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Abstract

The notion ofarrow by Hughes is an axiomatization of the algebraic structuresessed by
structured computations in general. We claim that the sadoenatization of arrow also serves
as a basicomponent calculuor composing state-based systems as components—in fact, it
is a categorifiedversion of arrow that does so. In this paper, following thetfauthor’s pre-
vious work with Heunen, Jacobs and Sokolova, we prove thatrtaia coalgebraic modeling
of components—which generalizes Barbosa’'s—indeed canigs arrow structure. Our coal-
gebraic modeling of components is parametrized by an akdat specifies computational
structure exhibited by components; it turns out that it is #irrow structure ofA that is lifted
and realizes the (categorified) arrow structure on compsnenhe lifting is described using
the second author’s recent characterization of an arrow &st@rnal strong monad iRrof, the
bicategory of small categories aptfunctors
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1. Introduction

1.1. Arrow for Computation

In functional programming, the worcomputationoften refers to a procedure which is not
necessarilypurely functional typically involving someside-gfectsuch as/O, global state, non-
termination and non-determinism. The most common way tartemg such computations is
by means of gstrong) monad?], as is standard in Haskell. However sid@et—"structured
output”™—is not the only cause for the failure of pure functbty. A comonadcan be used to
encapsulate “structured input” [3]; the combination of anad and a comonad via a distributive
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law can be used for input and output that are both structurédre are much more additional
structure that a functional programmer would like to thifilas “computations”; Hughes’ notion
of arrow [4] is a general axiomatization of suéh.

Let C be a Cartesian category of types and pure functions, in di@ua programming
sense. The notion of arrow ov€ris an algebraic one: it axiomatizes those operators whigh th
set of computations should be equipped with, and those iegsathich those operators should
satisfy. More specifically, an arroivis

o carried by a family of setA(J, K)},x for eachJ K € C, an elemené € A(J, K) of which
is anA-computatiorfrom J to K;

e equipped with the following three families of operatars, >> andfirst:

arrf € A(J, K) for each morphisnf : J - KinC,
AL K)x AKK, L) 2% A(JL) for eachd K, L € C,
.
A(J K) T A@x L KxL) foreachdK,L e C;
@

o that are subject to several equational axioms: among them is

(a >>3K,L b) >>31.M CcC =a >>3K,M (b S>K LM C)

>>-A
for eacha € A(J, K),b € A(K, L), c € AL, M). (>>-Assoc)

The other axioms are presented later in Def. 3.1.

The intuitions are clear: presenting Arcomputation fromJ to K by a box il:]ﬁ , the three
operators ensure that we can combine computations in tlosviob ways.

e (Embedding of pure functions)

e (Sequential composition)( ‘ak . K o] L ) > - . ]
. S b

* (Sideline) ra1% frstuy [ &}

L L
The (>-Assoc) axiom in the above, for example, ensures that the follovdagpositions of
three consecutivA-computations are identical.

M | T ]
J K L M J K L M
m ‘ =m‘ )

Arrows generalize monads. In fact, a strong momazh C induces an arrovir by

Ar(3K) = C(3, TK) = KE(T)(K) . 3)

2The word “arrow” is reserved for Hughes' notion throughche paper. An “arrow” in a category will be called a
morphism or a 1-cell.
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Here K¢(T) denotes the Kleisli category (see e.g. Moggi [2]). Priomatoows, the notion of
Freyd categoryis devised as another axiomatization of algebraic progettat are expected
from “computations” [5, 6]. The latter notion of Freyd categcomes with a stronger categorical
flavor; in Jacobs et al. [7] it is shown to be equivalent to tbéam of arrow.

Remark 1.1. What has been said is true as long as we think of an arrow agddyisets, i.e.
with A(J,K) being a set. This is our setting. However this is not an elytisatisfactory view
in functional programming where one se®sas a type constructorA{J, K) should rather be an
object of C. In this case one can think of several variants of arrow amyd-category. See
Atkey [8]. The discussion later i§5.1 is also relevant.

1.2. Arrow as Component Calculus

The current paper’s goal is to setdemponentascategorificationof computations, via (the
algebraic theory of) arrows. Let us elaborate on this slogan

A component here is in the senseadmponent calculi Components are systems which,
combined with one another by some component calculus, gibidger, more complicated sys-
tem. This “divide-and-conquer” strategy brings order teige processes of large-scale systems
that are otherwise messed up due to the very scale and catytthe systems to be designed.

We follow the monad-based coalgebraic modeling of compmngnBarbosa [9]—which
is also used in Hasuo et al. [10]—and extend it later to an abvaged modeling. In [9] a
component is modeled as a coalgebra of the following type:

c: X— (T(XxK))’ inSets (4)

HereJ is the set of possible input to the componeftis that of possible outpuX is the set of
(internal) states of the component which is a state-basethime; andT is a monad orSetsthat
models the computationaffect exhibited by the system. Overall, a coalgebraic compioisea
state-based system with specified input and output poxtanibe drawn .

A crucial observation here is as follows. The notion of ariow1.1 axiomatizes algebraic

operators on computations as boxes—such as sequential smimlp). Then, by
regarding such boxes as components rather than as coropgtatie can employ the same ax-
iomatization of arrow as algebraic structure on comporeatsomponent calculus-with which
one can compose components. The calculus is a basic ondltiveg embedding of pure func-
tions, sequential composition and sideline. In fact in th&t fiuthor’s previous work [10] with
Heunen, Jacobs and Sokolova, such algebraic operatorsatgreboaic components (4) are de-
fined and shown to satisfy the equational axioms.

1.3. Categorifying Computations into Components

Despite the similarity between computations and compangrat we have just described,
there is one level gap between them: freetsto categories Let A(J, K) denote the collection
of coalgebraic components like in (4), with input-typeoutput-typeK and fixed éectT, but
with varying state spaces. Then it is just natural to include morphisms between cdaige
in the overall picture, as behavior-preserving maps (sgeRaitten [11]) between components.
HenceA(J, K) is now acategory specifically that of T(_ x K))J-coalgebras. In contrast, with
respect to computations there is no general notion of menplbetween them, so the collection
A(J, K) of A-computations is aet



This step otategorificatior{12] is not just for fun but in fact indispensable when we ddas
equational axioms. Later on we will concretely define theusedjal composition? ¢ 1¥ d] L

of coalgebraic components; at this point we note that thie space of the composite is the
productX x Y of the state spac¥ of candY of d. Now let us turn to the axiom

(c>>d)y>e =cs>({d>>e . (>3>-Assoc)

Denotinge’s state space by, the state space of the left-hand sideXs{Y) x U while that of
the right-hand side iX x (Y x U). These are, as sets, not identical. Therefore the axiom can
be at best satisfied up-to an isomorphism between compoagmzalgebras (and it is the case,
see [10]). We note that this phenomenon—the notion of satisfaof equational axioms gets
relaxed, from up-to equality to up-to an isomorphism—is ¢gpiwith categorification [12].

This additional structure obtained through categorifgtnamely morphisms between com-
ponents, has been further exploited in [10]. There it is shtivat final coalgebras—the notion
that makes sense only in presence of morphisms betweeretoatg—form an arrow that is in-
ternal to the “arrow” of components, realizing an instantéhe microcosm principld13, 14].
An application of such nested algebraic structure (nantedy of arrows) is aompositional-
ity result the behavior of composed components can be computed frerhehavior of each
component.

We shall refer to the categorified notion of arrow—carried bynponents—asategorical
arrow. The table below summarizes the overall picture.

I arrowA | categorical arrowA
carrier {A(J, K)}ikec, a family of sets| {A(J, K)}ikec, a family of categories
a € A(J, K): a computation a e A(J, K): a component
equations satisfie( up-to equality up-to isomorphisms
example A(J K) = KE(T)(J, K) A K) = Coaly(T(_ x K))J
with T: a monad with T: a monad

1.4. Lifting of Arrow Structure via Profunctors

In short: computations carry algebraic structure of anverommponents carry a categorified
version of it. The technical contribution of the current pa to make the relationship between
computations and components more direct. This is by deireddpe following scenario:

e given an arrowA,

o we define the notion dfarrow-based) A-componemthich generalizes Barbosa’s monad-
based modeling (4),

e and we show that thes&components carry categorical arrow structure that is @b da
lifting of the original arrow structure oA.

