(b) [Ai ≡ B ∧ C] If Ai ∈ Σa, then add both B and C to Σa. Unprovability is
preserved by the rule (g∧L). If Ai ∈ Πa, then add B or C to Πa, so that
unprovability is preserved. This is possible by (g∧R) ;

(c) [Ai ≡ B → C] If Ai ∈ Σa, then add B to Πa or C to Σa, so that unprovability
is preserved. If Ai ∈ Πa, then add B to Σa and C to Πa ;

(d) [Ai ≡ ¬B] If Ai ∈ Σa (or Πa), then add B to Πa (or Σa, respectively) ;
(e) [Ai ≡ ∀xB] If Ai ∈ Σa, then add B[y/x] to Σa, for every y which is g-available at

a and is in {x1, . . . , xi}. If Ai ∈ Πa, then take a fresh variable xm, add A[xm/x]
to Πa and also add xm to βa ;

(f) [Ai ≡ ∼(B ∧ C)] If Ai ∈ Σa, add ∼B or ∼C to Σa, so that unprovability is
preserved. If Ai ∈ Πa, add ∼B and ∼C to Πa ;

(g) [Ai ≡ ∼(B → C)] If Ai ∈ Σa, add B and ∼C to Σa. If Ai ∈ Πa, add B or ∼C
to Πa so that unprovability is preserved ;

(h) [Ai ≡ ∼¬B or Ai ≡ ∼∼B] If Ai ∈ Σa (or Πa), add B to Σa (or Πa, respectively) ;
(i) [Ai ≡ ∼∀xB] If Ai ∈ Σa, then take a fresh xm, add ∼B[xm/x] to Σa, and also

add xm to βa. If Ai ∈ Πa, add ∼B[y/x] to Πa for every y which is g-available
at a and in {x1, . . . , xi}.

For TgN3d[l]o, omit conditions which involve availability of variables.
Let Gω be the union of G0,G1, Then Gω is TgN3[d][l]o-saturated: condition 1.

is easily verified, and 2. is by the operation (3a).
Since an infinite TS Gω

t is TN3[d][l]-saturated, it induces an N3[d][l]-model M in
the same way as the proof of Lemma 3.9. Moreover, condition 2. of TgN3[d][l]o-
saturatedness yields that M is actually an N3[d][l]o-model, where the omniscient
world ag for each world a (or the only omniscient world g for those logics with l) is
induced by ag of Gω

t (or g of it, respectively). By its construction M is a counter
model for G, which completes the proof.

Now we introduce the formulaic translation of a TSg, and with the lemma above
conclude Kripke completeness of GN3[d][l]o.

Kripke Completeness of First-Order Constructive Logics with Strong Negation 29

Definition 4.16 (Formulaic translation of TSg)
The formulaic translation of a pre-TSg G of TgN3o, denoted by Gf , is defined induc-
tively on the height of G:

[Γ α⇒ ∆ ↑ Σ
β⇒ Π | G1 . . .Gm]f

:≡ ∀−→α
(

(
∧

Γ) → (
∨

∆) ∨ ∀−→β ¬¬
(

(
∧

Σ) → (
∨

Π)
)

∨ Gf
1 ∨ · · · ∨ Gf

m

)
.

The formulaic translation of a TSg G of TgN3do, again denoted by Gf , is a universal
closure of Gp, which in turn is defined inductively on the height of G:

[Γ ⇒ ∆ ↑ Σ ⇒ Π | G1 . . .Gm]p

:≡ (
∧

Γ) → (
∨

∆) ∨ ¬¬
(

(
∧

Σ) → (
∨

Π)
)

∨ Gp
1 ∨ · · · ∨ Gp

m.

For a pre-TSg of TgN3lo, its formulaic translation is defined inductively by:

(Γ α⇒ ∆ ↑ Σ
β⇒ ∆)f :≡ ∀−→α

(
(
∧

Γ) → (
∨

∆) ∨ ∀−→β ¬¬
(

(
∧

Σ) → (
∨

Π)
))

,

(Γ α⇒ ∆ | G)f :≡ ∀−→α
(

(
∧

Γ) → (
∨

∆) ∨ Gf
)
.

