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This paper contributes a feedback operator, in the form of a monoidal trace, to the

theory of coalgebraic, state-based modelling of components. The feedback operator on

components is shown to satisfy the trace axioms of Joyal, Street and Verity. We employ

McCurdy’s tube diagrams, an extension of standard string diagrams for monoidal

categories, for representing and manipulating component diagrams. The microcosm

principle then yields a canonical “inner” traced monoidal structure on the category of

resumptions (elements of final coalgebras / components). This generalises an observation

by Abramsky, Haghverdi and Scott.

1. Introduction

The subject of study in the field of coalgebra is state-based computation. A computer is a

device that has an internal state, roughly given by the content of all its memory cells and

registers, that is not directly observable. However, a user can observe and modify part of

this state via I/O devices, such as a screen or keyboard. Very abstractly, such a computer

is captured as a coalgebra X → F (X), where X represents the state, and F captures

the type of operations (for observation and modification) that one can perform on these

states. A simple example is a deterministic automaton of the form X → (X ×B)A where

A is a type for input, and B for output.

The coalgebraic view on state-based systems yields a generic view, for instance, on

bisimilarity (indistinguishability of states) and compositionality (see e.g. (Turi and Plotkin,

1997)), and on modal logic (see e.g. (Kurz and Pattinson, 2005)), giving a way to reason

about properties of states with dynamic operators like ‘nexttime’. Here we use coalgebras

to (further) develop a calculus of components, which describes various ways of combining

components (smaller subsystems) into larger systems. Numerous component calculi have

been proposed for the purpose of aiding modular design of complex systems, such as

Reo (Arbab, 2004). The existing component calculi come with different sets of (typically

several) component connectors. In earlier work (Hasuo et al., 2009; Asada and Hasuo,

2010) we have focused on the very core subset of such calculi, with sequential composition
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and parallel composition only. In this paper we add a feedback operator to this calculus,

in the form of a trace.

This calculus may be understood as a many-sorted process algebra that acts directly

on systems; by employing the microcosm principle we obtain process algebraic operators

on behaviours, too, see (Hasuo et al., 2008; Hasuo et al., 2009).

A categorical approach to system composition has been developed in (Katis et al.,

1997) based on bicategories. The bicategorical aspect comes up if one uses components

as morphisms, because composition of components is associative only up to isomorphism,

see Lemma 4.2.3 below. This approach is extended in (Barbosa, 2001; Barbosa, 2003) with

monads, to allow for different kinds of computation (Moggi, 1991). Here, like in (Hasuo

et al., 2008; Hasuo et al., 2009) we take a slightly different approach and use components

as objects in a category, with fixed input and output. In order to deal with relabelling of

input and output, we need to organise the whole as an indexed category. This indexing

however is straightforward and poses no technical obstacles.

A crucial ingredient that is missing so far in these calculi of components is feedback.

It makes it possible to include “loops” in diagrams of components, in order to capture

recursive flows. Here we extend coalgebraic component calculi with such a feedback mech-

anism, in the form of a trace operator. Traces as feedback operators have been introduced

abstractly in (Joyal et al., 1996). Here we essentially follow this framework, but the re-

quired identities for these traces only hold up to isomorphism (just like for composition).

The traces that we introduce for coalgebraic components are based on the trace construc-

tion in Kleisli categories from (Jacobs, 2010). In his thesis Barbosa discusses a “partial

feedback” operator (see (Barbosa, 2001, Ch.5,§51)) but it is not a proper trace operator

(in the sense of (Joyal et al., 1996)) because it does not have the right type, nor the right

behaviour.

For components it is very useful to have a diagrammatic language that makes it possi-

ble to build a composite system in a picture with lines representing connections between

them. There is a standard language of string diagrams for monoidal categories, see (Pen-

rose, 1971; Joyal and Street, 1991). Here we employ McCurdy’s extension (McCurdy,

2010)—which we call tube diagrams—for capturing coalgebraic components and their

connections. This language can be used to reason about coalgebraic components, via

specific diagrammatic manipulations, see Section 5. The additional (third) dimension—

obtained by using tubes rather than strings—is needed because in our calculus input can

be structured both multiplicatively (with tensor ⊗) and additively (with coproduct +).

The feedback/trace operator works with respect to this additive structure.

The additional trace operator for components embodies iteration in data processing—a

fundamental concept in computer science. Our theory is generic because it is parametrised

by a monad T : the monad represents the computational effect that makes an iterated

function “total”. The prototypical example of such effect is partiality (i.e. T = 1 + (−),

the lift monad) but non-determinism and probability also fits in. To demonstrate the

versatility of our results, we derive the traced monoidal structure of the category of

T -resumptions, in a canonical manner. This generalises the observation in (Abramsky

et al., 2002): there the authors focus on the partiality effect (i.e. T = 1 + (−)) and

the trace operator on resumptions is introduced in concrete terms. Here we, instead,
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derive trace operators on various resumptions uniformly from the trace operators on

components, in the style of (Krstić et al., 2001). The derived traced monoidal category

lives in the “traced monoidal bicategory” of components, providing an instance of the

microcosm principle (Baez and Dolan, 1998; Hasuo et al., 2008; Hasuo et al., 2009).

Another way to look at our construction is that it uniformly transforms the traced

monoidal category of T -computations (namely the Kleisli category Kℓ(T )) into the traced

monoidal category of T -strategies (identified with T -resumptions). By further applying

the Int-construction (Joyal et al., 1996), one obtains the compact closed category of

(stateful) T -games, as pointed out in (Abramsky and Jagadeesan, 1994).

The paper is organised as follows. After some preliminary material it starts in Section 3

with the fundamental operator of ‘state extension’ that adds a state object, either on the

left or on the right, to a coalgebraic component. It will play an important role in the rest of

the paper, for instance in Section 4 on the various composition operators: sequential >>>,

multiplicative parallel ‖ and additive parallel �. Subsequently, Section 5 describes the

tube calculus, with several distributivity results. Section 6 defines traces for components

and proves that the trace axioms hold; this is our main contribution. Finally in Section 7

we identify the category of resumptions as an “inner” traced monoidal category in that

of components.

2. Preliminaries

The basic setting is described by a category C with some structure and a monad T on

C. We assume in the first place that C is a symmetric monoidal category with tensor

⊗ : C × C → C and tensor unit I ∈ C, together with canonical isomorphisms:

X ⊗ (Y ⊗ Z)
α

∼=
(X ⊗ Y ) ⊗ Z I ⊗ X

λ

∼=
X X ⊗ Y

γ

∼=
Y ⊗ X (1)

One often writes ρ = λ ◦ γ : X ⊗ I
∼=
−→X.

We assume that the monad T = (T, η, µ) on C is symmetric monoidal (also known

as commutative), via a natural transformation with components dst : T (X) ⊗ T (Y ) →

T (X ⊗ Y ) interacting appropriately with the monoidal isomorphisms (1) and with the

unit η and multiplication µ of the monad. For this natural transformation dst we write

st = dst ◦ (η ⊗ id) : X ⊗ T (Y ) → T (X ⊗ Y ) for the ‘strength’ map of the monad. The

abbreviation ‘dst’ stands for ‘double strength’.

The Kleisli category of the monad T is written as Kℓ(T ). Usually we write a fat dot •

for composition in Kℓ(T ), if we wish to distinguish it from ordinary composition ◦ in C.

The inclusion functor J : C → Kℓ(T ), given by X 7→ X and f 7→ η ◦ f is sometimes not

written explicitly, when context allows so.

We also assume that the category C has (distributive) coproducts +, 0, written also

as
∐

when indexed over a set. The associated coprojections will be written as κi : Xi →

X1 +X2, and cotupling of fi : Xi → Y is written as [f1, f2] : X1 +X2 → Y . Distributivity

here means that the tensor ⊗ distributes over coproducts (0,+). In the binary case this
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means that the canonical maps:

dis
def
=

(
X ⊗ A + X ⊗ B

[idX⊗κ1,idX⊗κ2]
X ⊗ (A + B)

)
(2)

are isomorphisms. Additionally, the canonical map 0 → X ⊗ 0 is an isomorphism; this is

the nullary case of distributivity. Notice that if the category C is monoidal closed, these

isomorphisms automatically exist, since X ⊗ − is then left adjoint to exponentiation

X ⊸ (−).

We list some elementary equations for this distribution map dis that will be used later.

The proofs are easy and left to the reader.

Lemma 2.1. The distribution map dis defined in (2) satisfies

1 naturality: dis ◦ (f ⊗ g + f ⊗ h) = (f ⊗ (g + h)) ◦ dis;

2 α ◦ (id ⊗ dis) ◦ dis = dis ◦ (α + α);

3 λ ◦ dis = λ + λ.

There are also rules regulating the interaction of this distribution map (2) with the

monoidal isomorphisms associated with coproducts. We shall label them with a +, as in

α+, in order to distinguish them from the isomorphisms for ⊗.

Lemma 2.2. The distributivity map dis interacts with the monoidal isomorphisms for

+ as:

1 Interaction with ρ+:

X ⊗ A + 0
ρ+

id+ !

X ⊗ A

X ⊗ A + X ⊗ 0

dis

X ⊗ (A + 0)
id⊗ρ+

X ⊗ A

2 Interaction with γ+:

X ⊗ A + X ⊗ B

dis

γ+

X ⊗ B + X ⊗ A

dis

X ⊗ (A + B)
id⊗γ+

X ⊗ (B + A)

3 Interaction with α+:

(X ⊗ A) + ((X ⊗ C) + (X ⊗ D))

id+dis

α+

((X ⊗ A) + (X ⊗ C)) + (X ⊗ D)

dis +id

(X ⊗ A) + (X ⊗ (C + D))

dis

(X ⊗ (A + C)) + (X ⊗ D)

dis

X ⊗ (A + (C + D))
id⊗α+

X ⊗ ((A + C) + D)
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3. Coalgebraic components and state extension

This section describes the basic construction of what we call ‘state extension’ for coalge-

braic components. It serves as an auxiliary operator for the constructions like composi-

tion and trace in later sections. Formally, state extension is described as an action of a

(monoidal) category on a category of components, see (Janelidze and Kelly, 2001). This

insight is not important for what follows, so it is elaborated separately in Section 3.1.

Like in (Barbosa, 2001; Barbosa, 2003; Hasuo et al., 2009) we consider coalgebraic

components of the form:

X ⊗ A
c

T (X ⊗ B) (3)

where X is the state space, A the type/object of inputs and B the type of outputs. In

general we shall use letters like X,Y,Z, U, V for states and A,B,C for in/outputs. The

monad T captures the type of computation involved, following the standard approach in

monadic computation. For instance, non-deterministic for T=powerset, partial for T=lift,

probabilistic for T=distribution, with side-effects for T = (S ×−)S with S for states, or

even deterministic for T=identity. Throughout this article T will be used as parameter.

It will be made explicit when certain additional requirements are needed. Often this T

is invisible, when we are working in the Kleisli category Kℓ(T ) of T .

Strictly speaking the map c in (3) is not a coalgebra. In case the category C is closed,

with ⊸ as exponent (internal hom), this map c may equivalently be written in coalgebra

form X −→ A ⊸ T (X ⊗ B). By using the form (3) we can work without the closedness

assumption on the category C.

For fixed objects A,B ∈ C we thus have a category of such coalgebraic components

which we shall write as Comp(T,A,B). A morphism

(
X ⊗ A

c
T (X ⊗ B)

)
f

(
Y ⊗ A

d
T (Y ⊗ B)

)
(4)

in Comp(T,A,B) is a map f : X → Y in C satisfying T (f ⊗ idB) ◦ c = d ◦ (f ⊗ idA).

There is thus an obvious forgetful functor Comp(T,A,B) → C that maps a coalgebraic

component to its underlying state.

Each “pure” map f : A → B in C gives rise to a coalgebraic component written as arrf

in Comp(T,A,B), with the tensor unit I as trivial state space, as in:

arrf
def
=

(
I ⊗ A

idI⊗f
I ⊗ B

η
T (I ⊗ B)

)
. (5)

For maps g : C → A and h : B → D in C there is an obvious relabelling functor

(g, h)∗ : Comp(T,A,B) → Comp(T,C,D) given by:

(
X ⊗ A

c
T (X ⊗ B)

) (
X ⊗ C

id⊗g
X ⊗ A

c
T (X ⊗ B)

T (id⊗h)
T (X ⊗ D)

)
.

On morphisms of coalgebraic components relabelling is the identity. Components thus

form a functor Comp(T,−,−) : C
op × C → Cat. They can be described as Cat-valued

distributors/profunctors/arrows, as shown in (Hasuo et al., 2008; Hasuo et al., 2009;

Asada and Hasuo, 2010).

With these definitions in place we can introduce state extension.
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Definition 3.1. For a coalgebraic component X ⊗ A
c
→ T (X ⊗ B) with state space X,

as in (3), and for objects U, V ∈ C we define two new coalgebraic components U | c and

c | V , with extended state spaces U ⊗ X and X ⊗ V respectively, namely:

(U ⊗ X) ⊗ A

α−1 ∼=

U |c
T ((U ⊗ X) ⊗ B)

U ⊗ (X ⊗ A)
id⊗c

U ⊗ T (X ⊗ B)
st

T (U ⊗ (X ⊗ B))

T (α)∼=

(X ⊗ V ) ⊗ A

α−1◦(γ⊗id) ∼=

c|V
T ((X ⊗ V ) ⊗ B)

V ⊗ (X ⊗ A)
id⊗c

V ⊗ T (X ⊗ B)
st

T (V ⊗ (X ⊗ B))

T ((γ⊗id)◦α)∼=

Clearly, c | V = T (γ ⊗ id) ◦ (V | c) ◦ (γ ⊗ id).

State extension can be defined more conveniently directly in the Kleisli category Kℓ(T ),

namely as U | c = α • (U ⊗ c) • α−1, and d | V = (γ ⊗ id) • (V | d) • (γ ⊗ id). Also

reasoning about these constructions is easier when done directly in the Kleisli category.

In the proof of the main lemma below we shall use a mix between reasoning in C and in

Kℓ(T ) in order to demonstrate the difference. Later on in this paper we reason mostly in

the Kleisli category.