Therefore: we categorifii-computations tA-components.

A weaker version of this scenario has been already presenfgd]. However the last lifting
part of the scenario was obscured in details of direct catmrs. What is novel in this paper is to
work in Prof, the bicategory of profunctors. In fact, it is one theme df thaper to demonstrate
use of calculations irof.

The starting point for this profunctor approach is [7]. Téénearr, >>-fragment of arrow
(without first) is identified with a monoid in the categor{P x C, Setg of bifunctors, where
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the latter is equipped with suitable monoidal structureis ileans—in terms of profunctors that
will be described irf§2—that an arrowA (withoutfirst) is amonadin Prof, in an internal sense
like in Street [15].

What really makes our profunctor approach feasible is a értibservation by the second
author [16]. There the remainirfgst operator—whose mathematical nature was buried away
in its dinaturality—is identified with a certain 2-cell iarof. In fact, this 2-cell is astrength
in an internal sense. Therefore an arrow (with its full sebpératorsarr, >> andfirst) is
a strong monadn Prof. This observation pleasantly parallels the informal vidwamows as
generalization of strong monads.

1.5. Organization of the Paper

In §2 we will introduce the necessary notions of dinatural tfamsation, (co)end and pro-
functor, in a rather leisurely pace. The two forms of the Ydméemma—the end- and coend-
forms—are basic there. The materials there are essentidtyoted from Kelly [17], which is
a useful reference also in the current non-enriched @etsenriched) setting. 1§83 we fol-
low [16, 7] and identify an arrow with an internal strong mdria Prof, settingProf as our
universe of discourse. 184 we generalize Barbosa’s coalgebraic components intavasesed
components. The main result—arrow-based components forategarical arrow—is stated
there. Its actual proof is in the subsequéBtwhich is devoted to manipulation of 2-cells in
Prof.

The current version departs from the previous workshopiwerl] most notably in§5.
The manipulation of 2-cells is now described in a much momngcsiral manner, using a novel
bicategoryStProf. The details that have been omitted in [1] are presented ab mmithe space
allows. We also explicitly settle the problem of siz&(1); in the previous version [1] we only
hinted possible solutions.

2. Categorical Preliminaries

2.1. End and Coend
In the sequel we shall often encounter a functor of the type C°* x C — D, where a

categoryC occurs twice with dierent variance. Given two suéhG : C°xC — I, adinatural
transformationy : F = G consists of a family of morphisms i

ex . F(X, X) — G(X, X) foreachX eC

which isdinatural: for each morphisnf : X — X’ the following diagram commutes.

$x
X9, F (X X) —— G (X, X) et (5)
F (X', X) e G (X, X)

FOCTT F (X, X))~ G (X', X) &(1X)

Note the diference from anatural transformationy : F = G. The latter consists of a greater
number of morphisms i; that is,yxy : F(X, Y) = G(X,Y) for eachX,Y € C.

Two successive dinatural transformatians F; = F; andy, : F, = F3 do not necessarily
compose: dinaturality of each does not guarantee din#@tfuailthe obvious candidate of the
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composition ¢, o ¢1)x = (p2)x © (p1)x. This makes it a tricky business to organize dinat-
ural transformations in a categorical manner. Nevertsel@srking with arrows, examples of
dinaturality abound.

Dinaturality subsumes naturality: a natural transfororati : F = G : C — D can be
thought of as a dinatural transformation, by presentingit aF o 7, > G o 1, : C°xC — D.
Herern, : C°® x C — C is a projection.

(Co)endis the notion that is obtained by replacing naturality (faw)cones) by dinaturality,
in the definition of (co)limit. Precisely:

Definition 2.1 (End and coend).Let C, D be categories anfl : C°? x C — ID be a functor.

e An endof F consists of an objec‘ﬁ<€<C F (X, X) in D together withprojections

7% (feoe F (X X)) — F(X,X) foreachX e C
such that, for each morphisiin: X — X’ in C, the following diagram commutes.
v F(X, X") _F(i.X)
- 2R X)

f F (X, X)
X TR F(XX) TR

In other words: the familyrx}xcc forms a dinatural transformation from the constant
functorA(fX F(X, X)) to the functor=. An end is defined to be a universal one among such
data: given an object € D and a dinatural transformatian: AY = F, there is a unique
morphismf : Y — fx F (X, X) such thatrx o f = ¢x for eachX € C.

e A coendof F is a dual notion of an end. It consists of an objfc(:‘f(C F (X, X) in D together
with coprojectionsy : F (X, X) — fx F (X, X) for eachX € C. Its universality, together
with that of an end, can be written as follows.

frY— [FXX) f: [ FXX) — Y
ex Y > F(X X), dinatural inX ¢x : F (X, X) = Y, dinatural inX

(Co)ends need not exist; they do exist for example wies small andD is (co)complete. See
below.

The reader is referred to Mac Lane [18, Chap. IX] for more an)dnds. Described there is
the way to transform a functd¥ : C°®® x C — D into F® : C* — D, in such a way that the
(co)end ofF coincides with the (co)limit of*. Therefore existence of (co)ends depends on the
(co)completeness propertydf In fact (co)end subsumes (co)limit, just as dinaturalifysimes
naturality. Therefore a useful notational convention isiémote (co)limits also as (co)ends: for

example ColingFX asfX FX.
Recalling the construction of any limit by a product and anaiger [18,§V.2], an intuition
about an encf>< F(X, X) is as follows: it is the produdf]x F (X, X) which is “cut down” so as to

satisfy dinaturality. Dually, a coenﬁlX F(X, X) is the coproduci [« F(X, X) quotiented modulo
dinaturality.



2.2. Two Forms of the Yoneda Lemma

A typical example of an end arises as a set of (di)naturakfcamations. Given a small
categoryC and functord=, G : C°° x C — Sets we obtain a bifunctor

[F(+,-),G(—,+)] : C®PxC — Sets, (X Y)+— [F(Y,X),G(X,Y)] . (6)

Here [5, T] denotes the set of functions fro® to T, i.e. an exponential ifBets Note the
variance: since, +] is contravariant in its first argument, the variance of angats ofF is
opposed in (6). Taking this functor (6) &sin Def. 2.1, we define an enﬁ[F(X, X), G(X, X)].
Such an end does exist whéhis a small category, becauSetshas small limits (hence small
ends).

Proposition 2.2. Let us denote the set of dinatural transformations from F toy®inat(F, G).
We have a canonical isomorphism3ets

Dinat(F, G) — [ [F(X.X),G(X, X)] .
Proor. It is due to the following correspondences.

1— [ [F(XX),G (X X)]
1- [F(XX),G(X X)], dinatural inX (
F (X, X) - G (X X), dinatural inX

7)

Here () is by Def. 2.1; dinaturality is preserved alonig because of the naturality of Currying.
O

The composite DinaK, G) 3 fX[F(X, X), G(X, X)] = [F(X, X), G(X, X)] carries a dinatural
transformationp to its X-componentp.
Since dinaturality subsumes naturali§? (1), we have an immediate corollary:

Corollary 2.3. LetC be a small category and,B : C — Sets By Nat(F, G) we denote the set
of natural transformations = G. We have

Nat(F,G) — [,[FX.GX] . O

The celebratefoneda lemmeeduces the set N&i(X, ), F) of natural transformations into
FX (see e.g. [18, 19]). Interpreted via Cor. 2.3, it yields:

Lemma 2.4 (The Yoneda lemma, end-form).Given a small categor§Z and a functor F. C —
Sets we have a canonical isomorphism

foee [CO4X) FXT = FX . 0

The lemma becomes useful in the calculations below: it meansend on the left-hand side
“cancels” with a hom-functor occurring in it.

From the end-form, we obtain the following coend-form. Itegf is straightforward but
illuminating. It allows us to “cancel” a coend with a hom-fiiar inside it.