For a pre-TSg of TgN3dlo, Gp is defined as follows, and Gf is its universal closure:

(Γ ⇒ ∆ ↑ Σ ⇒ Π)p :≡ (
∧

Γ) → (
∨

∆) ∨ ¬¬
(

(
∧

Σ) → (
∨

Π)
)
,

(Γ ⇒ ∆ | G)f :≡ (
∧

Γ) → (
∨

∆) ∨ Gf .

Lemma 4.17
If TgN3[d][l]o 	 G, then GN3[d][l]o 	 Gf .

Proof. Since the counterparts of lemma 3.12 and 3.13 are easily verified, we can
assume that the node to which a derivation rule is applied (or the node which is in
the form indicated in an initial TSg) is nothing but the root. Now we prove the lemma
by the induction on the derivation of G in TgN3[d][l]o.

The cases for (Id), (Fal), (gId) and (gFal) are easy.
For the (gOm), by (Om) of GN3[d][l]o.
For the rules which are common in TN3[d] and TgN3[d]o such as (D) or (∼∀R),

the proof is just as that of lemma 3.11.
For the remaining rules involving guardians, we present only the proofs for compli-

cated cases here. First we prove the following fact needed later:

Int (hence GN3
4[d][l][o]) 	 ¬¬(A ∨ ¬A) (�)

A ⇒ A
A ⇒ A ∨ ¬A

(∨R)

A,¬(A ∨ ¬A) ⇒ (¬L)

¬(A ∨ ¬A) ⇒ ¬A
(¬R)

¬(A ∨ ¬A) ⇒ A ∨ ¬A
(∨R)

¬(A ∨ ¬A),¬(A ∨ ¬A) ⇒ (¬L)

⇒ ¬¬(A ∨ ¬A)
(¬R)

30 Kripke Completeness of First-Order Constructive Logics with Strong Negation

For (g¬R), it suffices to show that GN3[d][l]o 	 ¬¬(C ∧ A → D) ⇒ ¬¬(C →
D ∨ ¬A).

(�)

....
C, A, C ∧ A → D ⇒ D ∨ ¬A

....
C,¬A, C ∧ A → D ⇒ D ∨ ¬A

C, A ∨ ¬A, C ∧ A → D ⇒ D ∨ ¬A
(∨L)

A ∨ ¬A, C ∧ A → D ⇒ C → D ∨ ¬A
(→R)

¬¬(A ∨ ¬A),¬¬(C ∧ A → D) ⇒ ¬¬(C → D ∨ ¬A)
(¬L)(¬R)

¬¬(C ∧ A → D) ⇒ ¬¬(C → D ∨ ¬A)
(C)

For (g→R), the proof is similar to above, using (�).
For (g∀R), it suffices to show that

GN3[d][l]o 	 ∀z¬¬(C → D ∨ A[z/x]) ⇒ ¬¬(C → D ∨ ∀xA)

where z is free in neither C nor D.

C ⇒ C
(Id)

D,∼D ⇒ (Fal)
A[z/x],∼A[z/x] ⇒ (Fal)

D ∨ A[z/x],∼D,∼A[z/x] ⇒ (∨L)

C → D ∨ A[z/x], C,∼D,∼A[z/x] ⇒ (→L)

∀z¬¬(C → D ∨ A[z/x]), C,∼D,∼A[z/x] ⇒ (¬R)(¬L)(∀L)

∀z¬¬(C → D ∨ A[z/x]), C,∼D,∼∀xA ⇒
(∼∀L)VC

∀z¬¬(C → D ∨ A[z/x]),∼(C → D ∨ ∀xA) ⇒ (∼∨L)(∼→L)

∀z¬¬(C → D ∨ A[z/x]),¬(C → D ∨ ∀xA) ⇒ (Om2)

∀z¬¬(C → D ∨ A[z/x]) ⇒ ¬¬(C → D ∨ ∀xA)
(¬R)

For (S), it suffices to show that

GN3[l]o 	 ∀�x
(
C → D ∨ ∀�y¬¬(A ∧ E → F)

)
⇒ ∀�x

(
A ∧ C → D ∨ ∀�y¬¬(E → F)

)

where �y have no free occurrences in C, D or A. This is easy.