State extension satisfies some basic properties.

Lemma 3.2. The above operators U | c and c | V satisfy the following properties.

1 U | η = η and η | V = η.

2 U | (arrf) = η ◦ (id(U⊗I) ⊗ f) and (arrf) | V = η ◦ (id(I⊗U) ⊗ f), with arr defined

in (5).

3 For two composable components X ⊗ A
c
→ T (X ⊗ B) and X ⊗ B

d
→ T (X ⊗ C) with

the same state space, state extension commutes with Kleisli composition •, in the

sense that:

U | (d • c) = (U | d) • (U | c) and (d ◦ c) | V = (d | V ) • (c | V ).

4 State extension with the tensor unit I, as trivial state space, is isomorphic to the

original component, via maps of components:

T ((X ⊗ I) ⊗ B)
T (ρ⊗id)

T (X ⊗ B) T ((I ⊗ X) ⊗ B)
T (λ⊗id)

∼=

(X ⊗ I) ⊗ A
ρ⊗id

∼=

c|I

X ⊗ A

c

(I ⊗ X) ⊗ A
λ⊗id

∼=

I|c

5 Repeated state extension is isomorphic to tensored state extension:

T ((U ⊗ (V ⊗ X)) ⊗ B)
T (α⊗id)

∼=
T (((U ⊗ V ) ⊗ X) ⊗ B)

(U ⊗ (V ⊗ X)) ⊗ A
α⊗id

∼=

U |(V |c)

((U ⊗ V ) ⊗ X) ⊗ A

(U⊗V )|c
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T ((X ⊗ (U ⊗ V )) ⊗ B)
T (α⊗id)

∼=
T (((X ⊗ U) ⊗ V ) ⊗ B)

(X ⊗ (U ⊗ V )) ⊗ A
α⊗id

∼=

c|(U⊗V )

((X ⊗ U) ⊗ V ) ⊗ A

(c|U)|V

6 Left and right extension can be exchanged via an isomorphism of components:

T ((U ⊗ (X ⊗ V )) ⊗ B)
T (α⊗id)

∼=
T (((U ⊗ X) ⊗ V ) ⊗ B)

(U ⊗ (X ⊗ V )) ⊗ A
α⊗id

∼=

U |(c|V )

((U ⊗ X) ⊗ V ) ⊗ A

(U |c)|V

7 For f : U → U ′ and g : V → V ′ we have:

(U ′ | c) ◦ ((f ⊗ id) ⊗ id) = T ((f ⊗ id) ⊗ id) ◦ (U | c)

(d | V ′) ◦ ((id ⊗ g) ⊗ id) = T ((id ⊗ g) ⊗ id) ◦ (d | V ).

For a map h in C between states we have:

T ((id ⊗ h) ⊗ id) ◦ (U | c) = U | (T (h ⊗ id) ◦ c)

T ((h ⊗ id) ⊗ id) ◦ (d | V ) = (T (h ⊗ id) ◦ d) | V

(U | c) ◦ ((id ⊗ h) ⊗ id) = U | (c ◦ (h ⊗ id))

(d | V ) ◦ ((h ⊗ id) ⊗ id) = (d ◦ (h ⊗ id)) | V.

Consequently, if h : X → Y is a homomorphism of coalgebraic components the fol-

lowing diagrams commute.

T ((U ⊗ X) ⊗ B)
T ((f⊗h)⊗id)

T ((U ′ ⊗ Y ) ⊗ B)

(U ⊗ X) ⊗ A
(f⊗h)⊗id

U |c

(U ′ ⊗ Y ) ⊗ A

U ′|d

T ((X ⊗ V ) ⊗ B)
T ((h⊗g)⊗id)

T ((Y ⊗ V ′) ⊗ B)

(X ⊗ V ) ⊗ A
(h⊗g)⊗id

c|V

(Y ⊗ V ′) ⊗ A

d|V ′

8 State extension also commutes with relabelling: for g : C → A and h : B → D we have

(g, h)∗(U | c) = U | ((g, h)∗(c)) and (g, h)∗(c | V ) = ((g, h)∗(c)) | V.

Proof. Because left and right state extension are related via c | V = T (γ ⊗ id) ◦ (V |

c) ◦ (γ ⊗ id) we generally only consider one case. For instance for the first point we have:

U | η = T (α) ◦ st ◦ (η ⊗ id) ◦ α−1

= T (α) ◦ dst ◦ (η ⊗ η) ◦ α−1 = T (α) ◦ η ◦ α−1 = η ◦ α ◦ α−1 = η.

The interaction of state extension and Kleisli composition in the third point of the lemma
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is best shown in the Kleisli category itself:

(U | d) • (U | c) = α • (U ⊗ d) • α−1 • α • (U ⊗ c) • α

= α • (U ⊗ d) • (U ⊗ c) • α

= α • (U ⊗ (d • c)) • α

= U | (d • c).

The validity of the fourth point follows from:

(X ⊗ I) ⊗ A

γ⊗id

ρ⊗id

c|I

X ⊗ A
c

T (X ⊗ B)

(I ⊗ X) ⊗ A

α−1

λ⊗id

I ⊗ (X ⊗ A)

id⊗c

λ

I ⊗ T (X ⊗ B)
st

λ

T (I ⊗ (X ⊗ B))
T (α)

T (λ)

T ((I ⊗ X) ⊗ B)
T (γ⊗id)

T (λ⊗id)

T ((X ⊗ I) ⊗ B)

T (ρ⊗id)

Also for the fifth point we only elaborate one case, in the Kleisli category:

(α ⊗ id) • (U | (V | c))

= (α ⊗ id) • α • (U ⊗ (α • (V ⊗ c) • α−1)) • α−1

= α • α • (U ⊗ (V ⊗ c)) • (U ⊗ α−1) • α−1

= α • ((U ⊗ V ) | c) • α • (U ⊗ α−1) • α−1

= α • ((U ⊗ V ) | c) • α−1 • (α ⊗ id)

= ((U ⊗ V ) | c) • (α ⊗ id).

Verification of the remaining properties proceeds along the same lines, and is left to the

interested reader.

3.1. State extension as action

The state extension operators | can be described as functors in a the following diagram:

C × Comp(T,A,B)
|

Comp(T,A,B) Comp(T,A,B) × C
|

C × C
⊗

C C × C
⊗

These functors C × Comp(T,A,B) → Comp(T,A,B) and Comp(T,A,B) × C →

Comp(T,A,B) at the top this diagram can equivalently be described as (two) functors of

the form C ⇉ [Comp(T,A,B),Comp(T,A,B)], from C to the category of endofunctors

on the category Comp(T,A,B). These two functors are strong monoidal, where the

category of endofunctors carries composition and identity (of functors) as a monoidal
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structure. This precisely means that the monoidal category C acts on Comp(T,A,B),

see (Janelidze and Kelly, 2001), in two ways, namely via left and right state extension.

Moreover, because (left and right) state extensions commute with relabelling they form

natural transformations in:

C
op × C Comp(T,−,−)

C×Comp(T,−,−)

⇓

Comp(T,−,−)×C

⇑
Cat

By combining these two observations we conclude that the monoidal category C acts on

the indexed category Comp(T,−,−) : C
op×C → Cat, in the sense that there are strong

monoidal (left and right) state extension functors:

C
lse

rse

[
Comp(T,−,−),Comp(T,−,−)

]
(6)

from C to the category of endomaps on Comp(T,−,−). Objects of the latter cate-

gory are natural transformations σ : Comp(T,−,−) ⇒ Comp(T,−,−) and a morphism

M : σ → τ between such natural transformations is a so-called modification (Kelly and

Street, 1974; Jacobs, 1999): a family of natural transformations M(A,B) : σ(A,B) → τ(A,B)

commuting with relabelling.

We shall elaborate the left state extension case in (6). Each U ∈ C yields a natural

transformation lse(U) : Comp(T,−,−) → Comp(T,−,−) between indexed categories,

with component on (A,B) ∈ C
op×C given by the functor lse(U)(A,B) : Comp(T,A,B) →

Comp(T,A,B), which was written earlier as c 7→ U | c. Hence lse(U)A,B = (U | −). This

is functorial by Lemma 3.2.7 and natural in A,B by 3.2.(8). Each map f : U → U ′ in

C yields a modification lse(f) : lse(U) → lse(U ′) between these natural transformations,

consisting of a family lse(f)(A,B) : lse(U)(A,B) → lse(U ′)(A,B) of natural transformations,

with component for a coalgebra X ⊗ A
c
→ T (X ⊗ B) consisting of the map:

lse(U)(A,B)(c) = (U | c)
lse(f)(A,B),c

= f⊗idX

(U ′ | c) = lse(U ′)(A,B)(c).

We thus have natural transformations:

C
op × C

Comp(T,−,−) Comp(T,−,−)

Comp(T,A,B)

lse(U)(A,B) lse(U ′)(A,B)
lse(U)
=⇒

lse(f)(A,B)
=⇒

Cat Comp(T,A,B)

It is not hard to check that lse(U) is natural (in A,B) and that these lse(f) are natural

(in c) and commute with relabelling.

Finally, this functor lse : C → [Comp(T,−,−),Comp(T,−,−)] is strong monoidal
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because it preserves the monoidal structure:

lse(I)(A,B)(c) = I | c

∼= c

lse(U ⊗ V )(A,B)(c) = (U ⊗ V ) | c

∼= U | (V | c)

= lse(U)(A,B)

(
lse(V )(A,B)(c))

=
(
lse(U)(A,B) ◦ lse(V )(A,B)

)
(c),

where the category of endomaps [Comp(T,−,−),Comp(T,−,−)] carries the standard

monoidal structure given by composition as tensor, with identity as tensor unit.

4. Composition of components

This section describes three basic forms of composition for coalgebraic components,

namely sequential composition >>>, multiplicative parallel composition ‖, and additive

parallel composition �. We start with >>>, which we can conveniently describe in terms

of state extension.

Definition 4.1. The sequential composition operator >>> is defined for coalgebraic com-

ponents with matching input and output: for

X ⊗ A
c

T (X ⊗ B) and Y ⊗ B
d

T (Y ⊗ C)

we get c >>> d via composition of Kleisli maps:

c >>> d =
(
(X ⊗ Y ) ⊗ A

c|Y
(X ⊗ Y ) ⊗ B

X|d
(X ⊗ Y ) ⊗ C

)
.

Thus c >>> d involves first doing c and then d, on a combined state space X ⊗ Y .

The notation >>> for composition is as used for arrows, see e.g. (Jacobs et al., 2009).

Composition of components satisfies the properties of composition for arrows, but only

up to (canonical) isomorphisms. This will be shown next.

Lemma 4.2. The following equations and isomorphisms (of coalgebraic components)

hold for sequential composition.

1 arr(f) >>> arr(g) = (arr(g ◦ f) | I) = (I | arr(g ◦ f))
λ=ρ
−→
∼=

arr(g ◦ f) in the following

isomorphism of coalgebraic components.

T ((I ⊗ I) ⊗ C)
T (λ⊗id)=T (ρ⊗id)

∼=
T (I ⊗ C)

(I ⊗ I) ⊗ A

arr(f)>>>arr(g)=(arr(g◦f)|I)=(I|arr(g◦f))

(λ⊗id)=(ρ⊗id)

∼=
I ⊗ A

arr(g◦f)
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2 c >>> arr(g)
ρ

−→
∼=

T (id ⊗ g) ◦ c and arr(f) >>> d
λ

−→
∼=

d ◦ (id ⊗ f) in:

T ((X ⊗ I) ⊗ C)
T (ρ⊗id)

∼=
T (X ⊗ C) T ((I ⊗ Y ) ⊗ C)

T (λ⊗id)

∼=
T (Y ⊗ C)

(X ⊗ I) ⊗ A
ρ⊗id

∼=

c>>>arr(g)

X ⊗ A

T (id⊗g)◦c

(I ⊗ Y ) ⊗ A
λ⊗id

∼=

arr(f)>>>d

Y ⊗ A

d◦(id⊗f)

In particular, arr(id) is unit for >>>, up-to-isomorphism.

3 (c >>> (d >>> e))
α

−→
∼=

((c >>> d) >>> e), in:

T ((X ⊗ (Y ⊗ Z)) ⊗ D)
T (α⊗id)

∼=
T (((X ⊗ Y ) ⊗ Z) ⊗ D)

(X ⊗ (Y ⊗ Z)) ⊗ A
α⊗id

∼=

(c>>>(d>>>e))

((X ⊗ Y ) ⊗ Z) ⊗ A

((c>>>d)>>>e)

4 For appropriately typed maps in C between states:

((f ⊗ g) ⊗ id) • (c >>> d) = ((f ⊗ id) • c) >>> ((g ⊗ id) • d)

(c >>> d) • ((f ⊗ g) ⊗ id) = (c • (f ⊗ id)) >>> (d • (g ⊗ id))

As a result, sequential composition >>> of components is a functor of the form

Comp(T,A,B) × Comp(T,B,C) → Comp(T,A,C).

The last point suggests the notation used in (Hasuo et al., 2009) for the type of >>>,

namely (A,B) × (B,C) → (A,C). We shall also use it later on, especially in Section 6.

Proof. All this follows from Lemma 3.2. The numbers labelling the equations below

refer to the items in this lemma. Recall that we use • for composition in the Kleisli

category of the monad T and ◦ for composition in C.

1 Since:

arr(f) >>> arr(g) = (arr(g) | I) • (I | arr(f))
(2)
= µ ◦ T (η ◦ (id ⊗ g)) ◦ η ◦ (id ⊗ f)

= T (id ⊗ g) ◦ η ◦ (id ⊗ f)

= η ◦ (id ⊗ g) ◦ (id ⊗ f)

= η ◦ (id ⊗ (g ◦ f))
(2)
= arr(g ◦ f) | I

= I | arr(g ◦ f)
λ

−→
∼=

arr(g ◦ f).
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2 Similarly,

T (ρ ⊗ id) ◦ (c >>> arr(g)) = T (ρ ⊗ id) ◦ ((X | arr(g)) • (c | I))
(2)
= T (ρ ⊗ id) ◦ µ ◦ T (η ◦ (id ⊗ g)) ◦ (c | I)

= T (ρ ⊗ id) ◦ T (id ⊗ g) ◦ (c | I)

= T (id ⊗ g) ◦ T (ρ ⊗ id) ◦ (c | I)
(4)
= T (id ⊗ g) ◦ (c | I) ◦ (ρ ⊗ id).