Lemma 2.5 (The Yoneda lemma, coend-form)Given a small categor{ and a functor F:
C — Sets we have a canonical isomorphism

[CRX XX, X) = FX
Proor. We have the following canonical isomorphisms, for e8oh Sets
[[FX xC(X,X),S]5 [ [FX xC(X,X),S] ()
= [ [C(X,X), [FX,S]]  Currying
= [FX. 9] the Yoneda lemma, end-form.

Here ) is because the hom-functor [S] turns a colimit into a limit [18§V.4], hence a coend
into an end. Obviously the composite isomorphism is naiar8t therefore we have shown that

y( [ CX, X)) x FX') = y(FX) : C—> Sets, @)

wherey : C°P — [C, Setd is the (contravariant) Yoneda embedding. By the Yonedararthe
functory is full and faithful; therefore it reflects isomorphisms.rge (7) proves the claim.O

2.3. Profunctor
Definition 2.6 (Profunctor). Let C andD be small categories. profunctor PfromCtoDD is a
functorP: D°P x C — Sets Itis denoted byP : C -» ID. That s,
C —+ D, a profunctor
D°P x C — Sets afunctor

The notion of profunctor is also calledistributor, bimoduleor module For more detailed treat-
ment of profunctors see e.g. Benabou [20] and Borceux [21].

There are two principal ways to understand profunctors. @m@es “generalized relations”:
profunctors are to functors what relations are to functidre diferences between a profunctor
P:C -» DandarelatiorR: S -» T are as follows.

e A relation is two-valued: for each elemeste S andt € T, R(s,t) is either empty (i.e.
(s,t) ¢ R) orfilled (i.e. (5,t) € R). In contrast, a profunctor is valued with arbitrary sets,
that is,P(Y, X) € Sets

e The functoriality of a profunctoP inducesaction of morphisms inC andD. For il-

lustration let us depict an elemept e P(Y, X) by a box v X . Given two mor-

phismsg : Y - YinDandf : X —» X in C, functoriality of P yields an element
P(g, f)(p) € P(Y’, X’) (note the variance); the latter element is best depictddliasvs.

r- - T T T T 7
Y’ . Y . X .x' ®)

Lo _
The last point (C-D-action”) motivates another way of looking at profunctoas. generalized
modulesas in the theory of rings. These generalized modules arégddny a family of sets
{P(Y, X)}xec.vep, With left-action of C-arrows and right-action of-arrows. Also notice the
similarity between (8) and the diagrams§t for computation®omponents. It is indeed this
similarity that allows us to formalize arrows as certainfprtors §3).
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Definition 2.7 (Composition of profunctors). Given two successive profunctofs: C -» D
andQ : D -+ E, theircomposition @ P : C - E is defined by the following coend. Fbr € E
andX € C,

Qo P)(U,X) = [* QU,Y) x P(Y. X) .

When profunctors are seen as generalized relations, thipasition operation corresponds to
relational composition (S o R) (x,2) if and only if Ay.(R(x,y) A S(y,2). When seen as gen-
eralized modules, it correspondstensor produciof modules over rings. In any case, recall

from §2.1 that the coend in Def. 2.7 is a coprodii¢t Q(U, Y) x P(Y, X)—a bunch of pairs

( e LG ) with varyingY—quotiented modulo a certain equivalenrceThis equiv-

alencex~ (dlctated by dinaturality) intuitively says: the choiceinfermediateY € D does not
matter. Specifically, the equivaleneds generated by the following relation; hefe Y — Y’ is
a morphism irD.

( U@Y@L’ Y’@X ) ~ ( U@Y ,*Y>.Y'.X )

An appropriate notion ofnorphismbetween parallel profuncto3 Q : C -» D is provided
by a natural transformatiorr : P = Q, whereP and Q are thought of as functorB Q :
D x C — Sets All these data can be organized in the following “2-catég? manner.

P
C@D
Q

A problem now is that (horizontal) composition of 1-celle(iprofunctors) is not strictly asso-
ciative: due to Def. 2.7 of composition by coends and prasluagsociativity can be only ensured
up-to coherent isomorphisms. The same goes for unitaligrefore profunctors form bicate-
gory (see [21]) instead of a 2-category.

Definition 2.8 (The bicategory Prof). The bicategoryrof has small categories as 0-cells, pro-
functors as 1-cells and natural transformations betweemths 2-cells. The identity 1-cell
C -» Cis given by the hom-functor Hom €° x C — Sets it is the unit for composition
because of the Yoneda lemma, coend-form (Lem. 2.5).

2.4. Some Properties &frof

Here we describe some structural propertieodf that will be exploited later, namely
the direct image of a functor and tensor product®inf. For the former, [20] is a principal
reference; Fiore’s notes [22] are not specifically on profars but provide useful insights into
relevant mathematical concepts.

A function f : S — T induces thalirect imagerelationf, : S - T, defined by:f.(s t) if
and only ift = f(s). There is an analogous construction from functors to protors.

Definition 2.9. LetF : C — DD be a functor between small categories. It gives rise to

thedirect imageprofunctor F.:C—+D by F.(Y, X) = D(Y, FX) .



The mapping (). also applies to natural transformations in an obvious waig; determines a
pseudo functo(see e.g. [21]) (). : Cat — Prof that embed€at in Prof.

Notations 2.10. Throughout the rest of the paper, the direct im&geof a functorF shall be
simply denoted byF. The identity profunctor id C - C—that is the hom-functor—will be
often denoted by : C - C.

The Cartesian product operatarin Cat lifts Prof: given profunctors : C - C’ and
G:D -» I, we define

FxXG:CxD»C'xD by (FxG)X,Y,XY)=FX,X)xG(Y.,Y) . 9)

The symbolx occurring in the last denotes the Cartesian produSkits The lifted operatok in
Prof makes it a “monoidal bicategory,” a notion whose precisenitédn involves delicate han-
dling of coherence. We shall not do that in this paper. N&edess, we will need the following

property.

P Q
Lemma 2.11. The operation onProf is bifunctorial: that is, given four profunctor§ -» D —+
PQ .
EandC’ » D’ » E wehavgQo P) x (Q o P) 5 (Qx Q) o (Px P).

Proor. This is due to the Fubini theorem for coends. See §18.8] O

It is obvious that the operator acts also on 2-cells (that are natural transformations).

3. Arrows as Profunctors

We review the results in [7, 16] that identify Hughes’ notimfirarrow with a profunctor with
additional algebraic structure.

First we present the precise definition of arrow. Usuallg défined over a Cartesian category
C. However, since it is rather the monoidal structuré&€ahat is essential, we shall work with a
monoidal category.

Definition 3.1 (Arrow [4]). Given a monoidal catego§ = (C, ®, 1), anarrow overC consists
of carrier set§A(J, K)}akec and operatorsurr, > andfirst as described in (1). The operators
must satisfy the following equational axioms.

(@»>»hb)y>»c = as> (b>>¢) (>>-Assoc)
arr(go f) = arr f >>arrg (arr-Funcl)
arridg>»jjka =a= assjkk arridg (arr-Func?)
firstyk, & >> arr pg = arrpg >> a (0-Nar)
firstyk L@ >> arr(idg ® f) = arr(id; ® f) > firstyjxm a (arr-CentTr)
(arrag m) >> (firstyk Lem &) = first(firsta) >> (arr ax Lm) (a-Nar)
firstyk L(arr f) = arr(f ®id) (arr-PremMoN)
firstym(a>s> b) = (firstyk.m @) >> (firstc Lm b) (first-Func)

Here some subscripts are suppressed. The morphismK ® | 5 K is the right unitality
isomorphismpk v : (K®L)®M 5 K (L® M) is the associativity isomorphism. The names
of the axioms hint their correspondence to the (premonpgdialcture ofFreyd categorie$5, 6].
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Next we introduce the corresponding construcPiof, which we shall tentatively call a
Prof-arrow.

Definition 3.2 (Prof-arrow). Let C = (C,®,1) be a small monoidal category. Rrof-arrow
overC is:

e aprofunctorA: C + C,

e equipped with natural transformatioas, >, first of the following types:

¢ c—4-sc—4>c

C /U—«';_rr\" C , \U—E/ , e Ufirst e ,
\T/ C——F—C

where all the diagrams are Rrof,

CZJOL(CZ

e subject to the equalities in Table 1. Recall Notations 2fb®;example the profunctor
(C, Iy in (first-p) is the functoC, 1) : C — C?, X — (X, 1), embedded ifProf by taking
its direct image.