Theorem 4.18 (Kripke completeness of GN3[d][l]o)
If N3[d][l]o |= A, then GN3[d][l]o 	 A.

Proof. Similar to that of Theorem 3.14. Take G :≡ [α⇒ A ↑ ∅⇒], and use Lemma
4.15 and 4.17.

5 Remarks on logics with N4[d][l]o

As stated in the introduction, Kripke completeness of logics N4[d][l]o is remain un-
proved in this paper. Here we are to show that their proofs cannot be done using our
methods.

The key is an axiom ∀x¬¬A → ¬¬∀xA, called the double negation shift, DNS in

Kripke Completeness of First-Order Constructive Logics with Strong Negation 31

short. This is a theorem of those logics N3[d][l]o:

A[z/x],∼A[z/x] ⇒ (Fal)

∀x¬¬A,∼A[z/x] ⇒ (¬R), (¬L), (∀L)

∀x¬¬A,∼∀xA ⇒ (∼∀L)

∀x¬¬A,¬∀xA ⇒ (Om2)

⇒ ∀x¬¬A → ¬¬∀xA
(¬R), (→R)

On the other hand, DNS is not provable in even the strongest system among GN4[d][l]o,
i.e. GN4dlo, since it has the following counter N4dlo-model M = (M,≤, U, I+, I−):
(M,≤) = (ω,≤), U(n) = ω for every n ∈ ω, p a unary predicate symbol, pI+(n) =
{1, 2, . . . , n} and pI−(n) = ω. Then M �|= ∀x¬¬p(x) → ¬¬∀xp(x).

The intermediate logic MH, which is Int plus DNS, is characterized by the class of
Int-models such that: for each possible world a, there exists b ≥ a which is maximal
(∗) [5]. Counter models which the two methods in this paper construct all have the
property (∗); omniscient worlds are always maximal. However, since the axiom DNS
does not involve strong negation, DNS is valid in every N4-model (hence also in every
N3

4[d][l][o]-model) which has the property (∗). Hence we cannot construct a counter
N4o-model for DNS by the methods.

Acknowledgements

The authors are grateful to the referee for his comments and detailed historical re-
marks. The first author would like to thank Norihiro KAMIDE, Izumi TAKEUTI,
Takeshi YAMAGUCHI and Tatsuya SHIMURA for their invaluable comments and
encouragements.

References

[1] Seiki Akama. Tableaux for logic programming with strong negation. In Didier Galmiche, editor,
Automated Reasoning with Analytic Tableaux and Related Methods, International Conference,
TABLEAUX’97, volume 1227 of Lecture Notes in Computer Science, pages 31–42. Springer-
Verlag, May 1997.

[2] Ahmad Almukdad and David Nelson. Constructible falsity and inexact predicates. The Journal
of Symbolic Logic, 49(1):231–233, 1984.

[3] Giovanna Corsi. Completeness theorem for Dummett’s LC quantified and some of its extensions.
Studia Logica, 51:317–335, 1992.

[4] Giovanna Corsi and Silvio Ghilardi. Directed frames. Archive for Mathematical Logic, 29:53–67,
1989.

[5] Dov M. Gabbay. Semantical Investigations in Heyting’s Intuitionistic Logic, volume 148 of
Synthese Library. D. Reidel, 1981.

[6] Valentine Goranko. The craig interpolation theorem for propositional logics with strong negation.
Studia Logica, 44:291–317, 1985.

[7] Sabine Görnemann. A logic stronger than intuitionism. The Journal of Symbolic Logic, 36:249–
261, 1971.

[8] Andrzej Grzegorczyk. A philosophically plausible formal interpretation of intuitionistic logic.
Indagationes Mathematicae, 26:596–601, 1964.