3 Associativity of >>> follows from a straightforward calculation that is best done in

the Kleisli category:

(α ⊗ id) •
(
c >>> (d >>> e)

)

= (α ⊗ id) • (X | d >>> e) • (c | Y ⊗ Z)

= (α ⊗ id) •
(
X | ((Y | e) • (d | Z))

)
• (c | Y ⊗ Z)

(3)
= (α ⊗ id) • (X | (Y | e)) • (X | (d | Z)) • (c | Y ⊗ Z)
(5)
= (X ⊗ Y | e) • (α ⊗ id) • (X | (d | Z)) • (c | Y ⊗ Z)
(6)
= (X ⊗ Y | e) • (X | d) | Z) • (α ⊗ id) • (c | Y ⊗ Z)
(5)
= (X ⊗ Y | e) • ((X | d) | Z) • ((c | Y ) | Z) • (α ⊗ id)
(3)
= (X ⊗ Y | e) •

(
((X | d) • (c | Y )) | Z

)
• (α ⊗ id)

= (X ⊗ Y | e) • (c >>> d | Z) • (α ⊗ id)

=
(
(c >>> d) >>> e

)
• (α ⊗ id).

4 We only prove functoriality, in a direct way: for two maps of coalgebraic components

f : c1 → c2 and g : d1 → d2, where ci : Xi⊗A → T (Xi⊗B) and di : Yi⊗B → T (Yi⊗X)

the map f⊗g : X1⊗Y1 → X2⊗Y2 is a morphism of composite coalgebraic components:

((f ⊗ g) ⊗ idC) • (c1 >>> d1) = ((f ⊗ g) ⊗ idC) • (X1 | d1) • (c1 | Y1)
(7)
= (X2 | d2) • ((f ⊗ g) ⊗ idB)) • (c1 | Y1)
(7)
= (X2 | d2) • (c2 | Y2) • ((f ⊗ g) ⊗ idA)

= (c2 >>> d2) • ((f ⊗ g) ⊗ idA).

The next result captures the interaction between sequential composition >>> and state

extension |.

Lemma 4.3. For components X ⊗ A
c
→ T (X ⊗ B) to Y ⊗ B

d
→ T (Y ⊗ C) there are as-

sociativity isomorphisms:

(
U | (c >>> d)

)
α

∼=

(
(U | c) >>> d

)
and

(
c >>> (d | V )

)
α

∼=

(
(c >>> d) | V

)
.
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Proof. By the properties of Lemma 3.2. We only do the first one.

(α ⊗ id) •
(
U | (c >>> d)

)
= (α ⊗ id) •

(
U | ((X | d) • (c | Y ))

)

(7)
= (α ⊗ id) • (U | (X | d)) • (U | (c | Y ))
(5)
= ((U ⊗ X) | d) • (α ⊗ id) • (U | (c | Y ))
(6)
= ((U ⊗ X) | d) • ((U | c) | Y ) • (α ⊗ id)

=
(
(U | c) >>> d

)
• (α ⊗ id).

4.1. Multiplicative parallel composition

Two coalgebraic components c, d, with different state spaces, and different inputs &

outputs, can be put in parallel to form new components. This can be done in different

ways. At this stage we briefly discuss the “multiplicative” way of doing so, by taking

the tensor of the inputs & outputs. Later on we also describe the “additive” parallel

composition that involves the coproduct of inputs & outputs. This additive version turns

out to be more important in the current setting. Our discussion of the multiplicative

version will thus be rather brief.

Definition 4.4. For components X ⊗ A
c
→ T (X ⊗ B) and Y ⊗ C

d
→ T (Y ⊗ D) the mul-

tiplicative parallel composition c ‖ d is defined as Kleisli composition:

(X ⊗ Y ) ⊗ (A ⊗ C)

bγ ∼=

c‖d
(X ⊗ Y ) ⊗ (B ⊗ D)

(X ⊗ A) ⊗ (Y ⊗ C)
c⊗d

(X ⊗ B) ⊗ (Y ⊗ D)

bγ∼=

where γ̂ is the obvious isomorphism that swaps the inner two objects.

It is easy to see that ‖ yields a functor

‖ : Comp(T,A,B) × Comp(T,C,D) −→ Comp(T,A ⊗ C,B ⊗ D). (7)

In the (multi-sorted) Lawvere theory notation from (Hasuo et al., 2009) this operator

can be described as a map ‖ : (A,B) × (C,D) → (A ⊗ C,B ⊗ D).

Remark 4.5. The type (7) of the functor ‖ even suggests that the correspondence

Comp(T,−,−) be a (lax) monoidal functor C
op × C → Cat, where the former has an

obvious monoidal structure (inherited from C) and the latter has Cartesian products as

tensor products. This is also true of the additive parallel composition functor � studied

later in Section 4.2. The use of such higher-dimensional structures is however not clear

at this stage; therefore the relevant technical developments are left as future work.

Now that we have this ‖ operator we can describe the equivalents of the ‘first’ and

‘second’ operators in the context of Hughes’ Arrows (Hughes, 2000). They add an addi-

tional input & output, on the left or on the right of the existing input & output, namely
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via

first‖(c) = c ‖ arr(id) and second‖(c) = arr(id) ‖ c. (8)

We only mention the following result about ‖, without proof.

Lemma 4.6. There are isomorphisms of components:

(
U | (c ‖ d)

)
α

∼=

(
(U | c) ‖ d

)
and

(
c ‖ (d | V )

)
α

∼=

(
(c ‖ d) | V

)
.

4.2. Additive parallel composition

The next aim is to define an additive parallel composition operator � for coalgebraic

components. It is called ‘external choice’ in (Barbosa, 2001; Barbosa, 2003). We need to

assume that our category C has binary coproducts +, and that the tensor ⊗ distributes

over them, as described in Section 2, via a distribution map dis as in (2). These coproducts

+ in C also form coproducts in the Kleisli category Kℓ(T ) and are preserved by J : C →

Kℓ(T ). Thus in Kℓ(T ) one has coprojections J(κi) = η ◦ κi : Xi → T (X1 + X2) with

cotupling as in C. Since the monad T is assumed to be commutative (i.e. symmetric

monoidal), ⊗ is also a tensor in Kℓ(T ), and it distributes over + in Kℓ(T ), via J(dis) =

η ◦ dis as distributivity isomorphism.

Definition 4.7. An additive parallel operator � is defined on coalgebraic components

X ⊗ A
c
→ T (X ⊗ B) and Y ⊗ C

d
→ T (Y ⊗ D) as Kleisli composition:

(X ⊗ Y ) ⊗ (A + C)

dis
−1 ∼=

c�d
(X ⊗ Y ) ⊗ (B + D)

(X ⊗ Y ) ⊗ A + (X ⊗ Y ) ⊗ C
c|Y +X|d

(X ⊗ Y ) ⊗ B + (X ⊗ Y ) ⊗ D

dis∼=

where c | Y + X | d is the coproduct of maps in the Kleisli category.

This additive composition operator � forms a functor Comp(T,A,B)×Comp(T,C,D) →

Comp(T,A + C,B + D), which is defined on morphisms as f �g = f⊗g. It may thus be

written as a map � : (A,B)× (C,D) → (A+C,B +D). This will be helpful in Section 6.

Just like we had ‘first’ and ‘second’ operator for multiplicative parallel composition (8),

we also have them in the additive case:

first�(c) = c � arr(id) and second�(c) = arr(id) � c. (9)

These fundamental operators occur frequently in the sequel, for instance in the (di)naturality

properties of the trace operator in Section 6.

We make the relation between � and state extension explicit. It is very similar to the

relations between >>> or ‖ and state extension, see Lemma 4.3 and Lemma 4.6.

Lemma 4.8. For components X ⊗ A
c
→ T (X ⊗ B) to Y ⊗ C

d
→ T (Y ⊗ D) there are as-

sociativity isomorphisms:

(
U | (c � d)

)
α

∼=

(
(U | c) � d

)
and

(
c � (d | V )

)
α

∼=

(
(c � d) | V

)
.
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Proof. This requires a rather elaborate calculation, which for the first one looks as

follows.

(
(U | c) � d

)
• (α ⊗ id)

= dis •
(
((U | c) | Y ) + ((U ⊗ X) | d)

)
• dis

−1 • (α ⊗ id)
2.1.1
= dis •

(
((U | c) | Y ) + ((U ⊗ X) | d)

)
• ((α ⊗ id) + (α ⊗ id)) • dis

−1

2.1.2
= dis •

(
(((U | c) | Y ) • (α ⊗ id)) + (((U ⊗ X) | d) • (α ⊗ id))

)
•

(α + α) • dis
−1 • (U ⊗ dis

−1) • α−1

3.2.6,(5)
= dis •

(
((α ⊗ id) • (U | (c | Y )) • α) + ((α ⊗ id) • (U | (X | d)) • α)

)
•

dis
−1 • (U ⊗ dis

−1) • α−1

= dis •
(
(α ⊗ id) + (α ⊗ id)

)
•

(
(α • (U ⊗ (c | Y )) • α−1 • α) + (α • (U ⊗ (X | d)) • α−1 • α)

)
•

dis
−1 • (U ⊗ dis

−1) • α−1

2.1.1
= (α ⊗ id) • dis • (α + α) •

(
(U ⊗ (c | Y )) + (U ⊗ (X | d))

)
•

dis
−1 • (U ⊗ dis

−1) • α−1

2.1.2
= (α ⊗ id) • α • (U ⊗ dis) • dis •

(
(U ⊗ (c | Y )) + (U ⊗ (X | d))

)
•

dis
−1 • (U ⊗ dis

−1) • α−1

2.1.1
= (α ⊗ id) • α • (U ⊗ dis) • (U ⊗ (c | Y + X | d)) • (U ⊗ dis

−1) • α−1

= (α ⊗ id) • α • (U ⊗ (c � d)) • α−1

= (α ⊗ id) •
(
U | (c � d)

)
.

Many more properties, like associativity, can be proven about �. We explicitly state

some of them, leaving the details of the (straightforward) proof to the reader.

Lemma 4.9.

1 Given arrows f : A → B and g : C → D in C, we have a canonical isomorphism of

coalgebraic components arr(f) � arr(g)
∼=
−→ arr(f + g). That is,

T ((I ⊗ I) ⊗ (B + D))
T (λ⊗id)=T (ρ⊗id)

∼=
T (I ⊗ (B + D))

(I ⊗ I) ⊗ (A + C)
λ⊗id=ρ⊗id

∼=

arr(f)�arr(g)

I ⊗ (A + C)

arr(f+g)
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2 One has (c >>> c′) � (d >>> d′)
∼=
−→ (c � d) >>> (c′ � d′), in:

T ((X ⊗ X ′) ⊗ (Y ⊗ Y ′) ⊗ (A′′ + B′′))
T (β⊗id)

∼=
T ((X ⊗ Y ) ⊗ (X ′ ⊗ Y ′) ⊗ (A′′ + B′′))

(X ⊗ X ′) ⊗ (Y ⊗ Y ′) ⊗ (A + B)
β⊗id

∼=

(c>>>c′)�(d>>>d′)

(X ⊗ Y ) ⊗ (X ′ ⊗ Y ′) ⊗ (A + B)

(c�d)>>>(c′�d′)

Here β : (X ⊗X ′)⊗ (Y ⊗ Y ′)
∼=
−→ (X ⊗ Y )⊗ (X ′ ⊗ Y ′) is the canonical isomorphism

in a symmetric monoidal category (C,⊗, I).

3 One has (c � (d � e)) >>> arr(α+)
∼=
−→ arr(α+) >>> ((c � d) � e), in:

T (((X ⊗ (Y ⊗ Z)) ⊗ I) ⊗ ((D + E) + F ))
T (β′⊗id)

∼=
T ((I ⊗ ((X ⊗ Y ) ⊗ Z)) ⊗ ((D + E) + F ))

((X ⊗ (Y ⊗ Z)) ⊗ I) ⊗ (A + (B + C))
β′⊗id

∼=

(c�(d�e))>>>arr(α+)

(I ⊗ ((X ⊗ Y ) ⊗ Z)) ⊗ (A + (B + C))

arr(α+)>>>((c�d)�e)

Here β′ : (X ⊗ (Y ⊗Z))⊗ I
∼=→ I ⊗ ((X ⊗ Y )⊗Z) is the canonical isomorphism in C;

α+ is the associativity isomorphism for +.

4 One has (c � d) >>> arr(γ+)
∼=
−→ arr(γ+) >>> (d � c), in:

T (((X ⊗ Y ) ⊗ I) ⊗ (D + C))
T (β′′⊗id)

∼=
T ((I ⊗ (Y ⊗ X)) ⊗ (D + C))

((X ⊗ Y ) ⊗ I) ⊗ (A + B)
β′′⊗id

∼=

(c�d)>>>arr(γ+)

(I ⊗ (Y ⊗ X)) ⊗ (A + B)

arr(γ+)>>>(d�c)

Here β′′ = λ−1 ◦ γ ◦ ρ : (X ⊗ Y ) ⊗ I
∼=
−→ I ⊗ (Y ⊗ X) and γ+ is the symmetry iso-

morphism for +.

Proof. Items 1–2 are easy by direct calculation. Items 3–4 follow essentially from nat-

urality of α+ and γ+, and Lemma 2.2.2–3.

4.3. Method combination

The additive parallel composition c�d from the previous subsection applies to arbitrary

components c, d, which typically have difference state spaces. In the special case when

c, d share the same state space, there is also a composition operator which we shall write

as {c, d}. It can be seen as a combination of the (Java-like) methods of c and d on their

shared state space.
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Definition 4.10. For two components X ⊗ A
c
→ T (X ⊗ B) to X ⊗ C

d
→ T (X ⊗ D) with

the same state space X we define {c, d} as Kleisli composition:

X ⊗ (A + C)

dis
−1 ∼=

{c,d}
X ⊗ (B + D)

X ⊗ A + X ⊗ C
c+d

X ⊗ B + X ⊗ D

dis∼=

If we understand a coalgebraic component as a mathematical model of a class in

an object oriented programming language, then we can see this method combination

operator as a form of building classes: first the state space X is fixed, and subsequently

methods ci : X ⊗ Ai → T (X ⊗ Bi) are combined to a class c = {c1, . . . , cn} : X ⊗ (A1 +

· · · + An) → T (X ⊗ (B1 + · · · + Bn)).