The notion ofProf-arrow is in fact a familiar one: it is atrong monadn Prof, defined
internally in the sense of [15]. This means the following. \Wtmne draws the same 2-cells
in Cat instead of inProf—replacingA by T, arr by ", > by x4 andfirst by str—the defi-
nition coincides with that of strong monad [23,2More specifically, the first two axioms in
Table 1 are for the monad laws; and the remaining axiomstassampatibility of strength with
monoidal and monad structure. For example, the axifinst-(>) interpreted inCat is read as
the commutativity of the following diagram.

Tstr’

T2X @Y —5 T(TX®Y) 25 T(X @ V)
HT®Y\L \LHT
TX®Y TX®Y)

str’

(Internal) strong monads can be defined in any bicategotysuitable monoidal structure. Later
in §5 we introduce a bicategoitProf; strong monads therein play an important role.

Proposition 3.3 ([16]). For a monoidal categorfC that is small, the notion of arrow (Def. 3.1)
and that ofProf-arrow (Def. 3.2) are equivalent.

Proor. While the reader is referred to [16] for a detailed proof, wespnt a few highlights in the
correspondence between the two notions. We shallaritess’ andfirst’ (with primes) for the
three operators of Brof-arrow (Def. 3.2), to distinguish them from the correspogdbperators
of an arrow (Def. 3.1).

3The corresponding strength operatut is of the typestr’ : TX®Y — T(X®Y), which is slightly diferent from the
usual strength operator thatsis : X TY — T(X®Y). These two are equivalent when the base cateGasysymmetric
monoidal.
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(C3 AXCxC (CB

o (Ci | firstxC i@x(c
X
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AxC
\®/\®i | first i@
C 4h> C

(C.D) A><(C

\p/u_\f U first e% =

C——x—C

T

(CZ

S

CxC
/m
e ¢ =
®i» | first ®$
C iy C
AxC AxC

C2 —— (2 —— (2

«i;@ Jlﬂrst «i;@ Uflrst «i;@

A

(Unir)

(Assoc)

(first-a)

(first-p)

(first-arr)

(first->>)

Table 1: Equational axioms fétrof-arrow
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Let us first observe that a 2-cdilist’ in Prof gives rise to thdirst operator in Def. 3.1. The
former is an element of the left-hand side below, whekenotes composition of profunctors
(Def. 2.7).

Nat( (® ° (A X C))(_v +1, +2) 5 (A o ®)(_» +1, +2) )
= fX,K,YE(C[ ® o (AXC)XK,Y), (Ao @)X K,Y) ] by Cor. 2.3

= [ [T CX 30 L) x AQK)x C(LY). [YAX.U)x C(U.K®Y)]
by Def. 2.7, Def. 2.9 and (9)

= [y [CX I L) x AGK) x C(LY), [T AXU)xCUKeY)]
since a hom-functor, S] turns a coend into an end

= nyK’Y’JyL[(C(X, JoL), [AQK), [C(L,Y), fU AX,U)xC(U,K®Y)]]] by Currying
= L’K’L[A(J, K), AU L, K®L)] by cancelingX, Y by Lem. 2.4 andJ by Lem. 2.5
= NatykDinat_ (A(J, K), AU® L, K®L)) by Prop. 2.2 and Cor. 2.3.

Therefore a 2-celirst’ in Prof gives rise to a family of function8(J, K) —» A(J® L, K®L) that
is natural inJ, K and dinatural irL.. This is precisely the type of tHigst operator in Def. 3.1. The
equational axioms of an arrow are indeed satisfied due te thicsProf-arrow. We note that the
axiom (rr-CenTr) is satisfied not because of any specific axiom Bfaf-arrow, but because of
the dinaturality ofirst’” as a 2-cell irProf.

For the opposite direction where an arrow induc®&sat -arrow, we have to equip the carrier
{A(J, K)},k of an arrow with action of morphisms i@, renderingA into a functorC® x C —
Sets This is done with the help of arrow operators. Specific#llg, f)(a) := arrf >> a>> arrg,

that is:

Y.Y- x.x = Y’YXX’
Each of the arrow operators yields its correspondinaf -arrow operator; the latter’s (di)naturality
is derived from the arrow axioms. So are the equational axifamaProf-arrow. O

Prop. 3.3 d&fers a novel mathematical understanding of the notion ofaarteendows the seem-
ingly complicated original axiomatization (Def. 3.1) witategorical canonicity. Its treatment of
first as a strength also seems simpler than that in Freyd categtilatter involves technical-
ities like premonoidal categories and central morphismis this simplicity that is exploited in
the rest of the paper.

Remark 3.4. A size issue about Prop. 3.3 should be noted. While the otigafaition of arrow
(Def. 3.1) makes sense for any base cateddmyithout size restriction, its characterization in
Prof (Def. 3.2) require€ be small. Without the restriction the compositiédre A—the domain
of the 2-cell>> in Prof—is not necessarily well-definedd o A is defined via coends iBets
(Def. 2.7) andSetsis only small-complete. This becomes a real obstacle laterewe consider
an arrowA over C = Setswhich is not small. We shall fix this problem by “upgradingéthize
of profunctors; seg5.1.

When the base monoidal categdiyis symmetric—which is our setting in the sequel—we
can obtain another sideline operasecond.

13



Definition 3.5. Let A be an arrow over a small symmetric monoidal category (SKIC)We
define an extra operatsecond as the following 2-cell irProf.

CxA
2 CxA 2 (:2 (:2
Cc——C L Hmm) o (e
«i;@ U second i@ = ® ‘5—1@2 ——— 2 % ® (10)
C—C ®f Ufirst ®4:
A

C‘ﬁ@

Here the profunctogr,, 1) is the direct image of the functd,, 7;) : C2 — C2, mapping K, Y)
to (Y, X) (cf. Notations 2.10). The 2-calt is the symmetry isomorphismyy : X@Y S Y ® X.

Notations 3.6. In the above diagrams as well as elsewhere, there appeaiffeedt classes of
iso 2-cells inProf. One class is due to the unitajiassociativitysymmetry ofe on a monoidal
base categor{; they are iso 2-cells i€at embedded ifProf via direct image §2.4). Such iso
2-cells shall be filled explicitly with the: sign, like the two on the right-hand side in (10).
The other class is due to the properties of the operation Prof, typically Lem. 2.11. Such
iso 2-cells will be denoted by empty polygons, like the top on the right-hand side in (10).

Some calculations like in the proof of Prop. 3.3 reveal that hew operator realizes a class
secondjk L

of functionsA(J,K) —  A(L x J, L x K), that is graphically
L L J K
1K e et
Sl e e

Lemma 3.7. Regarding thesecond operator, the equalities in Table 2 hold.

secondy L
—

Proor. Use f(irst-a), (first-arr), (first-p), (first->>) in Table 1 and the coherence for an SMIC
O

4. Arrow-Based Components

4.1. Main Contribution
In this section we develop the scenario§ih.4 in technical terms. First we introduce an
arrow-based coalgebraic modeling of components.