[9] Yuri Gurevich. Intuitionistic logic with strong negation. Studia Logica, 36:49–59, 1977.

32 Kripke Completeness of First-Order Constructive Logics with Strong Negation

[10] Heinrich Herre and David Pearce. Disjunctive logic programming, constructivity and strong
negation. In Logic in AI. Proceedings of the European Workshop JELIA 92, volume 633 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

[11] Arend Heyting. Intuitionism. An Introduction. North-Holland, 1956.

[12] Ryo Kashima. Sequent calculi of non-classical logics – Proofs of completeness theorems by se-
quent calculi (in Japanese). In Proceedings of Mathematical Society of Japan Annual Colloquium
of Foundations of Mathematics, pages 49–67, 1999.

[13] Marcus Kracht. On extensions of intermediate logics by strong negation. Journal of Philosophical
Logic, 27:49–73, 1998.

[14] Saul A. Kripke. Semantical analysis of intuitionistic logic I. In J. Crossley and M. Dummett,
editors, Formal Systems and Recursive Functions, pages 92–129. North-Holland, 1965.

[15] A. A. Markov. Konstruktivnaja logika. Uspehi Matematičeskih Nauk, 5:187–188, 1950.

[16] David Nelson. Constructible falsity. The Journal of Symbolic Logic, 14:16–26, 1949.

[17] Sergei P. Odintsov. Algebraic semantics for paraconsistent Nelson’s logic. Journal of Logic and
Computation, 13(4):453–468, 2003.

[18] Sergei P. Odintsov and Heinrich Wansing. Inconsistency-tolerant description logic, Motivation
and basic systems. In Vincent F. Hendricks and Jacek Malinowski, editors, Trends in Logic,
50 Years of Studia Logica, volume 21 of Trends in Logic, pages 301–335. Kluwer Academic
Publishers, Dordrecht, 2003.

[19] David Pearce and Gerd Wagner. Reasoning with negative information, I: Strong negation in
logic programs. In Language, Knowledge and Intentionality (Acta Philosophica Fennica 49),
pages 405–439, 1990.

[20] David Pearce and Gerd Wagner. Logic programming with strong negation. In Peter Schroeder-
Heister, editor, Extensions of Logic Programming, volume 475 of Lecture Notes in Artificial
Intelligence, pages 311–326. Springer-Verlag, 1991.

[21] Graham Priest and Richard Routley. Introduction: Paraconsistent logics. Studia Logica, 43:3–16,
1984.

[22] Andrzej Sendlewski. Some investigations of varieties of N-lattices. Studia Logica, 43:257–280,
1984.

[23] Andrzej Sendlewski. Nelson algebras through Heyting ones. Studia Logica, 49:106–126, 1990.

[24] Andrzej Sendlewski. Axiomatic extensions of the constructive logic with strong negation and
the disjunction property. Studia Logica, 55:377–388, 1995.

[25] Richmond H. Thomason. A semantical study of constructive falsity. Zeitschrift für mathema-
tische Logik und Grundlagen der Mathematik, 15:247–257, 1969.

[26] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Number 43 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

[27] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics, Vol. I. North-Holland,
1988.

[28] Dirk van Dalen. Intuitionistic logic. In D. M. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic III, volume 166 of Synthese Library, pages 225–340. D. Reidel, 1986.

[29] Franz von Kutschera. Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle. Archiv für
Mathematische Logik und Grundlagenforschung, 12:104–118, 1969.

[30] Gerd Wagner. Vivid Logic. Knowledge-Based Reasoning with Two Kinds of Negation, volume
764 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1994.

[31] Heinrich Wansing. The Logic of Information Structures, volume 681 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1993.

[32] Heinrich Wansing. Higher-arity Gentzen systems for Nelson’s logics. In Julian Nida-Rümelin,
editor, Rationality, Realism, Revision, Proceedings of the 3rd international congress of the
Society for Analytical Philosophy, volume 23 of Perspectives in Analytical Philosophy, pages
105–109. Walter de Gruyter, September 1999.

Received March 31, 2003