Moreover, extension of classes can be described, yielding a form of subclass and in-

heritance, albeit without overriding of methods. Given a class/component c : X ⊗ A →

T (X ⊗B) one can form a subclass by first extending the state to c | Y : (X ⊗ Y )⊗A →

T ((X⊗Y )⊗B). Indeed, subclassing involves an extended state, to accommodate for addi-

tional fields/attributes. Additional methods d : (X⊗Y )⊗C → T ((X⊗Y )⊗D) may now

be added to obtain a subclass c′ = {c | Y, d} : (X⊗Y )⊗(A+C) → T ((X⊗Y )⊗(B+D)).

The proof of the following result is left to the reader.

Lemma 4.11. Method combination commutes with state extension:

U | {c, d} = {U | c, U | d} and {c, d} | V = {c | V, d | V }.

5. Tube diagrams for components

Our goal in the next section (which is central in this paper) is: to first introduce a trace

operator that realises feedback loops for components; and then to prove that the in-

troduced operator indeed satisfies the expected equational properties from (Joyal et al.,

1996)—such as dinaturality, yanking and superposing. It turns out, however, that the

composed components occurring in the equations are rather complicated and their struc-

tures at large are best depicted using a certain variant of string diagrams.

String diagrams were introduced in (Penrose, 1971) for succinctly depicting morphisms

in a monoidal category; see also (Joyal and Street, 1991). The trouble here is that we need

to deal with two different kinds of monoidal structure ⊗ and +; this calls for a carefully

devised pictorial convention. Following (McCurdy, 2010), we employ the version of string

diagrams that are augmented by tubes—we refer to them as tube diagrams. Tubes enhance

a slightly more common pictorial convention of functorial boxes (Cockett and Seely, 1999;

Melliès, 2006). In the current paper, tubes capture applications of functors of the form

X ⊗−.

We now present tube diagrams (based on (McCurdy, 2010)) for some of the composi-

tion operators introduced previously in Section 4. We start with drawing some diagrams;

explanations follow shortly. First consider the sequential composition operator in Defini-

tion 4.1. Given two components

X ⊗ A
c

X ⊗ B and Y ⊗ B
d

Y ⊗ C in Kℓ(T )



I. Hasuo and B. Jacobs 18

with matching input and output, each of these shall be depicted as follows.

A B 

 

X X  

c   

B C 

 

Y Y  

d   

Their composition (X ⊗ Y ) ⊗ A
c>>>d
−→ (X ⊗ Y ) ⊗ C is then depicted as follows.

c >>> d =

c   d  d

 

X
X

Y

Y

(10)

The conventions are as follows.

— Diagrams are read from left to right.

— Each tube designates an object in Kℓ(T ); more precisely it designates the identity

morphism on the object. In the last diagram (10), the (red) tube that is shrunk and

plugged into the c-box, as well as the one that comes out of c and is expanded to

enclose the d-box, are of type X. Other two (blue) tubes—the one that encloses c

and the one that comes out of d—are of type Y . The three thick lines (in black) are

of type A, B or C. These “lines” are tubes in fact; they are depicted as lines solely

for the purpose of simplicity of the picture.

— Nested tubes designate the tensor ⊗ in Kℓ(T ), calculated from the outermost one

towards inside. For example, the left endpoint of the last diagram (a red tube, a blue

one and then a black one, going inwards) designates the object X ⊗ Y ⊗ A.

— Symmetry γ of the tensor ⊗ is depicted as a “waist”, i.e. the exchange of the outer

tube and the inner tube. This occurs twice in the last diagram where the “waists”

are marked with (pink) circles.

— Associativity isomorphisms are left implicit. That is, when dealing with tube diagrams

we assume strict monoidal structures where we do not distinguish (X ⊗ Y )⊗A from

X ⊗ (Y ⊗A), nor (X +Y )+A from X +(Y +A). For this reason our later use of tube

diagrams is as “guidelines” for rigorous calculational proofs, rather than as proofs by

themselves. We will come back to this point later in Remark 5.2.

To summarise, the last tube diagram (10) is “parsed” into the following composition of

morphisms in Kℓ(T ).

X ⊗ Y ⊗ A
γ⊗A

waist
Y ⊗ X ⊗ A

Y ⊗c

box in a tube
Y ⊗ X ⊗ B

γ⊗B

waist
X ⊗ Y ⊗ B

X⊗d

box in a tube
X ⊗ Y ⊗ C

This composition is therefore the same thing as in Definition 4.1, modulo the use of

associativity isomorphisms α. It is implicit in this correspondence that left- and right-
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state extensions (Definition 3.1) can be depicted as follows.

U |c =

d

 

c   

A  B 

U

X

c|V =

c   

 

V

A 

X

 B 

X

(11)

The “waist” diagram that represents symmetry γ : X⊗Y
∼=→ Y ⊗X might seem strange

at the first sight. In fact, one recovers the usual “crossing” representation of symmetry

(see e.g. (Joyal and Street, 1991)) by looking at a certain section of the three-dimensional

picture†, as in:

 

X Y X Y

As opposed to the multiplicative tensor ⊗, the additive tensor + is depicted by putting

two tubes in parallel (rather than nested). That is for example:

A 

 B 
for A + B;

Y 

X

A 

 B 

for Y ⊗ ((X ⊗ A) + B).

Relating the two tensors ⊗ and + is the distributivity isomorphism dis from (2). It has

a nice graphical representation as a pair of “pants”:

dis : X ⊗ A + X ⊗ B −→ X ⊗ (A + B) as

X

A 

 B 

. (12)

Furthermore, dis being an isomorphism means that the following equalities hold. The

right hand sides are identity maps on suitable objects.

= = (13)

We shall establish another couple of lemmas for manipulating such distributivity

“pants”.

† This observation is due to Shin-ya Katsumata.
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Lemma 5.1 (Mr. Bean’s Pants Exchange‡). The following diagram commutes:

X ⊗ (Y ⊗ A) + X ⊗ (Y ⊗ B)
dis

α+α

X ⊗ (Y ⊗ A + Y ⊗ B)
X⊗dis

X ⊗ (Y ⊗ (A + B))

α

(X ⊗ Y ) ⊗ A + (X ⊗ Y ) ⊗ B

γ⊗A+γ⊗B

(X ⊗ Y ) ⊗ (A + B)

γ⊗(A+B)

(Y ⊗ X) ⊗ A + (Y ⊗ X) ⊗ B

α−1+α−1

(Y ⊗ X) ⊗ (A + B)

α−1

Y ⊗ (X ⊗ A) + Y ⊗ (X ⊗ B)
dis

Y ⊗ (X ⊗ A + X ⊗ B)
Y ⊗dis

Y ⊗ (X ⊗ (A + B))

which, in a strict monoidal category, is reduced to the following one:

X ⊗ Y ⊗ A + X ⊗ Y ⊗ B
dis

γ⊗A+γ⊗B

X ⊗ (Y ⊗ A + Y ⊗ B)
X⊗dis

X ⊗ Y ⊗ (A + B)
γ⊗(A+B)

Y ⊗ X ⊗ A + Y ⊗ X ⊗ B
dis

Y ⊗ (X ⊗ A + X ⊗ B)
Y ⊗dis

Y ⊗ X ⊗ (A + B)

Recall that γ denotes symmetry isomorphisms for ⊗. This is in terms of tube diagrams:

= . (14)

Proof. By drawing two horizontal maps labelled with dis in the above diagram in the

lemma, using Lemma 2.2.3 twice, and naturality for dis from Lemma 2.1.1.

Next we note that the interaction between distribution dis and the coproduct asso-

ciativity α+ from Lemma 2.2.3 is equivalent to the following one, in a strict monoidal

setting.

X ⊗ A + X ⊗ (B + C)
dis

X⊗A+dis
−1

X ⊗ (A + B + C)

dis
−1

X ⊗ A + X ⊗ B + X ⊗ C
dis +X⊗C

X ⊗ (A + B) + X ⊗ C

(15)

The latter is in terms of tube diagrams:

= . (16)

This equality of tubes can be found in (McCurdy, 2010).

‡ Mr. Bean, Episode 1, Act 2. 1990.
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Another operator which will be heavily used in Section 6 is the additive parallel compo-

sition �. Following Definition 4.7, one composes the diagrams in (11) and (12) to obtain

the following tube diagram for c � d.

c � d =

A 

X

B 

C D 

 

Y

c 

d  

(17)

Remark 5.2. To turn our tube-diagram reasoning into mathematically rigorous proofs,

one needs a coherence result of one form or another. It can be a statement that any

non-strict such category is equivalent to a strict one; or a statement that the category of

string/tube diagrams is the free such category. Currently we do not have any of these.

This is not a total anomaly: among dozens of well-known graphical languages for various

kinds of (monoidal) categories collected in (Selinger, 2010), some are lacking coherence

results. Still they offer useful guidelines for rigorous calculational proofs, much like the

tube diagrams do in this paper.

Remark 5.3. We emphasise that all tube diagrams represent morphisms in the Kleisli

category Kℓ(T ). We shall be also employing a different kind of string diagrams later,

mostly for describing the trace axioms. The latter kind of diagrams are two-dimensional

and are essentially “pictorial shorthands” for composition of components. For example,

sequential composition c >>> d of components is represented by

c   d   
A    ��

;

additive parallel composition c � d is represented by

c   

d   

A    

�     �     

�

;

and the “identity component” arr(id) is represented simply by a wire/line. Hence the

diagram

c   d   

e   

 

represents the composition (c� e)>>> (d� arr(id)), which is equal to (c>>>d)� e up-to a

canonical isomorphism (this follows from the results in (Asada and Hasuo, 2010; Hasuo

et al., 2009)).

In the latter kind of string diagrams wires represent input/output interfaces; state

spaces of components are not explicit. To distinguish the two kinds of string diagrams

should be easy. In particular, in tube diagrams a component is represented by a 3D

shadowed cube, while in the latter a component is a 2D box.
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6. A monoidal trace for coalgebraic components

In (Jacobs, 2010) it is shown how for certain monads T the Kleisli category Kℓ(T ) is traced

monoidal wrt. coproducts + as monoidal structure. Concretely, this means that for maps

of the form f : X + U → T (Y + U) there is a trace map Tr
Kℓ(f) : X → T (Y ) satisfying

standard properties, see (Joyal et al., 1996). This trace operator Tr
Kℓ on the Kleisli

category will be used to construct a similar trace operator for coalgebraic components.

The main task in this section is to show that the trace properties from (Joyal et al., 1996)

also hold for these components, but only up to (canonical) isomorphism.

The precise properties that T must satisfy to obtain this (Kleisli) trace operator Tr
Kℓ

are listed in (Jacobs, 2010, Requirements 4.7). The main ones are that the category C

should have (countable) coproducts, the Kleisli category should be enriched over the

category of dcpo’s with bottom, and the monad should be ‘semi-additive’. In this section

we shall simply assume that these properties hold for T . Examples of a such monad

T include: the lift monad T = 1 + (−) for partiality; the powerset monad P for non-

determinism as well as its bounded variant P<κ with κ > ℵ0; and the (discrete, countable)

subdistribution monad D for probabilistic non-determinism where

DX = {d : X → [0, 1] |
∑

x∈X d(x) ≤ 1}.

Such a d is a “sub”distribution since its sum is ≤ 1, rather than = 1 (see e.g. (Hasuo

et al., 2007)).

Definition 6.1. The trace operator Tr : (A + C,B + C) → (A,B) is defined on a coal-

gebraic component c : X ⊗ (A + C) → T (X ⊗ (B + C)) via the Kleisli trace operator

Tr
Kℓ

Tr(c)
def
= Tr

Kℓ
(
X ⊗ A + X ⊗ C

T (dis
−1) ◦ c ◦ dis

T (X ⊗ B + X ⊗ C)
)
.

Notice that this composition inside Tr
Kℓ(−) is really a Kleisli composition.

Using the tube diagram scheme that we described in Section 5, the trace operator is

depicted in the following way. First, the composite inside the trace operator Tr
Kℓ is

dis
−1 • c • dis : X ⊗ A + X ⊗ B −→ X ⊗ B + X ⊗ C in Kℓ(T ),

hence is depicted as follows.

A 

X

C C  

B 

c

Applying the trace operator Tr
Kℓ yields

Tr(c) = . (18)

Functoriality of the operator Tr is essential.
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Lemma 6.2. The trace operator Tr extends to a functor

Tr : Comp(T,A + C,B + C) −→ Comp(T,A,B).

That is, given two components

c : X ⊗ (A + C) → T (X ⊗ (B + C)), d : Y ⊗ (A + C) → T (Y ⊗ (B + C))

and a morphism f from c to d (see (4)), f is again a component morphism

from Tr(c) : X ⊗ A → T (X ⊗ B) to Tr(d) : Y ⊗ A → T (Y ⊗ B).

Proof. The result makes essential use of uniformity of the trace operator Tr
Kℓ:

(id + h) • f = g • (id + h) implies Tr
Kℓ(f) = Tr

Kℓ(g), (19)

that is, pictorially,

XXX Y

V

f
  

U

h

U
=

XXX Y

V

g
  

h

VU

implies

XXX Y

U
f

  

=

XXX Y

V
g

  

This notion of uniformity for traced monoidal categories is formulated in (Hasegawa,

1999); the name is due to its correspondence to Plotkin’s uniformity principle in domain

theory (see e.g. (Simpson and Plotkin, 2000)). See (Hasegawa, 2004) for more recent

developments as well as more about the historical background.

It is typical that in a traced monoidal category C, uniformity like (19) does not hold for

every h but holds only for “strict” h. However, when the trace structure of C arises from

C’s structure as a partially additive category, uniformity is true for every h (Haghverdi,

2000). This is our current setting; see (Jacobs, 2010).