Definition 4.1 (A-component). Let A be an arrow ovefets andJ, K € Sets An (arrow-based)
A-componenwith input-typeJ, output-typeK and computational structureis a coalgebra for
the functorA(J, _ x K) : Sets— Sets That is,

A X x K)
el as 1e
X

Here an arrowA is in the sense of Def. 3.1. In Def. 3.1 the base catefboy an arrow need not
be small; thus we choos&éts x, 1) asC. Our modeling specializes to Barbosa’s (4) when we
take asA a monad-based arroi in (3). Our modeling not only generalizes Barbosa'’s but also
brings conceptual clarity to the subsequent technicalldpueent.
Our goal is to lift the arrow structure @fto the categorical arrow structure &fcomponents.
Let us state this goal precisely.
14



(Cg CxAxC (C3

Cx2 ®><C$ Usecor&dx@ ‘|;®><(C
= Ax
(CZ < (CZ . (CZ
s ef  Ufist ef
C—p—C
c3 C2xA 3
Cx®
®><(C$ ~|v»®><(C
CZ i (CZ % (CZ
a
\®/\®$ U 'second ®i»
C—F—C
(1,C) CxA
e
\C/—\ogi U 'second ®£
C—f—C
CxC
Z/M ,
C sa——C
®£ |l second ®i»
C £ C
(Cz CxA (C2 CxA (CZ

é@ Use'%:\ond %@ use};ond é@
\f/
A

(C3 CxAxC (Cg

Cxef  UCxfirst ic&

CZ CxA (CZ
®i» U second ®$

C2 (first-second)

® IR

2G4 2 s 72 (second-a)
el Usecond ®f -
C——r—C
(1.C) CxA
f 2 | 2
C ¢ (1LC)
\A/\ = % (second-A)
C fé_—> C
C
2—F—C | C (second-arr)
A
(CZ CxA 2 CxA (C2
\y
® CxA ® (second->>)
| second
C 4ﬁ C

Table 2: Equalities that hold for treecond operator
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Definition 4.2 (Categorical arrow). A categorical arrowconsists of
o afamily{A(J, K)},k of carrier categoriesone for each], K € Sets

¢ (interpretation of) arrow operatoesr, >> andfirst (cf. Def. 3.1), namely functors

arrf

1 — A K) for each functionf : J —» K in Sets
AQK) x AK, L) 2 AQL) for eachd, K, L € Sets
AQK) "EME A(Ix LK xL) foreachlK,L e Sets

Here the category is the one-object and one-arrow (i.e. terminal) categang; a

o the operators are subject to the arrow axioms in Def. 3.1pupemorphisms. For exam-
ple, as to the axioms$-Assoc), the following diagram must commute up-to an isomor-
phism.

»J,KLXid

A, K) x A(K, L) x A(L, M) A, L) x AL, M)
idx>km] U= R STRY (11)
AL, K) x A(K, M) A, M)

>>IKM

The graphical understanding of a categorical arrow is timesas that of an arrow; sed.1.
In §1.3 we described why it is natural and necessary to requiraxtoms be satisfied only up-to
isomorphisms.

Remark 4.3. Satisfaction up-to isomorphisms raisesaherencassue. The precise coherence
condition for categorical arrows is described in [10], in arengeneral form of coherence for
categorical models of FP-theories. Although we shall ndhfer discuss the coherence issue, the
calculations later ig5 provide us a much better grip on it than the direct calocoretin [10] do.

The notion of categorical arrow in Def. 4.2 could be formadizn any monoidal categofy
other tharSets We do not need such additional generality.

The main contribution of this paper is the following resudtwell as its proof presented in
the rest of the paper.

Theorem 4.4 (Main result). Let A be an arrow oveBets The categoriesCoalg(A(J, _ x K) )}k
of A-components carry a categorical arrow.

One use of the theorem is as follows. We can appeal to the fimatian [14, 10] of themicro-
cosm principlg13] to obtain the followingcompositionality result

Corollary 4.5 (Compositionality). In the setting of Thm. 4.4, assume further that for each
J K € Setsthe functor AJ, _ x K) has a final coalgebrd;k : Z;x = A(J, Zjk x K).

1. The family{Z;k}1k Of sets carries canonical arrow structure. This gives us ®gmpo-
sition of behaviors”

»Z
Zik X ZgL — Z31 .
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2. Behaviors by coinduction are compositional with respeetrtow operators. For example,
with respect to the operatoes>, this means the following. Given two A-components ¢
X - A XxK)andd: Y — A(K,Y x L) with matching fO types, the trianglé¢«) below
commutes.
A (XxY)xL)— - - —— -+ A(J Zy xL)
Tewd - =Tfinal
XXY=—-——~ e T AT

% z
behcxbehy T»

Zyk X ZxL

Here c¢>> d is “composition of components” using the categorical avratructure in
Thm. 4.4;>>7 is “composition of behaviors” derived above in the item 1gdrehcs q is
the behavior map for the composed components induced bguadian (the square on the
top). O

Similar microcosm arguments are employed in [24] for daguiraced monoidal structure of the
categoryT-Resof T -resumptionsThis is done all at once for a variety of computation@ets,
modeled by a monadl. T-resumptions are identified wiffi-strategiegsee [25]); by applying
the Int-construction [26] we obtain the category THReg of T-games

4.2. Lax Arrow Functor

In [14, 10] it is shown that algebraic structure carried by tiategories of coalgebras—like
the one in Thm 4.4—can be obtained by:

¢ the same structure on the base categories, and
o thelax compatibilityof the signature functors with the relevant algebraic $tnec

In this case the algebraic structure on the base categiftie®lthe categories of coalgebras. We
shall follow this path in proving our main theorem (Thm. 4 Bestricting the general definitions
and results in [14, 10] to the current setting, we obtain theing.

Definition 4.6 (Lax arrow functor). Let {F;x : Sets— Setg;x be a family of endofunctors,
indexed byJ, K € Sets Itis said to be dax arrow functorif:

e it is equipped with the following natural transformations:

Fart : 1 — Faxl for eachf : J —» K in Sets
Fouo + FikXxFgLlY — Fy (XxY) natural inX,Y, for each], K, L € Sets
Fiirsty, - FakX — Faxi ks X natural inX, for eachJ, K, L € Sets

¢ that are subject to the equations in Table 3, that are phtalldhnose in Def. 3.1. The
diagrams there are all fBets obvious subscripts are suppressed.

A lax arrow functor therefore looks like an arrow (think Bfi (X) in place of A(J, K)), but it
carries an extra parameter (likeY or X x Y) around.

Proposition 4.7. If {F;k}ix is a lax arrow functor, therCoalg(Fx )}k is canonically a cate-
gorical arrow.

17



(>>-Assoc) (arr-Funcl)

idxFs

FJKXX FK,LYXFLAMU E— FJ,KXXFKYM(YX U) 1

F)xid\L <Farrvaarrg)\L
F\]’L(XXY) X FL,MU F> FJ,K]-X FK,L]-

F>

=
Fam((XxY)xU) — = S Fyu(X x (Y x U)) Fil(Ix1) —————Fy1

(Farrzy.id)

<id-Farri )
FacX —— % L F X x Frxl FaxX — 7 F a1 x X
Ies

(Farrldyid)i \ \LF> Ff\rst\L
FJﬂ]l X FJKX id. FJK(X X 1) F‘]Xlﬂlex FJXLK(]. X X)

el \ =] (id.Farry) |,
Fi(1x X) — FakX FaxikxaX X Frxikl =
-
Faak(X X 1) ——— FpakX
(arr-Centr) (a-Nar)
FakX Frrs, F o kxtr X FakX LN Faxtkxt X
Ffirsl\L J/Ffirst

Ffirstl \L(Farr(fo)»im
F ax(LxM).Kx(Lxmy X F(axLxMkxLyxm X

F 1
E X JxL,IxL
IxLKxL XFJXL’,KXL'X <id.Farm>\L \L<Fa"mid>
(idsFarr(Kxfﬂl lF> F.|J:><(L><M),K><(L><M)X 1 FlJ:><(L><M),(J><L)><M 1 X
X X
EJXL,KXLX 1 I:J><L,K><|_/ (1 X X) AL LeLRat e
KxLKxL’ P>l

P> F> F axusmy,kxuyxm (1 X X)
Faxtkxt (XX 1) = =]
- Fax(usmy, kxxm (X X 1) = Faism), xyxm X

Faxtkxtr X
(arr-PremMoN) (first-Func)

Farrt First X First
Fikl Fak XX FeLY FaxmrxmX X FrxmixmY

1
T [P el 15
Farr(fo)
Fil(XxY) ———— > Fomum(X xY)

FJXL,KXL 1
Fiirst

Table 3: Equational axioms for lax arrow functors
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Proor. This follows from a general result like [10, Thm. 4.6]. Heve briefly illustrate what the
categorical arrow structure ¢€oalg(F;x)}ik looks like, by describing the sequential compo-
sition 3> : Coalg(F,x) x Coalg(Fk ) — Coalg(F;.). UsingFs in Def. 4.6 it is defined as
follows.