We turn to the proof of the lemma. The following diagram in Kℓ(T ) commutes: it is

the assumption that f is a component morphism, combined with naturality of dis.

X ⊗ B + X ⊗ C
f⊗B+f⊗C

Y ⊗ B + Y ⊗ C

X ⊗ (B + C)

dis
−1

f⊗(B+C)
Y ⊗ (B + C)

dis
−1

X ⊗ (A + C)
f⊗(A+C)

c

Y ⊗ (A + C)

d

X ⊗ A + X ⊗ C

dis

f⊗A+f⊗C
Y ⊗ A + Y ⊗ C

dis

Thus we have

(id+f⊗C) •
(
(f⊗B+id) • dis

−1 • c • dis
)

=
(
dis

−1 • d • dis • (f⊗A+id)
)
• (id+f⊗C),
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from which we derive, by uniformity (19),

Tr
Kℓ

(
(f ⊗ B + id) • dis

−1 • c • dis
)

= Tr
Kℓ

(
dis

−1 • d • dis • (f ⊗ A + id)
)
. (20)

This is used in the following calculation. It concludes the proof.

(f ⊗ B) • Tr(c)

= (f ⊗ B) • Tr
Kℓ(dis

−1 • c • dis)

= Tr
Kℓ

(
(f ⊗ B + id) • dis

−1 • c • dis
)

by the tightening axiom for the trace operator Tr
Kℓ, see e.g. (Joyal et al., 1996)

= Tr
Kℓ

(
dis

−1 • d • dis • (f ⊗ A + id)
)

by (20)

= Tr
Kℓ(dis

−1 • d • dis) • (f ⊗ A) by tightening

= Tr(d) • (f ⊗ A).

We make the following special case explicit.

Lemma 6.3. For an isomorphism ϕ in C of the appropriate type one has:

(ϕ ⊗ id) • Tr(c) • (ϕ−1 ⊗ id) = Tr
(
(ϕ ⊗ id) • c • (ϕ−1 ⊗ id)

)
.

Equivalently: if ϕ is an isomorphism of coalgebraic components as on the left (below)

then it is also an isomorphism on the right between the corresponding traces:

T (X ⊗ (A + C))
T (ϕ⊗id)

∼=
T (Y ⊗ (A + C)) T (X ⊗ A)

T (ϕ⊗id)

∼=
T (Y ⊗ A)

X ⊗ (A + C)

c

ϕ⊗id

∼=
Y ⊗ (A + C)

d

X ⊗ A

Tr(c)
ϕ⊗id

∼=
Y ⊗ A

Tr(d)

In the remainder of this section we first establish how the component trace Tr interacts

with state extension | and with additive parallel composition �, before proving the stan-

dard trace properties of (Joyal et al., 1996). The trace properties as well as the preceding

lemmas are often accompanied by the intended equalities of tube diagrams. Such tube

diagrams hopefully convey some intuition behind rather complicated calculations.

6.1. Trace and state extension

In Section 4.2 we have assumed that functors X ⊗ − preserve binary coproducts, for

instance because X ⊗− has a right adjoint (given by exponents ⊸).

Proposition 6.4. Let T be a (commutative) monad on a symmetric monoidal category

C with (countable) coproducts, for which the Kleisli category Kℓ(T ) has a monoidal

trace operator Tr
Kℓ wrt. coproducts. If functors U ⊗− : C → C preserve coproducts, then

U ⊗− : Kℓ(T ) → Kℓ(T ) preserves the trace operator, in the sense that:

U ⊗ Tr
Kℓ

(
X + C

f
T (Y + C)

)
: U ⊗ X T (U ⊗ Y )
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is the same as:

Tr
Kℓ

(
U ⊗ X + U ⊗ C

dis

∼=
U ⊗ (X + C)

U⊗f
T (U ⊗ (Y + C))

T (dis
−1)
T (U ⊗ Y + U ⊗ C)

)
.

In terms of tube diagrams, what is asserted is the following equality.

f 
= f 

Proof. The result follows from the way the monoidal trace is constructed via the coal-

gebraic trace in (Jacobs, 2010): first, the functor Y +(−) : C → C has an initial algebra in

C given by the copower N ·Y with algebra map αY = [κ0, [κn+1]n∈N] : Y +N ·Y
∼=
−→N ·Y .

The functor U ⊗ − : C → C preserves coproducts by assumption, so the canonical map

d = [id ⊗ κn]n∈N : N · (U ⊗ Y ) → U ⊗ (N · Y ) is an isomorphism. It is then also an

isomorphism of initial algebras.

The general trace theory from (Hasuo et al., 2007) now says that N · Y is the final

coalgebra in the Kleisli category Kℓ(T ) of the functor T (Y +(−)). For a map f : X +C →

T (Y + C) we first take f̂ = T (id + κ2) ◦ f : X + C → Y + (X + C). It yields a unique

map beh(f̂) : X + C → T (N · Y ) to the final coalgebra, and finally the trace map itself

as Tr
Kℓ(f) = T (∇) ◦ beh(f̂) ◦ κ1 : X → T (Y ).

We can similarly obtain a trace map Tr
Kℓ(fU ) : U ⊗ X → U ⊗ Y for the morphism

fU = T (dis
−1) ◦ (U ⊗ f) ◦ dis : U ⊗X +U ⊗C → T (U ⊗Y +U ⊗X) used in Proposition

that we are proving. We are done if the following diagram commutes.

U ⊗ X + U ⊗ C
beh(cfU )

dis ∼=

T (N · (U ⊗ Y ))
T (∇)

T (d)∼=U ⊗ X

κ1

U⊗κ1

Tr
Kℓ(fU )

U⊗Tr
Kℓ(f)

T (U ⊗ Y )

U ⊗ (X + C)
U⊗beh( bf)

T (U ⊗ N · Y )
T (id⊗∇)

It is obvious that the two triangles commute. Commutation of the inner rectangle follows

by a finality argument, in the Kleisli category:

U ⊗ Y + (U ⊗ X + U ⊗ Y ) U ⊗ Y + U ⊗ N · Y

U ⊗ Y + U ⊗ C

id+κ2

U ⊗ (Y + N · Y )

dis
−1∼=

U ⊗ X + U ⊗ C

fU
(U⊗beh( bf))◦dis

T (d)◦beh(cfU )

U ⊗ N · Y

U⊗α
−1
Y

∼=

Remaining details are left to the reader.
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We now return to our framework of coalgebraic components, and wish to show how

trace and state extension interact.

Lemma 6.5. Trace commutes with state extension:

U | Tr(c) = Tr(U | c) and Tr(c) | V = Tr(c | V ).

Proof. We use several standard properties of the trace Tr
Kℓ in the Kleisli category

Kℓ(T ), such as (di)naturality, but we mainly depend on Proposition 6.4. We calculate in

this Kleisli category:

U | Tr(c)

= α • (U ⊗ Tr(c)) • α−1

= α • (U ⊗ Tr
Kℓ(dis

−1 • c • dis)) • dis)) • α−1

= α • Tr
Kℓ(dis

−1 • U ⊗ (dis
−1 • c • dis) • dis) • α−1

by Proposition 6.4

= Tr
Kℓ((α + id) • dis

−1 • (U ⊗ dis
−1) • (U ⊗ c) • (U ⊗ dis) • dis • (α−1 + id))

by naturality of dis, see Lemma 2.1.1

= Tr
Kℓ((id + α−1) • (id + α) • (α + id) •

dis
−1 • (U ⊗ dis

−1) • (U ⊗ c) • (U ⊗ dis) • dis • (α−1 + id))

= Tr
Kℓ((α + α) • dis

−1 • (U ⊗ dis
−1) • (U ⊗ c) • (U ⊗ dis) • dis • (α−1 + α−1))

by dinaturality of Tr
Kℓ

= Tr
Kℓ(dis

−1 • α • (U ⊗ c) • α−1 • dis)

by Lemma 2.1.2

= Tr
Kℓ(dis

−1 • (U | c) • dis)

= Tr(U | c).

We immediately use this property in:

Tr(c) | V = (γ ⊗ id) • (V | Tr(c)) • (γ ⊗ id)

= (γ ⊗ id) • Tr(V | c) • (γ ⊗ id) as just proved

= Tr((γ ⊗ id) • (V | c) • (γ ⊗ id)) by Lemma 6.3

= Tr(c | V ).

6.2. Trace and additive parallel composition

The following lemma describes the interaction of trace and additive parallel composition.

It will be crucial for proving the (di)naturality properties for Tr in the next subsection,

which involve composition >>> of components instead of Kleisli composition •.

Lemma 6.6. For appropriately typed components c, d one has:

1 Tr((d � arr(id)) • c) = (d | I) • Tr(c);



Traces for Coalgebraic Components 27

2 Tr(c • (d � arr(id))) = Tr(c) • (d | I).

3 Tr((arr(id) � d) • c) = Tr(c • (arr(id) � d)).

Proof. We shall do the first and third point; the second works like the first.

Tr((d � arr(id)) • c) = Tr
Kℓ(dis

−1 • dis • (d | I + Y | arr(id)) • dis
−1 • c • dis)

= Tr
Kℓ((d | I + id) • dis

−1 • c • dis)

= (d | I) • Tr
Kℓ(dis

−1 • c • dis) by naturality of Tr
Kℓ

= (d | I) • Tr(c).

And:

Tr((arr(id) � d) • c)

= Tr
Kℓ(dis

−1 • dis • (arr(id) | Y + I | d) • dis
−1 • c • dis

−1)

= Tr
Kℓ((id + I | d) • dis

−1 • c • dis
−1)

= Tr
Kℓ(dis

−1 • c • dis
−1 • (id + I | d)) by dinaturality of Tr

Kℓ

= Tr
Kℓ(dis

−1 • c • dis
−1 • (arr(id) | Y + I | d) • dis

−1 • dis)

= Tr(c • (arr(id) � d)).

6.3. Trace axioms

In the remainder of this section the trace axioms from (Joyal et al., 1996), formulated in

a component setting (with explicit isomorphisms), are verified. For each axiom, drawing

a pictorial (pseudo-)proof with tube diagrams is helpful in coming up with a rigorous,

calculational proof. We will present such a pictorial proof for an exemplary case, namely

the Post-Composition Naturality property.

Yanking

In the language of components the Yanking property can be formulated as a diagram of

the form:

1
arr(γ+)

arr(id)

(A + A,A + A)

Tr

(A,A)

where γ+ : A+A
∼=
−→A+A is the monoidal swap map associated with coproducts +, see

Lemma 2.2.2. Pictorially:

= .

It has to be shown that the Kleisli trace of the following map

I ⊗ A + I ⊗ A
dis

∼=
I ⊗ (A + A)

arr(γ+)
T (I ⊗ (A + A))

T (dis
−1)

∼=
T (I ⊗ A + I ⊗ A)
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is the (Kleisli) identity η = arr(id). This, together with the yanking property for the

Kleisli trace operator Tr
Kℓ, will be used in:

Tr(arr(γ)) = Tr
Kℓ

(
T (dis

−1) ◦ arr(γ+) ◦ dis
)

= Tr
Kℓ

(
T (dis

−1) ◦ η ◦ (id ⊗ γ+) ◦ dis]
)

2.2.2
= Tr

Kℓ
(
η ◦ dis

−1 ◦ dis ◦ γ+

)

= Tr
Kℓ

(
η ◦ γ+

)
= Tr

Kℓ
(
γKℓ
+

)
= idKℓ

I⊗A = ηI⊗A = arr(idA).

Post-composition naturality / tightening

(A + C,B + C) × (B,D)
Tr×id

(A,B) × (B,D)
>>>

(A,D)

(A + C,B + C) × ((B,D) × (C,C))

id×�

(A + C,B + C) × (B + C,D + C)
>>>

(A + C,D + C)

Tr

The usual string representation of this axiom is

c   
d   

=
c   

d   

. (21)

The aim is to prove for

X ⊗ (A + C)
c

T (X ⊗ (B + C)) and Y ⊗ B
d

T (Y ⊗ D)

that the following diagram commutes.

T ((X ⊗ (Y ⊗ I)) ⊗ D)
T ((id⊗ρ)⊗id)

∼=
T ((X ⊗ Y ) ⊗ D)

(X ⊗ (Y ⊗ I)) ⊗ A
(id⊗ρ)⊗id

∼=

Tr(c>>>(d�arr(id)))

(X ⊗ Y ) ⊗ A

Tr(c)>>>d
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We shall make crucial use of Lemma 6.6; the rest is mainly bookkeeping.

T ((id ⊗ ρ) ⊗ id) • Tr(c >>> (d � arr(id)))

= (ρ ⊗ id) • (α ⊗ id) • Tr((X | (d � arr(id))) • (c | (Y ⊗ I)))
6.3
= (ρ ⊗ id) • Tr

(
(α ⊗ id) • (X | (d � arr(id))) • (c | (Y ⊗ I)) • (α−1 ⊗ id)

)

• (α ⊗ id)
4.8
= (ρ ⊗ id) • Tr

(
((X | d) � arr(id)) • (α ⊗ id) • (c | (Y ⊗ I)) • (α−1 ⊗ id)

)

• (α ⊗ id)
3.2.5
= (ρ ⊗ id) • Tr

(
((X | d) � arr(id)) • ((c | Y ) | I)

)
• (α ⊗ id)

6.6
= (ρ ⊗ id) • ((X | d) | I) • Tr

(
(c | Y ) | I

)
• (α ⊗ id)

6.5
= (ρ ⊗ id) • ((X | d) | I) • ((Tr(c) | Y ) | I) • (α ⊗ id)

3.2.3
= (ρ ⊗ id) •

(
((X | d) • (Tr(c) | Y )) | I

)
• (α ⊗ id)

3.2.4
= ((X | d) • (Tr(c) | Y )) • (ρ ⊗ id) • (α ⊗ id)

= (Tr(c) >>> d) ◦ ((id ⊗ ρ) ⊗ id).

A pictorial (pseudo-)proof of the property is found in Figure 1. Although Lemmas 6.3, 6.5

and 6.6 are useful in the above calculational proof, more basic properties such as Lemma 5.1—

on which Lemmas 6.3, 6.5 and 6.6 rely—have clearer pictorial meanings. Therefore the

latter are used in the pictorial proof.