F‘]’L(X X Y)
FikX FkLY N Fs
TC s Td — FJ’KX X FK,LY
X Y Texd
XxY
The definitions are similar for the other arrow operatorse &lrow axioms are satisfied due to
the corresponding equational condition on the lax arrovetomn O

This proposition reduces Thm. 4.4 to the fact that the farfflfd, x K)},k is a lax arrow
functor. This is what will be shown in the next section, ttgbumanipulation of 2-cells iRrof.

5. Calculations in Prof

5.1. The Size Issue

There is one technical problem—of a bookkeeping kind—lyinframt of us: the size issue.
It has been briefly discussed in Rem. 3.4. The 0-celRrof aresmallcategories; the smallness
restriction is necessary for composition of profunctorbeowell-defined (Def. 2.7). However,
with Setsnot being small, the arrow in Def. 4.1 cannot be a 1-cell iArof. At the same time
we need the arrovA to be based osetsso thatA(J,  x K) is an endofunctoBets — Sets
There are two possible ways round.

e We upgrade the size of profunctors. We use the catelgosyof sets and classes of certain
sizes, so thaEns hasSetsindexed colimitgcoends. A profunctoP : C -+ D is then
defined to be a bifunctdd®® x C — Ens. This upgrade is purely for the sake of abstract
arguments: we will still require the arroivto be “Setsvalued” (Def. 5.3).

¢ We replacesetsby some small cocomplete category defined internally intablé topos [27].
In other words, we develop our theory on top of a certain tjygety which is modeled by
such a topos.

We take the first path.

Definition 5.1 (The category Ens).We fix Ens to be the category of (small) sets and (large)
classes whose sizes are within a suitable limit. We assuen®llowing properties oEns:

¢ Enshas colimits ofSetssized diagrams. In particular, it h&gtsindexed coends.
e Ensis Cartesian closed.

Using suchEns, we override the previous definitions. This upgrade isffeat throughout the
rest of the paper.

Definition 5.2. e Let C andD be categories. Aprofunctor P: C -» D is a bifunctor
P:D°°xC — Ens.

e The bicategoryrof is such that:
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— a O-cell is a locally small category whose collection of objects is not bigger than
that of Sets that is,| Obj(C)| < | Obj(Set9|;

— al-cellP: C - Dis a profunctor Ens-valued, as defined above); and

— a 2-cell is a natural transformation, much like in the prasidefinition ofProf.

An identity 1-cellC + C is given by the bifuncto€°P x C o Sets— Ens, note that a
0-cell C € Prof is locally small. Composition of 1-cells (cf. Def. 2.7)

(Qo P)U,X) = fYED QU,Y)xP(Y,X)  givenC SD3E

is now well-defined for a non-smdll € Prof, due to the extended cocompleteness prop-
erty of Ens.

We note that the size upgrade does ritg¢t validity of the Yoneda lemma.
In Prop. 3.3 an arrow ovamallC is characterized as a certain profunctor. Under the current
size upgrade, the categofy= Setsalso falls within the range.

Definition 5.3 (Prof-arrow). Let C be a monoidal category which belongsRwmf: that is,C
is locally small and has at most as many objectSatsdoes. AProf-arrow over C is an
internal strong monad : C - C in Prof (cf. Def. 5.3), which isSetsvalued the bifunctor
A : C° x C — Ensmust factor as follows.

C®PxC % Ens

-_ . J
* Sets

Proposition 5.4. Let C be a monoidal category subject to the size restriction in. BeS. The
notion of arrow overC (Def. 3.1) is equivalent to that &frof-arrow (Def. 5.3). O

5.2. Lifting an Arrow to a Categorical Arrow

Our main result (Thm. 4.4) is about lifting

e an arrowA of computations

¢ to a categorical arrofCoalg(A(J, _ x K))}sx of components.
The following lemma proves it, when combined with Prop. 4.7.

Lemma 5.5. Let A be an arrow oveBets The family{A(J, _ x K)},k of endofunctors is a lax
arrow functor (Def. 4.6).

We aim at proving the lemma, in such a way that the arrow stractf A is reflected in the
structure of the endofunctofa(J, _ x K)}k as directly as possible. We take the following two
steps.

¢ (Def. 5.6, Lem. 5.7) We introduce a new bicateg&tProf of stateful profunctorsand
then show that an internal strong monadPiof (identified with an arrowA by Prop. 5.4)
induces the same structureStProf, in a canonical manner.

e (Lem. 5.9) We then show that an internal strong mona8tirof canonically induces a
lax arrow functor.
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This separation of stepstfers a more structured view of the calculations in the earbesion [1]
of the paper. For instance, the equalities in [1, Table 3]rwam be systematically understood
as the axioms for an internal strong monadsitfrof, translated into 2-cells irof. For the
record we shall present as many technical details as the splevs. The details may seem
overwhelming; nevertheless, as is often the case with @jcaicajbicategorical arguments, the
underlying intuition is simple.

Definition 5.6 (The bicategory StProf). The bicategonGtProf is defined as follows.

¢ A O-cell of StProf is the same as that &fof: it is a locally small category of a suitable
size (Def. 5.2).

o Al-cellC el D of StProf is a pair of a natural numbere N and a profunctoBets$' x

p
C —+ D. That is,
(n,P) .
C - D in StProf
Setd x C —~ D in Prof
D" x Setd x C — Ens, a functor
(n,P)
e A2-cell C @D in StProf is a pair ,¢) of a functiof f : n - mand a
(mQ)
2-cell
Setd x C @F’? D
Iy xC4 5 in Prof.

Setd"x C
Here the functof; : Setd' — Setd" is defined by

M : G X)) — ] X ] X0
ief-1(1) ief-1(m)
where, to be precise, the §df.s-1(j) Xi is defined to bex;, x (--- x (Xj,_, X %) - - -), with
i1 < ... < iy is the increasing enumeration of the $et(j) = {i,...,ix}. In other words,
the componenp above is a natural transformation

P(D, X, ..., %, C) 23" (D, [T X.---. [] %.©). naturalinD.Xs.....%.C.

ief-1(1) ief-1(m)

. : . (nP . e !
e Composition of 1-cells: given success@e(fe») D (Teg) [E, its composition is defined to be

C (mﬂ'eQ»@P) E, where the profuncto® @ P : Sets™" x C -+ E is the following composite

Setd'xP Q
QeP = (Setf""xC - Setd'xD-E), (12)
that is,

D
(Q@P)(E,Xl,...,Xm,Xi,...,X,’],C)=f Q(E, X1,..., Xm, D) x P(D, X1,..., X, C) .

4Here the natural numberis identified with then-element setl, 2, .. ., n}.
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Identity 1-cells: givenC e StProf, the identity 1-cell orC is defined to be ((Hom) :
C - C, using the hom-functor.

(n.P) (mQ)
Horizontal composition of 2-cells: given 2-cell§ @D @E
(n.P) (m.Q)
(m+n,QeP)
in StProf, their horizontal composition is defined to If& — 1 ¢-749 3E . Here the
(Mm+n",Q ©P)
functiong + f : m+ n — nY + n’ is the obvious one:
) if i <m,
(g+f)(|)_{m’+f(i—m) it i > m 13)
and the natural transformatign® ¢ is defined as follows.
DeD
W @ @)egyc = Yexp X $oyc

D
f Q(E, X1,..., Xm, D) X P(D, Y1, ..., Yn,C)

—>fDQ’(E, ﬂ Xi, ..., [_[ Xi, D) x P'(D, [_[ Y..... ﬂ Y;.C) .

ieg™(1) ieg™(nm) jef(@) jef=1(m)

That is, using a diagram iRArof,

[Tg+s xC Setd™N x C Setd"xP Setd x : Q E
[Ty xSetdxC4 (%) My xD4 v S
VOP = L () SedxC 0 Setd xD (14)
Setd” x[; ><<C$ UW
Setd ™ » C Setd” xp’

where &) commutes up-to an isomorphism because of the bifunctiyril x (Lem. 2.11);
and () commutes due to the definition pfg, .