Pre-composition naturality / tightening

(D,A) × (A + C,B + C)
id×Tr

(D,A) × (A,B)
>>>

(D,B)

((D,A) × (C,C)) × (A + C,B + C)

�×id

(D + C,A + C) × (A + C,B + C)
>>>

(D + C,B + C)

Tr

The aim is to prove for

X ⊗ (A + C)
c

T (X ⊗ (B + C)) and Y ⊗ D
d

T (Y ⊗ A)

that the following diagram commutes.

T (((Y ⊗ I) ⊗ X) ⊗ B)
T ((ρ⊗id)⊗id)

∼=
T ((Y ⊗ X) ⊗ B)

((Y ⊗ I) ⊗ X)) ⊗ A
(ρ⊗id)⊗id

∼=

Tr((d�arr(id))>>>c)

(Y ⊗ X) ⊗ A

d>>>Tr(c)

This is left to the interested reader.
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Tr
`

c >>> (d � arr(id))
´

=

= by Lemma 5.1

= by (13)

= naturality of dis

= by Lemma 5.1

= “waist” symmetries γ
are isomorphisms

= post-composition naturality of Tr
Kℓ,

and Proposition 6.4

= Tr(c) >>> d

Figure 1. A pictorial proof of post-composition naturality. The pointers designate where

transformation is going to occur.
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Dinaturality

(A + C,B + D) × (B + D,B + C)

>>>

(A + C,B + D) × ((B,B) × (D,C))
id×�

(A + C,B + C)

Tr

(A + C,B + D) × (D,C)

≀

(A,B)

(D,C) × (A + C,B + D) (A,B)

((A,A) × (D,C)) × (A + C,B + D))
�×id

(A + D,B + D)

Tr

(A + D,A + C) × (A + C,B + D)

>>>

In terms of string diagrams:

c   

d   =
c   

d   .

For coalgebras

X ⊗ (A + C)
c

T (X ⊗ (B + D)) and Y ⊗ D
d

T (Y ⊗ C)

we show that the following diagram commutes.

T ((X ⊗ (I ⊗ Y )) ⊗ B)
T (γ⊗id)

∼=
T (((I ⊗ Y ) ⊗ X) ⊗ B)

(X ⊗ (I ⊗ Y )) ⊗ A
T (γ⊗id)

∼=

Tr(c>>>(arr(idB)�d))

((I ⊗ Y ) ⊗ X) ⊗ A

Tr((arr(idA)�d)>>>c)
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The essence is again in Lemma 6.6, but with quite some bookkeeping this time.

(γ ⊗ id) • Tr
(
c >>> (arr(idB) � d)

)

6.3
= Tr

(
(γ ⊗ id) • (X | (arr(idB) � d)) • ((I ⊗ Y ) | c) • (γ ⊗ id)

)
• (γ ⊗ id)

= (α ⊗ id) • (α−1 ⊗ id) • Tr

(
((arr(idB) � d) | X) • (c | (I ⊗ Y ))

)
• (γ ⊗ id)

6.3
= (α ⊗ id) • Tr

(
(α−1 ⊗ id) • ((arr(idB) � d) | X) • (c | (I ⊗ Y )) • (α ⊗ id)

)
•

(α−1 ⊗ id) • (γ ⊗ id)
4.8
= (α ⊗ id) • Tr

(
(arr(idB) � (d | X)) • (α−1 ⊗ id) • (c | (I ⊗ Y )) • (α ⊗ id)

)
•

(α−1 ⊗ id) • (γ ⊗ id)
6.6
= (α ⊗ id) • Tr

(
(α−1 ⊗ id) • (c | (I ⊗ Y )) • (α ⊗ id) • (arr(idB) � (d | X))

)
•

(α−1 ⊗ id) • (γ ⊗ id)
4.8
= (α ⊗ id) • Tr

(
(α−1 ⊗ id) • (c | (I ⊗ Y )) • ((arr(idB) � d) | X)) • (α ⊗ id)

)
•

(α−1 ⊗ id) • (γ ⊗ id)
6.3
= (α ⊗ id) • (α−1 ⊗ id) • Tr

(
(c | (I ⊗ Y )) • ((arr(idB) � d) | X))

)
•

(γ ⊗ id)

= Tr
(
(arr(idB) � d) >>> c

)
• (γ ⊗ id).

Unit vanishing

The relevant component diagram is:

(A + 0, B + 0)
Tr

〈arr(ρ−1
+ ),id,arr(ρ+)〉

(A,B)

(A,A + 0) × (A + 0, B + 0) × (B + 0, B)
>>>×id

(A,B + 0) × (B + 0, B)

>>>

where we have to keep in mind that the ρ+ : C + 0
∼=
−→C refers to the monoidal isomor-

phism wrt. the coproducts + on C.

Pictorially, the axiom asserts

c   0   0   

A   B   

= c   0   0   

A   B   

.

We will prove that there is an isomorphism of components:

T (((I ⊗ X) ⊗ I) ⊗ B)
T ((λ◦ρ)⊗id)

∼=
T (X ⊗ B)

((I ⊗ X) ⊗ I) ⊗ A

(arr(ρ−1
+ )>>>c)>>>arr(ρ+)

(λ◦ρ)⊗id

∼=
X ⊗ A

Tr(c)
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The heart of the matter is:

Tr(c)

= Tr
Kℓ(dis

−1 • c • dis) with dis : (X ⊗ A) + (X ⊗ 0)
∼=
→X ⊗ (A + 0)

= ρ+ • dis
−1 • c • dis • ρ−1

+ by vanishing for Tr
Kℓ, since X ⊗ 0 is initial

= (id ⊗ ρ−1
+ ) • c • (id ⊗ ρ+) by Lemma 2.2.1.

Hence we obtain the required isomorphism of components:

((λ ◦ ρ) ⊗ id) •
(
(arr(ρ−1

+ ) >>> c) >>> arr(ρ+)
)

4.2.2
= (λ ⊗ id) • (id ⊗ ρ+) • (arr(ρ−1

+ ) >>> c) • (ρ ⊗ id)

= (id ⊗ ρ+) • (λ ⊗ id) • (arr(ρ−1
+ ) >>> c) • (ρ ⊗ id)

4.2.2
= (id ⊗ ρ+) • c • (id ⊗ ρ−1

+ ) • (λ ⊗ id) • (ρ ⊗ id)

= Tr(c) • ((λ ◦ ρ) ⊗ id), as shown above.

Tensor vanishing

Again we have to distinguish carefully between the monoidal associativity isomorphisms

α+ and α, for coproduct + and tensor ⊗, respectively. The component diagram is:

((A + C) + D, (B + C) + D)
〈arr(α+),id,arr(α−1

+ )〉

Tr

(A + (C + D), (A + C) + D)×

((A + C) + D, (B + C) + D)×

((B + C) + D,B + (C + D))

(>>>×id)◦>>>(A + C,B + C)

Tr

(A,B) (A + (C + D), B + (C + D))
Tr

Pictorially,

c   
C+D   

A   B   

=

c   

D   

A   B   

�

.

Our aim is to prove, for a component X ⊗ ((A + C) + D)
c

−→ X ⊗ ((B + C) + D), that

we have an isomorphism of components:

T (((I ⊗ X) ⊗ I) ⊗ A)
T ((λ◦ρ)⊗id)

∼=
T (X ⊗ A)

((I ⊗ X) ⊗ I) ⊗ A
(λ◦ρ)⊗id

∼=

Tr((arr(α+)>>>c)>>>arr(α−1
+ ))

X ⊗ A

Tr(Tr(c))
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This is done as follows.

((λ ◦ ρ) ⊗ id) • Tr((arr(α+) >>> c) >>> arr(α−1
+ ))

6.3
= Tr

(
((λ ◦ ρ) ⊗ id) • (arr(α+) >>> c) >>> arr(α−1

+ ) • ((ρ−1 ◦ λ−1) ⊗ id)
)

• ((λ ◦ ρ) ⊗ id)
4.2.2
= Tr

(
(λ ⊗ id) • (id ⊗ α−1

+ ) • (arr(α+) >>> c) • (λ−1 ⊗ id)
)
• ((λ ◦ ρ) ⊗ id)

= Tr
(
(id ⊗ α−1

+ ) • (λ ⊗ id) • (arr(α+) >>> c) • (λ−1 ⊗ id)
)
• ((λ ◦ ρ) ⊗ id)

4.2.2
= Tr

(
(id ⊗ α−1

+ ) • c • (id ⊗ α+)
)
• ((λ ◦ ρ) ⊗ id)

= Tr
Kℓ

(
dis

−1 • (id ⊗ α−1
+ ) • c • (id ⊗ α+) • dis

)
• ((λ ◦ ρ) ⊗ id)

2.2.3
= Tr

Kℓ
(
dis

−1 • (id ⊗ α−1
+ ) • c • dis • (dis +id) • α+ • (id + dis

−1)
)

• ((λ ◦ ρ) ⊗ id)

= Tr
Kℓ

(
(id + dis

−1) • dis
−1 • (id ⊗ α−1

+ ) • c • dis • (dis +id) • α+

)

• ((λ ◦ ρ) ⊗ id) by dinaturality for Tr
Kℓ

2.2.3
= Tr

Kℓ
(
α−1

+ • (dis
−1 +id) • dis • c • dis • (dis +id) • α+

)
• ((λ ◦ ρ) ⊗ id)

= Tr
Kℓ

(
Tr

Kℓ
(
(dis

−1 +id) • dis • c • dis • (dis +id)
))

• ((λ ◦ ρ) ⊗ id)

by vanishing for Tr
Kℓ

= Tr
Kℓ

(
dis

−1 • Tr
Kℓ

(
dis • c • dis

)
• dis

)
• ((λ ◦ ρ) ⊗ id)

by naturality for Tr
Kℓ

= Tr(Tr(c)) • ((λ ◦ ρ) ⊗ id).

Superposing

The relevant diagram for components is:

(D,E) × (A + C,B + C)
�

id×Tr

(D + (A + C), E + (B + C))
〈arr(α−1

+ ),id,arr(α+)〉

(D,E) × (A,B)

�

((D + A) + C,D + (A + C))×

(D + (A + C), E + (B + C))×

(E + (B + C), (E + B) + C)
(>>>×id)◦>>>

(D + A,E + B) ((D + A) + C, (E + B) + C)
Tr

Pictorially,

c

d

= c

d

.

For coalgebraic components

Y ⊗ E
d

Y ⊗ D and X ⊗ (A + C)
c

X ⊗ (B + C)
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this involves an isomorphism of components:

T (((I ⊗ (Y ⊗ X)) ⊗ I) ⊗ (E + B))
T ((λ◦ρ)⊗id)

∼=
T ((Y ⊗ X) ⊗ (E + B))

((I ⊗ (Y ⊗ X)) ⊗ I) ⊗ (E + B)

Tr((arr(α−1
+ )>>>(d�c))>>>arr(α+))

(λ◦ρ)⊗id

∼=
(Y ⊗ X) ⊗ (E + B)

d�Tr(c)

One proceeds along by now familiar lines.

7. Traced monoidal category of resumptions

In this section we use the previous results—about operators and equations on components—

to prove that the category of T -resumptions is traced symmetric monoidal. This general

result holds for a large class of monads T with suitable assumptions, hence generalises the

result in (Abramsky et al., 2002) that focuses on the lift monad T = 1+(−). Although we

do not fully expose it, the technical development is an instance of the theory—developed

previously in (Hasuo et al., 2008; Hasuo et al., 2009)—on the microcosm principle (Baez

and Dolan, 1998). Application of this general theory exploits characterisation of resump-

tions as elements of a final component.

Throughout the current section the base category C is fixed to be Set, the category of

sets and functions. It is a symmetric monoidal closed category with Cartesian product ×

as tensor ⊗ and the singleton 1 as monoidal unit I; it is also equipped with distributive

coproducts +, 0. All the results in the previous sections are valid in this base category.

7.1. Resumptions

The notion of resumption has been introduced in (Milner, 1975) for the purpose of

providing denotational semantics for interactive computing agents. A historical account

is found in (Abramsky et al., 2002, Section 5.4.1); our recap here of the notion is adapted

for the current context.

First let us think of a component X×A
c
→ X×B, a map in Set. It is a component (3)

where T = id is the trivial monad and ⊗ is chosen to be Cartesian product ×. It belongs

to the category Comp(id, A,B); with T = id this component does not exhibit any effect

in its execution. In the theory of automata, such a machine is called a Mealy machine;

it can also be thought of as a (simple version of a) transducer. The task that such a

machine is expected to perform is transformation of (infinite) A-streams into B-streams;

the transformation should be performed in a letter-by-letter manner.

A resumption is an extensional view of the behaviour of such a machine. Specifically,

the above machine c induces a resumption formalised as a stream function r : Aω → Bω

which is causal, meaning that the n-th letter of the output stream only depends on the

first n letters of the input.§

§ This is how they are formalised in (Rutten, 2006). Equivalent formulations are: as string functions
A∗ → B∗ that are length-preserving and prefix-closed (Pattinson, 2003); and as functions A+ → B

where A+ is the set of (finite-length) strings of length ≥ 1.
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Let us now take a coalgebraic view on components and resumptions. A component

X ×A
c
→ X ×B is the same thing as a map X → (X ×B)A hence is a coalgebra for the

functor (−×B)A. As is noted in (Abramsky et al., 2002), the “behaviours by coinduction”

paradigm in the theory of coalgebra (Jacobs and Rutten, 1997; Rutten, 2000) is also valid

in this setting. Namely, the set ZA,B of resumptions (i.e. causal stream functions) carries

a canonical (−× B)A-coalgebra structure:

ZA,B

ζA,B

∼=
(ZA,B × B)A

(
r : Aω → Bω, causal

)
λa.

( (
λ
−→
a′ . tail(r(a ·

−→
a′ ))

)
, head(r(a · −→a ))

)
.

Here a ·−→a is a letter a ∈ A followed by an arbitrary stream −→a ; the value of head(r(a ·−→a ))

does not depend on −→a since r is causal. Moreover, it is standard that this coalgebra ζA,B

is a final one. Given an arbitrary component c : X × A → X × B (i.e. a coalgebra

c : X → (X × B)A) finality of ζA,B induces the behaviour map:

(X × B)A (ZA,B × B)A

X

c

beh(c)
ZA,B

∼=final

which carries a state x ∈ X to the behaviour beh(c)(x) of c, in case of execution with x

as the initial state, represented by a resumption. To summarise: the set of resumptions

from A to B carries a final (−× B)A coalgebra.

We have restricted ourselves to the trivial monad T = id for the purpose of illustration

of resumptions. However this choice of a monad T does not satisfy the assumption in

Section 6 for Kℓ(T ) to be traced: an iteration of a total function can fail to be total

because of an infinite loop. For monads T in general—especially for those which satisfy

the assumption in Section 6—we generalise the above characterisation of resumptions as

follows. The same has been done in (Abramsky et al., 2002).

Definition 7.1 (T -resumption). Let T be a monad on Set such that, for any sets A

and B, a final (T (−× B))A-coalgebra

ζT
A,B : ZT

A,B

∼=
−→

(
T (ZT

A,B × B)
)A

in Set

exists. A T -resumption from A to B is an element of the carrier ZT
A,B .

Morphisms of T (−×B)A-coalgebras are precisely morphisms of components: there is an

isomorphism of categories: Coalg(T (−× B)A) ∼= Comp(T,A,B). Hence T -resumptions

form the state space of a final component.

Assumption 7.2. In the remainder of this section we assume that a monad T on Set

satisfies both the assumption in Section 6 (namely (Jacobs, 2010, Requirements 4.7)) as

well as the one in Definition 7.1. The former consists of Kℓ(T ) being Dcpo⊥-enriched,

T being “semi-additive”, etc.; it ensures that we have a trace operator Tr
Kℓ. The latter

enables us to capture resumptions by a final coalgebra.

Such monads include: the lift monad 1 + (−); the κ-bounded powerset monad P<κ with
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an uncountable weakly inaccessible cardinal κ; and the (discrete) subdistribution monad

D. Regarding the monad P<κ, the cardinal κ must be larger than ℵ0 so that an increasing

ω-sequence in the set P<κ(X) has its supremum inside P<κ(X); this is needed for the

trace assumption in Section 6. At the same time κ is assumed to be weakly inaccessible

so that Barr’s final coalgebra theorem (Barr, 1993) ensures existence of final coalgebras.

Such explicit size restriction is not needed for the subdistribution monad D, since the

condition
∑

x d(x) ≤ 1 implies that the support {x ∈ X | d(x) 6= 0} is at most countable.

See e.g. (Sokolova, 2005, Proposition 2.1.2).

It is generally hard to concretely describe what a T -resumption looks like. It is a tree—

much like a synchronisation tree (Milner, 1980)—but its depth and branching degree are

very often larger than ℵ0. A tractable description is possible for the lift monad: much

like for the identity monad, it is represented by a function r : Aω → B∗ + Bω with a

suitably generalised causality requirement.

7.2. The microcosm principle

One can form the category of T -resumptions by arranging T -resumptions as morphisms

in the category.

Definition 7.3 (The category T -Res). For a monad T satisfying Assumption 7.2, we

define the category of T -resumptions, denoted by T -Res, by the following data.

— An object A of T -Res is a set A ∈ Set.

— An arrow r : A → B in T -Res is a T -resumption from A to B (cf. Definition 7.1).

Thus we have: HomT -Res(A,B) = ZT
A,B .

Its actual structure as a category—composition and identity—shall be described in short.

The main point of (Abramsky et al., 2002, Section 5.4) is that the category of resump-

tions (1 + (−))-Res for the lift monad is symmetric traced monoidal, and that it gives

rise to a compact closed category of (stateful) games (Abramsky and Jagadeesan, 1994)

after applying the Int-construction (Joyal et al., 1996). Its generalisation to a wider class

of monads T (other than T = 1 + (−)) is one of our main technical contribution.

Theorem 7.4. For a monad T satisfying Assumption 7.2, the category T -Res of T -

resumptions is symmetric traced monoidal.

This result, in fact, is an immediate corollary of what we have observed: the traced

monoidal structure of T -Res follows from the composition and trace operators for com-

ponents introduced in Section 4 and Section 6.

In order to illustrate the situation, let us think of arranging components—instead of

resumptions—as morphisms from A to B. Between such components c and d with the

same input/output types we possibly have a morphism of components, see (4). The latter

“morphism” f can be drawn between components, as follows.

A

c

d

f B
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This motivates a 2-categorical approach to components. The envisaged 2-category has

sets as 0-cells, components as 1-cells and morphisms of components as 2-cells. Naturally

one would introduce (horizontal) composition of 1-cells by the sequential composition >>>

of components (Section 4); and the identity 1-cell A → A by the one-state component

arr(idA) from (5).

However, Lemma 4.2.2–3 indicates that such horizontal composition of 1-cells satis-

fies the unit law and associativity only up-to canonical isomorphisms. This makes the

envisaged structure not a 2-category, but a bicategory ; see e.g. (Borceux, 1994). The re-

sulting bicategory is much like the one in the bicategorical approach to processes (Katis

et al., 1997). Let us denote the bicategory by Comp(T ). This extends our previous no-

tation, since its hom-category from A to B is given by the category Comp(T,A,B) of

components.

What we have shown in Section 6 is essentially that the bicategory Comp(T ) is

equipped with traced monoidal structure.¶ Its underlying monoidal structure is given

by additive parallel composition � (Section 4.2); in particular it is binary coproduct +

on objects.

The way we look at the category T -Res of resumptions is as a “thin slice” of the bicat-

egory Comp(T ) of components. The two have the same family of objects; the former’s

homset T -Res(A,B) resides in the latter’s Comp(T,A,B) as (the carrier of) a 1-cell;

still T -Res(A,B) is “behaviourally universal” via its finality.

We then derive the structure of T -Res as a traced monoidal category, from the cor-

responding “outer” structure of Comp(T ); it follows from the general theory developed

previously in (Hasuo et al., 2008; Hasuo et al., 2009). The general theory identifies the

situation as an instance of the microcosm principle (Baez and Dolan, 1998). The latter

refers to a situation where “an algebra resides in another algebra, both for the same

algebraic specification”, a prototypical example of which is a monoid in a monoidal

category (Mac Lane, 1998). As a result, the homsets of T -Res form a traced monoidal

category, residing in the hom-categories of Comp(T ) that form a “traced monoidal bicat-

egory”; see (Hasuo et al., 2009) for the details of the generic situation. Rather than fully

laying out the general theory, however, we shall now describe its concrete instantiation

adapted to the current setting.

¶ Axiomatisation of the notion of “traced monoidal bicategory” would involve delicate coherence con-
ditions. We do not aim at such general Axiomatisation but focus on one specific instance.
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7.3. Resumptions form a category

Notation 7.5. The functor
(
T (− × B)

)A
—for which a coalgebra is a component with

A-input and B-output—is denoted by FA,B . The monad T is fixed throughout the rest,

and so it is suppressed. Therefore we write ZA,B rather than ZT
A,B for the homset of

T -resumptions.

We first derive the sequential composition operator ◦T -Res that acts on resumptions;

it is obtained from how we compose arrows in T -Res. The following coinduction diagram

in Set defines the operator:

FA,C(ZA,B × ZB,C) FA,C(ZA,C)

ZA,B × ZB,C

ζA,B >>> ζB,C

◦T -Res
A,B,C

ZA,C

ζA,Cfinal (22)

Recall that ζA,B is a final FA,B-coalgebra (Definition 7.1). The sequential composition of

ζB,C after ζA,B yields the component shown on the left, which is an FA,C-coalgebra with

a state space ZA,B × ZB,C . It then induces a unique map into the final FA,C-coalgebra,

as in the above diagram. Thus we have obtained a function

◦T -Res
A,B,C : ZA,B × ZB,C −→ ZC,A, that is

HomT -Res(A,B) × HomT -Res(B,C) −→ HomT -Res(A,C).

Similarly, the identity morphism idT -Res
A in T -Res is derived by coinduction, from the

one-state component arr(idA).

FA,A(1) FA,A(ZA,A)

1

arr(idA)

idT -Res
A

ZA,A

ζA,Afinal (23)

Let us prove associativity of ◦T -Res. The emphasis here is on the fact that, via coin-

duction, the goal is essentially reduced to associativity (Lemma 4.2.3) of >>>—the cor-

responding “outer” operator.

Specifically, by diagram (22), the map ◦T -Res
A,B,C : ZA,B × ZB,C −→ ZC,A is a component

morphism from ζA,B >>> ζB,C to ζA,C . Hence by the functoriality of >>> (Lemma 4.2.4)

we obtain a component morphism

◦T -Res
A,B,C ×idZC,D

: (ζA,B >>> ζB,C) >>> ζC,D −→ ζA,C >>> ζC,D.

This means that the left square in the following diagram commutes. The right one com-

mutes, too, since it is the diagram (22) defining ◦T -Res
A,C,D.

FA,D((ZA,B × ZB,C) × ZC,D) FA,D(ZA,C × ZC,D) FA,D(ZA,D)

(ZA,B × ZB,C) × ZC,D

(ζA,B >>> ζB,C) >>> ζC,D

◦T -Res
A,B,C ×ZC,D

ZA,C × ZC,D
◦T -Res

A,C,D

ζA,C >>> ζC,D

ZA,D

ζA,Dfinal
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The next diagram in Set commutes for the same reasons, in which the top square com-

mutes by associativity of >>> (Lemma 4.2.3).

FA,D((ZA,B × ZB,C) × ZC,D)

FA,D(ZA,B × (ZB,C × ZC,D))

FA,D(ZA,B × ZB,D)

FA,D(ZA,D)

(ZA,B × ZB,C) × ZC,D

α−1 ∼=

(ζA,B >>> ζB,C) >>> ζC,D

ZA,B × (ZB,C × ZC,D)
ζA,B >>> (ζB,C >>> ζC,D)

ZA,B× ◦T -Res
B,C,D

ZA,B × ZB,D

◦T -Res
A,B,D

ζA,B >>> ζB,D

ZA,D
ζA,D

final

(In the last diagram we wrote coalgebras X → FX horizontally instead of vertically,

unlike our convention elsewhere. This is purely for the typesetting reason.)

We conclude that the following diagram commutes, since the last two diagrams show

that the two composites are both coalgebra morphisms from (ζA,B >>> ζB,C) >>> ζC,D to

a final coalgebra ζA,D.

(ZA,B × ZB,C) × ZC,D

◦T -Res

A,B,C×ZC,D

α−1

ZA,C × ZC,D

◦T -Res

A,C,D

ZA,B × (ZB,C × ZC,D)
ZA,B×◦T -Res

B,C,D

ZA,B × ZB,D
◦T -Res

A,B,D

ZA,D

This is associativity of ◦T -Res.

The left- and right-unit laws for T -Res amount to the following diagram:

ZA,B

∼=

∼=

1 × ZA,B

idT -Res

A ×ZA,B

ZA,A × ZA,B

◦T -Res

A,A,B

ZA,B × 1
ZA,B×idT -Res

B

ZA,B × ZB,B
◦T -Res

A,B,B

ZA,B

The diagram commutes essentially due to the unit laws (Lemma 4.2.2) for the outer

operators >>> and arr(id), much like for the associativity.

We summarise what we have so far.

Proposition 7.6. The data T -Res in Definition 7.3 indeed forms a category, with com-

position of arrows given by ◦T -Res in (22) and identity arrows by idT -Res in (23).

In fact the last proposition is a special case of (Krstić et al., 2001, Theorem 1). The

latter result is more general because it works for an axiomatically introduced class of

functors {FA,B}A,B—which roughly corresponds to the notion of lax L-functor in (Hasuo

et al., 2008; Hasuo et al., 2009)—instead of our concrete description FA,B =
(
T (B×−)

)A

(Notation 7.5). From now on, however, we go beyond (Krstić et al., 2001) by introducing

a symmetric monoidal structure on T -Res and a trace operator on top of it.
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7.4. Resumptions carry symmetric monoidal structure

Endowing the category T -Res with traced monoidal structure goes pretty much the same

way; in what follows the structure is described in some detail.

The monoidal structure is given by additive parallel composition �T -Res of resump-

tions, which is derived from � on components (Section 4.2), the corresponding outer

structure. It acts on objects as sum of sets:

A �
T -Res B := A + B. (24)

On arrows, its action

�
T -Res
A,C,B,D : ZA,B × ZC,D −→ ZA+C,B+D, that is

HomT -Res(A,B) × HomT -Res(C,D) −→ HomT -Res(A + C,B + D)

is induced via the following diagram similar to (22).

FA+C,B+D(ZA,B × ZC,D) FA+C,B+D(ZA+C,B+D)

ZA,B × ZC,D

ζA,B � ζC,D

�T -Res
A,C,B,D

ZA+C,B+D

ζA+C,B+Dfinal (25)

Lemma 7.7. The mapping �T -Res yields a functor �T -Res : T -Res×T -Res → T -Res.

Proof. Let us first prove preservation of identities. We have the following successive

morphisms of coalgebraic components, where coalgebras X → FX are written horizon-

tally.

1
arr(idA+B)

∼=

FA+B,A+B(1)

∼=

1 × 1
arr(idA)�arr(idB)

idT -Res

A ×idT -Res

B

FA+B,A+B(1 × 1)

ZA,A × ZB,B

ζA,A�ζB,B

�
T -Res

A,B,A,B

FA+B,A+B(ZA,A × ZB,B)

ZA+B,A+B
final

ζA+B,A+B

FA+B,A+B(ZA+B,A+B)

The first square commutes because of the compatibility of � and arr (Lemma 4.9.1);

the second does because of the definition of idT -Res (23) and functoriality of � (right

after Definition 4.7); and the third one is the definition of �T -Res (25). This proves that

the following diagram commutes, since the two composites are both morphisms from the

component arr(idA+B) to the final ζA+B,A+B.