(n.P)
Vertical composition of 2-cells: given 2-cell€ mo ﬁg,.i; D in StProf, their
(kR)
(n,P)
vertical composition is defined to b€ @D . Here the natural transforma-
kR

tion ¥ © ¢ is defined by the following composite.

P(D, Xy, ..., Xy, C) 2206 Qo. [[ %..... [] %.0

icf-i(1) ief-1(m)
(lﬁOtﬁ)D,xcl lwnn X [1%.C
rRO. [ %.... [] xo._ ro. [ []x.....[] []xo0
i€(gof)1(2) i€(gof)1(K) = jegt(1)ief-1(j) jeg (k) ief-1(j)
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The isomorphism on the bottom row arises from the canonécahdrphisms
1_[ nxi;’ 1_[ X, ..., 1_[ l—lxi; 1_[ X (15)
jeg(1)ief-1(j) ie(gef)1(1) jeg (k) ief-1(j) ig(gef) (k)

in a symmetric monoidal categor$éts x, 1); note that we havey(c f)1(l) = U £71(j).
jeg-1(l)
Using a diagram ifProf, the above definition amounts to

Setd x C P
s x(Ci
Setén x C (16)
xCi
R

Set& x C

Hgmf xC

Yo =

=R

where the isomorphisis the canonical ones like in (15), bundled up together. Vedl sh
refer to suctB as anormalizing isomorphism

It is straightforward to verify that the above data togetioem a bicategory.

As we did forProf (see (9)), we also extend the operationf taking product categories to a

. . F ' F . F)x (' F’
“tensor” in StProf. GivenC (EHJ D andC’ (n—ee) D’, we define the 1-celC x C’ 4 )—Xe(g ) DxD’

to be the pairf+n’,F xF’) : CxC’ - D x D', whereF x F’ is the profunctor defined in (9).
Lemma5.7. Let A be an arrow oveBets The 1-cell
(1,A) : Sets—e> Sets in StProf,
where a profunctoA is defined by
A : Set$P x Setsx Sets—s Sets—— Ens , (J, X, K) — A(J X xK) ,
is canonically an internal strong monad 8tProf.

Notations 5.8. In what follows we often denote the categ@gtsby S, for the sole purpose of
saving space. The operatien: Setsx Sets— Setsof taking products of sets is often denoted
by X instead, to distinguish it from product of categories ared“tensors” orProf andStProf.

Recall that we denote a functér: C — D, embedded ifProf by taking its direct image
F., also byF (Notations 2.10). We shall extend this conventiorSt®rof. Namely, given a
functorF : C — D, we denote its embedding,(®.) : C - D also byF. Recall also that we
often denote the identity 1-cellid: C -» C in Prof by C (Notations 2.10); we shall use this
convention forStProf, too.

Proor. (Of Lem. 5.7) What we need to do is
e to equip the 1-cell (1A) with the following “operator” 2-cells, all of them iStProf:

S=(0H 1A 1A (LA)xS=(1,AxS)
/(—e&)) S ( ° ) > S ( & ) > S SZ — SZ
S\{f/ S , \UE/ , R=0R)} st LOR)
(LA (LA S R
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e and to prove that these 2-cells satisfy the same equatigitaha as in Table 1.

A 2-cell of the type ofarr above is the same thing as a 2-cell

1% S S S 1xS N S
xse: Y , hence i1xsf U1 %A
Sx S A=A-+E+) SxS——S

here we used the equality
_ X A
A=(S$ —+S—+9) (17)

that follows from the Yoneda lemma (Lem. 2.5).
We construct a 2-cell of the last type as follows, usifgjarrow structure (specifically itsr
operator). The iso 2-cell therein is the left unitalityly : 1X X = X, embedded ifProf.

S‘O%S

arr == st =yt s{a”}A (18)
57 — 4 S
Similarly, a 2-cell of the type ob> is identified with gssf S ; using the defini-
Sxs A
S3S—X0§323X§s2§984¥8
tion (12) ofe and also (17), this is further identified with the 2-cedks+ U A
3 & S
in Prof. Such a 2-cell can be constructed as follows.
s—F g
> 1= ®xsf =l N‘m”d// iA (19)
S ] |
X A

Hereq is the associativity isomorphisiX®Y)XZ = XX (YXZ); second is a derived operator
of the arrowA (Def. 3.5); ands> is an arrow operator oA.

HOBS .,
A 2-cell of the type offirst is identified with 583218 1 SXS Prof, by the defi-

SxS AKX
nition of StProf. Again expandings and A using (12) and (17), it is identified with a 2-cell

XIxS AxS
P — 52 ——
xR 4= in Prof. We define
? — S—ﬁ S
_ g e e
first 1= sx®+ zla 4R Ufirst = . (20)
S—4 S 7y S



It remains to verify the equational axioms. Take the axiomr{)J

s s
@A)
S/m s A o S/{j?‘ s g @A S/m s (21)
= i
P e J= o
— @A)
(LA)

Using (14) and (16), the composed 2-cell on the left-hane sidhe same thing as the following
2-cell inProf. Recall thag is the normalizing isomorphism in (16).

A
|

g g
S

p g st
<7T1,1JT2>$ b s SZ%S\S”§S><

A
A
= - 3 2 .
X
la
2 Il
S = S
by def. ofarr, >
< &
m 2% 2
i& Use%{-)\nd ig by reorganizing 2-cells
A A
S f U§> J S
P N A .
y (second-arr) in Lem. 3.7
im A
S 1 S ; S
— 1
A
—ow by (Unrr) for A

ix

S i S

idAo‘X

by coherence, note that 3, A are all canonical isomorphisms in an SMC

25



Similarly, the composed 2-cell on the right-hand side of) (21he following 2-cell inProf.

! _
S g-fAs UET S
Ammyd @St X
= SS — SZ A
B SxA
®xSt _
>
& +
A
2
g4 st s
(Lo d wst s
= 3 | 2 | 2 -1
= 13 S Sx S sa S /ls by def. ofarr, >
&xsi Jeot gi |} second &«iv»/_*_\
& —— S—— s—Hr s
X W
2
S ? o S i s—32
Amm)d wst
= 73 s? ~; SL—5hi & by (Unrr) for A
&xsi Jat &i | second xi»
s ) S
& &
(Lmm)d ,
= e P—t———F by (second-1) in Lem. 3.7
B SxK
&xsi
& S
= idaox by coherence for§ X, 1).

Similar straightforward calculations verify the othera@mxis for (1 A) in StProf. In its course
we use (14), (16), the axioms fér(Table 1) and the equalities in Table 2. We present the proofs
for the axioms (Asoc) and (irst->>). Recall that 1-cells denoted by means the diagram is in
StProf; 1-cells denoted by» means it is irProf.

For the axiom (Asoc),

1A 1A 1A
s (LA S (LA S (1.A) S
\{i;/‘
t > (LA
(LA

(&xS)o(SxIX@ SZTIX S3 i 83 ; 82
&xszi la IZIi

— 3 ! 2 } 2 {
ST S sta S X S A u§> A >
&xsi laot gi‘ Usecond A& U A j
S S ‘

A
26

S>}<A 52

|} second gi

= T




PxX PxA

} 3 { 3

st S XIxS XxS S

s@x% I Sxat is@X\ s@i
—=— S

= &xsi» 1%;% IZIi / 1} sseéﬁ‘nd \\ «iv» U second |Z|i
% \A‘% ;
L > J

by coherence forg, X, 1)

PxX SZ‘><A
:

s ‘ S5 S5
Sx&xsi U Sxa‘lsxﬁi» I Sxsecond $S><®
3 | 2 | 2 I 2
S SR sia S sia 7S
= Rxst Lo &i» |l second gi 1 second &i by (second-a)
2 Il Il Il |
S 5 S ’y S Iy f §) Iz S
L b= A j
A
< SZ>}<IZI B SZ}XA $
Sx&xsi U Sxa’lsxﬁi» | Sxsecond inﬁ
S3 f SZ f 82 | 82
SxX SxA SxA
= Rxsd = i U second R{ U second xi by (Assoc)
2 Il Il Il Il
TR A
N = J
< SZ>}<IX 8 SZ}XA <
Sx&xsi ] Sxa’lsxﬁi» |l Sxsecond in&
> " SA 2 &
S
= Rxst ot &i = ¢ =i by (second->s)
2 — —ﬁ
> 1 W > 2
U>
A
(1,A) (1L,A) (1,K)
t LA 1>
(LA
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For the axiom ffrst->>),
@ (LA)XS & (LA)XS &