1
∼=

idT -Res

A+B

1 × 1
idT -Res

A ×idT -Res

B
ZA,A × ZB,B

�
T -Res

A,B,A,B

ZA+B,A+B

Hence �T -Res : T -Res × T -Res → T -Res preserves identities.
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We turn to preservation of composition; the arguments proceed in a similar way. We

have the following two (parallel) series of morphisms of coalgebraic components. They

are all arrows in the category Comp(T,A + B,A′′ + B′′).

(ζA,A′ >>> ζA′,A′′) � (ζB,B′ >>> ζB′,B′′)
∼=

(ζA,A′ � ζB,B′) >>> (ζA′,A′′ � ζB′,B′′)
(�T -Res

A,B,A′,B′ )×(�T -Res

A′,B′,A′′,B′′ )
ζA+B,A′+B′ >>> ζA′+B′,A′′+B′′

◦T -Res

A+B,A′+B′,A′′+B′′

ζA+B,A′′+B′′ ;

(ζA,A′ >>> ζA′,A′′) � (ζB,B′ >>> ζB′,B′′)
(◦T -Res

A,A′,A′′ )×(◦T -Res

B,B′,B′′ )
ζA,A′′ � ζB,B′′

�
T -Res

A,B,A′′,B′′

ζA+B,A′′+B′′ .

The first isomorphism is due to Lemma 4.9.2; the second one is a morphism of components

due to the definition of �T -Res and functoriality of >>> (Lemma 4.2.4); and the third one

is the definition of ◦T -Res. The other two are component morphisms for similar reasons.

Since the coalgebraic component ζA+B,A′′+B′′ is a final coalgebra, we conclude that the

two composites above are identical. In particular, by taking their underlying functions,

we have a commuting diagram

(ZA,A′ × ZA′,A′′) × (ZB,B′ × ZB′,B′′)
∼=

◦T -Res

A,A′,A′′×◦T -Res

B,B′,B′′

(ZA,A′ × ZB,B′) × (ZA′,A′′ × ZB′,B′′)

�
T -Res

A,B,A′,B′×�
T -Res

A′,B′,A′′,B′′

ZA,A′′ × ZB,B′′

�
T -Res

A,B,A′′,B′′

ZA+B,A′+B′ × ZA′+B′,A′′+B′′

◦T -Res

A+B,A′+B′,A′′+B′′

ZA+B,A′′+B′′

in Set. Hence �T -Res : T -Res × T -Res → T -Res preserves composition of arrows.

The monoidal unit for (T -Res,�T -Res) is the empty set 0. It remains to describe

associativity, unit and symmetry isomorphisms; they appear in the proof of the following

result.

Proposition 7.8. (T -Res,�T -Res, 0) is a symmetric monoidal category.

Proof. We shall first describe the definition of the structural isomorphisms. Then we

prove that: 1) they are indeed isomorphisms; 2) they are natural; and 3) they are coherent

as in (Mac Lane, 1998).

An associativity isomorphism αT -Res : A + (B + C)
∼=→ (A + B) + C in T -Res—recall

that �T -Res is + on objects, see (24)—is induced by the following diagram.

FA+(B+C),(A+B)+C(1) FA+(B+C),(A+B)+C(ZA+(B+C),(A+B)+C)

1

arr(α+)

αT -Res
A,B,C

ZA+(B+C),(A+B)+C

ζA+(B+C),(A+B)+Cfinal

Here α+ on the left, in arr(α+), is the isomorphism A + (B + C)
∼=→ (A + B) + C in Set.
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In exactly the same way we obtain unit isomorphisms λT -Res, ρT -Res and symmetry

isomorphisms γT -Res, from the corresponding isomorphisms for + in Set.

It is easy to see that all these are indeed isomorphisms. Let us write down the proof

for αT -Res. Let αT -Res
A,B,C be the following resumption induced by the isomorphism α−1

+ :

(A + B) + C
∼=
−→ A + (B + C) in Set:

F(A+B)+C,A+(B+C)(1) F(A+B)+C,A+(B+C)(Z(A+B)+C,A+(B+C))

1

arr(α−1
+ )

αT -Res
A,B,C

Z(A+B)+C,A+(B+C)

ζ(A+B)+C,A+(B+C)final

We claim that this αT -Res
A,B,C is the inverse of αT -Res

A,B,C , that is,

1 × 1

αT -Res

A,B,C×αT -Res

A,B,C

1
∼=∼=

idT -Res

A+(B+C)idT -Res

(A+B)+C

1 × 1

αT -Res

A,B,C×αT -Res

A,B,C

Z(A+B)+C,A+(B+C) × ZA+(B+C),(A+B)+C

◦T -Res

ZA+(B+C),(A+B)+C × Z(A+B)+C,A+(B+C)

◦T -Res

Z(A+B)+C,(A+B)+C ZA+(B+C),A+(B+C)

We prove commutativity of the triangle on the right; the other is similar. As before, this

is by proving that the following arrows are all component morphisms leading to a final

coalgebra ζA+(B+C),A+(B+C).

(arr(idA+(B+C)))
∼=

arr((α+)A,B,C) >>> arr((α−1
+ )A,B,C)

αT -Res

A,B,C×αT -Res

A,B,C
ζA+(B+C),(A+B)+C >>> ζ(A+B)+C,A+(B+C)

◦T -Res

A+(B+C),(A+B)+C,A+(B+C)
ζA+(B+C),A+(B+C);

(arr(idA+(B+C)))
idT -Res

A+(B+C)
ζA+(B+C),A+(B+C).

The first isomorphism is because of Lemma 4.2.1; the second one is due to the definition

of αT -Res, αT -Res and functoriality of >>> (Lemma 4.2.4); the third one is the definition

of ◦T -Res; and the last is the definition of idT -Res. Thus we have proved that αT -Res
A,B,C is

indeed an isomorphism.

We turn to the naturality of αT -Res, λT -Res, ρT -Res and γT -Res; again we present only

the proof for αT -Res. It means commutativity of

A + (B + C)
αT -Res

A,B,C

r�
T -Res(s�

T -Rest)

(A + B) + C

(r�
T -Ress)�T -Rest

A′ + (B′ + C ′)
αT -Res

A′,B′,C′

(A′ + B′) + C ′

in T -Res,
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for any resumptions r, s and t of suitable types. This amounts to, in Set

1 × ((ZA,A′ × ZB,B′) × ZC,C′)
∼=

αT -Res

A,B,C×
(

�
T -Res◦(�T -Res×ZC,C′ )

)
(ZA,A′ × (ZB,B′ × ZC,C′)) × 1

(
�

T -Res◦(ZA,A′×�
T -Res)

)
×αT -Res

A′,B′,C′

ZA+(B+C),(A+B)+C

×Z(A+B)+C,(A′+B′)+C′

◦T -Res

ZA+(B+C),A′+(B′+C′)

×ZA′+(B′+C′),(A′+B′)+C′

◦T -Res

ZA+(B+C),(A′+B′)+C′

Once again, this is by showing that the two above composites are parallel coalgebra

morphisms leading to a final coalgebra. Namely

arr((α+)A,B,C) >>>
(
(ζA,A′ � ζB,B′) � ζC,C′

)

∼= (
ζA,A′ � (ζB,B′ � ζC,C′)

)
>>> arr((α+)A′,B′,C′)(

�
T -Res◦(ZA,A′×�

T -Res)
)
×αT -Res

A′,B′,C′

ζA+(B+C),A′+(B′+C′) >>> ζA′+(B′+C′),(A′+B′)+C′

◦T -Res

A+(B+C),(A′+B′)+C′,A′+(B′+C′)
ζA+(B+C),(A′+B′)+C′ ;

arr((α+)A,B,C) >>>
(
(ζA,A′ � ζB,B′) � ζC,C′

)
αT -Res

A,B,C×
(

�
T -Res◦(�T -Res×ZC,C′ )

)
ζA+(B+C),(A+B)+C >>> ζ(A+B)+C,(A′+B′)+C′

◦T -Res

A+(B+C),(A+B)+C,(A′+B′)+C′

ζA+(B+C),(A′+B′)+C′ .

The first one is an isomorphism of components due to Lemma 4.9.3; the others are similar

to the ones earlier in this section. This concludes the proof of naturality of αT -Res.

Finally, we need to check the standard coherence conditions for αT -Res, λT -Res, ρT -Res

and γT -Res in a symmetric monoidal category, as described in e.g. (Mac Lane, 1998). Let

us prove

A + (0 + B)
αT -Res

A,0,B

∼=

idT -Res

A �
T -ResλT -Res

B

(A + 0) + B

ρT -Res

A �
T -ResidT -Res

BA + B

in T -Res; (26)

the others are similar. The above diagram amounts to the following diagram in Set.

1
∼=

∼=

1 × 1

idT -Res

A ×λT -Res

B

1 × (1 × 1)

αT -Res

A,0,B ×(ρT -Res

A ×idT -Res

B )

ZA,A × Z0+B,B

�
T -Res

A,0+B,A,BZA+(0+B),(A+0)+B × (ZA+0,A × ZB,B)

ZA+(0+B),(A+0)+B×�
T -Res

A+0,B,A,B

ZA+(0+B),(A+0)+B × Z(A+0)+B,A+B
◦T -Res

ZA+(0+B),A+B
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Yet once again, this diagram commutes because the two composites are (parallel) coal-

gebra morphisms from the coalgebra

arr
[
A + (0 + B)

A+λ+
−→ A + B

] (∗)
= arr

[
A + (0 + B)

α+
−→ (A + 0) + B

ρ++B
−→ A + B

]

: 1 −→ FA+(0+B),A+B(1)

to the final ζA+(0+B),A+B. The equality (∗) is due to the same coherence condition

as (26) for the monoidal category (Set,+, 0); the other details can be easily filled in.

This concludes the proof.

7.5. Trace structure for resumptions

A trace/feedback operator Tr
T -Res for resumptions is induced by the “outer” operator

Tr for components; this is exactly in the same way as we derived e.g. the tensor �T -Res

from the outer �. Let us nevertheless spell out how it is done concretely.

For arbitrary sets A,B,C ∈ T -Res, the trace operator

Tr
T -Res
A,B,C : ZA+C,B+C −→ ZA,B , that is

HomT -Res(A + C,B + C) −→ HomT -Res(A,B)

is introduced by the following coinduction diagram:

FA,B(ZA+C,B+C) FA,B(ZA,B)

ZA+C,B+C

Tr(ζA+C,B+C)

Tr
T -Res
A,B,C

ZA,B

ζA,Bfinal

Here the operator Tr on the left, acting on ζA+C,B+C , is the trace operator for components

from Definition 6.1.

It is again straightforward to prove that Tr
T -Res satisfies the trace axioms: each axiom

is essentially reduced to the corresponding axiom on Tr for components. Let us prove

the post-composition/tightening axiom (21) for example. It amounts to the following

commutative diagram.

ZA+C,B+C × ZB,D

Tr
T -Res

A,B,C×ZB,D

∼=

ZA,B × ZB,D

◦T -Res

A,B,D

ZA,D

ZA+C,B+C × (ZB,D × 1)

ZA+C,B+C×(ZB,D×idT -Res

C )

ZA+C,B+C × (ZB,D × ZC,C)

ZA+C,B+C×�
T -Res

B,C,D,C

ZA+C,B+C × ZB+C,D+C
◦T -Res

A+C,B+C,D+C

ZA+C,D+C

Tr
T -Res

A,D,C (27)
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The composite on the top row is a coalgebra morphism

Tr(ζA+C,B+C) >>> ζB,D
Tr

T -Res

A,B,C×ZB,D

ζA,B >>> ζB,D
◦T -Res

A,B,D

ζA,D;

where the first arrow is a coalgebra morphism due to the definition of Tr
T -Res and

functoriality of >>> (Lemma 4.2.4); the latter is due to the definition of ◦T -Res.

The other composite in (27) is a morphism between the same coalgebras:

Tr(ζA+C,B+C) >>> ζB,D

(∗)

∼=
Tr

[
ζA+C,B+C >>>

(
ζB,D � arr(idC)

) ]

ZA+C,B+C×(ZB,D×idT -Res

C )
Tr

[
ζA+C,B+C >>> (ζB,D � ζC,C)

]

ZA+C,B+C×�
T -Res

B,C,D,C

Tr(ζA+C,B+C >>> ζB+C,D+C)

◦T -Res

A+C,B+C,D+C

Tr(ζA+C,D+C)

Tr
T -Res

A,D,C

ζA,D.

Here the isomorphism (∗) is due to the post-composition naturality for Tr, see Section 6.3.

The last morphism is the definition of Tr
T -Res. The other arrows are also component

morphisms; here the functoriality of Tr (Lemma 6.2) is crucial. Recall that the functor

Tr : Comp(T,A + C,B + C) → Comp(T,A,B) acts on arrows as the identity. We

conclude, by the finality of ζA,D, that the diagram (27) commute.

The other axioms can be verified in the same manner. This concludes the proof of

Theorem 7.4.

8. Concluding remarks

This paper is part of an ongoing line of research into the mathematical (coalgebraic)

foundations of components as basic building blocks in computing (see (Szyperski, 1998)

for a wider perspective). Obviously, connections to existing component languages like

Reo (Arbab, 2004; Baier et al., 2006) need to be explored. There are also several directions

for further, more mathematically oriented, research about coalgebraic components. We

briefly mention two such avenues, involving duality and dynamic logic.

For specific monads, like for powerset on the category of sets or for the identity on

the category of Hilbert spaces, the associated Kleisli category carries a dagger operator

† that commutes with the tensor and biproduct. Via this dagger one can define a duality

operator:

Comp(T,A,B)op
(−)⋆

Comp(T,B,A)
(
X ⊗ A

c
→ X ⊗ B

) (
X ⊗ B

c†

→ X ⊗ A
)

It satisfies, for instance (c ‖ d)⋆ = (c⋆ ‖ d⋆). Such a duality introduces a form of re-
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versible computation that may be useful in capturing aspects of quantum computing

coalgebraically, see also (Abramsky, 2009).

Another interesting topic for further research is how to extend modal logic for coalge-

bras to a dynamic logic (see e.g. (Goldblatt, 1992)) for coalgebraic components. In such

a logic one expects basic compositionality properties (see also (Klin, 2009)), so that for

instance �c>>>d,�c�d etc. can be expressed in terms of �c and �d.
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