R yfrst X st ;{&
S

(LA) (LA)
S —o—> S —e—>
>
(LA
SxXIxS SxAXS X xS AXS
S4 T S3 f S3 i 82 | SZ
$x®RE USxa sx®E U Sxirst s be  ®E O ufist ®Y

- S '¥—a SZ/?LS/ S
a” | second >
82 5 S A

SxXIxS SXAXS
< xBdx < XA <
Szng IZIxSi» U secondxS igxs
3 = 2 f 2 ; 2 ) )
= S = S AXS S AXS S by (first-second) in Lem. 3.7
&xsi» &i» U first &i | first 12%
2 | I |
ST S—&k 8 A=
A
84 SX%XS 53 S></}\><S 53
Szx&i |Z|><S‘iv> U secondxS ixxs

3 = 2 I 2 | 2
= S < S AS Sk A 3O by (first-s)
Rxst =i s xi
PL—+——S ) S
X NF/

& (LAXS ) (LAXS &

>XS
= ¥ amxs =
| first

S—————S
(L.A)

This concludes the proof. O

”

1,P . . . .
Lemma 5.9. Let S(ie) S be an internal strong monad i8tProf, equipped with “operator
2-cellsarr, >> andfirst. Assume that P iSetsvalued that is,

for each JX, K € Sets the collection RJ, X, K) € Ensis small and hence belongs
to the categonsets

Then the family{F ;k } sk esets Of functors, defined by
Fik = P(J_,K) : Sets— Sets

is canonically a lax arrow functor (Def. 4.6).
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Proor. What we have to do is to define three “operatdfgys, F» andFs and show that they
satisfy the equalities in Table 3.
Given a functionf : J — K in Sets to defineF,rt 1 1 — Fjx1 = P(J,1,K) we use
0,9

the “operator” S@S. By Def. 5.6, the latter 2-cell irstProf is identified with a natural

(1.P)
transformatiorarryk : S(J, K) — P(J, 1, K), natural inJ, K. We set

Fart = (amax)(f) - (22)

Similarly by Def. 5.6, the operatos is identified with a natural transformation

KeS
>ixyL f P(J X, K) x P(K,Y,L) — P(JXx Y,L) , naturalind, X, Y,L.

We set £, )xy to be the composite

KeS =
(Fau)xy = (PQXK)xP(K,Y,L) = f P( X, K) x P(K, Y.L) 5" P XX Y.L)) .
(23)
Herewk denotes a coprojection into a coend.
To defineFs, Note the following bijective correspondence
DixkLym - [P(IXK),PL,Y,M)] = Nat([_,L] x P(3, X, K), P(_,Y,M)) ; (24)

where [, +] denotes the function space, i.e. the hom-set functofée denote the correspon-
dence byd. The correspondence is derived from the Yoneda lemma (Leins&e also Cor. 2.3)
as well as from the adjunctio® x _ -4 [S, _]; due to the naturality of the both ingredients, the
correspondenc® in (24) is obviously natural id, X, K, L, Y, M.
(LP)xS=(LPxS)
P&

By Def. 5.6, the operatoR=(0.X)¢ U irst $(R) is a natural transformation
S——» 'S

_ JVeS WeS
firstuxkL : f [U,dx V] x P X K)x[V,L] — f PU,X,W) x [W.KxL] ;

using this and (24), we defirfs as follows.
[L.IxL]IxP(JXK)
= V
g | L IXVIXPEX K) X [V, L]
‘ JV
(Frirstue )x = PIXK el xKxL — [T IXVIXPAXK)X[VIL] | . (25)

@JX,K,L W
J7PC X W) X WK X L]
——=——~ P(_,XKxL)

Yoneda
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It remains to verify the equalities in Table 3. Fes{-Assoc), we use the axiom (#soc) (see
1,P
Table 1) for the strong monaﬁi(—ee) S. Namely,

1,P 1P 1P 1P 1,P 1P
s (1,P) S (1,P) s (1,P) S s (1P s (1,P) S (1.P) s
\{iy \{ig/
t 1> (LP) t 1P =
(1,P) (1,P)

On each side of the equation is a natural transformationdmtviunctors of the typ8° x S° x
S — Ens. We take the], X, Y, U, M-component and obtain the following equality.

[P X,K) x P(K, Y, L) x P(L, U, M)
ng\]'x'Y'LXP(L,U,M) L
[T P XxY,L)x P(L,U, M)

P(J, (X x Y) x U, M)
— = S P Xx(YxU),M)

> (XxY).UM

[P X, K) x P(K, Y, L) x P(L, U, M)

— fK P(IX.K)X>KyuM
- ——— [[PA X K)x P(K,Y x U, M)

> IXYxUM P(J Xx (Y xU),M)

By pre-composing the coprojectiog, to each side and using the definition (23), we obtain the
commutativity of the following diagram, which is what we athto prove.

P(d X, K) x P(K, Y, L) x P(L, U, M) — %>, p(3 X, K) x P(K, Y x U, M)
F>xid
P4 X x Y, L) x P(L, U, M) Fs
Fal .
P(J, (X x Y) x U, M) : P(J, X x (Y x U), M)

For (arr-Funcl), we use the following equality obtained by usingv(t) in Table 1 twice:

() (0,9
S S S
; /ﬁan\s /{’k\rr\fs _ (0,9 09 0,9
(1P ) ar
> &LF’S
(1,P)

By taking theJ, L-component of each side and pre-composing the coprojegtjame obtain the
diagram of &rr-Funcl). The axiom rr-Func2) can be verified in the same manner.

In verifying the other axioms (i.e. those which involvgs;), the correspondenckin (24) is
crucial. We will also be using the following fact.
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Sublemma 5.10.Let f: K —» K’ and g: J’ — J be functions, i.e. morphisms 8ets We have

) P(J. X, K)

Farr ,i vFarr

Fel8Fert B3, 1, 3) x P34 X,K) x P(K, 1K)

F>xP(K,LK’) P(J, X, K)

———— 5 P(J,1x X K)xP(K,1,K") = P(g.X.) ;
F 20 P, X, K)

— = P, (1xX)x1,K)

———— P(J, XK
that is, the composite on the left can be reduced to the fuatitg of P.

Proor. (Of the sublemma) The proofis similar to the above veriftzabf the axiom &rr-Funcl).
Therein it is crucial that the Yoneda correspondence (ah.l25)

fJ[J’, J] x P(3, X, K) — P(J', X, K)

is concretely given by the functoriality &, carrying an elemeng( p) of the left-hand side to

Let us turn to f-Nar) in Table 3. Sublem. 5.10 reduces the axiom to the commitiativ
the following diagram.

P(J X, K) P(;.xK)
(FfirsIJyK‘l)X\L =

PUXLXKx1)—— SPIx1XK)
P(IxLX.0K)

Since® in (24) is bijective, it sifices to showb(P(J x 1, X, pk) © (Fiirsty.)x) = P(P(p3, X, K)).
O(P(I x 1, X pk) o (Fiirsty1)x )

PL. X pk) © P((Firstuc:)x) by naturality of®

' [ ,Jx1]x P X K)

= v

o [ L IXVIX P X K) x [V, 1]
7!3 fJ,V[_’ J X V] X P(J» X, K) X [\/, 1]

- first x k.1

——= ["P(, X, W) x WK x1]
—=——~ P(_,XKx1)
Yoneda P(_,X, K)

by def. of Frrst (25)

P(.Xpk)

[_03]XP(IXK) [L.Ix 1] x P(J X K)

= == [_.J| xP(I X.K) by (first-p) in Table 1
_ P( X, K)
Yoneda —
= (P, X, K)) .

The other axioms are verified in a similar manner. This caheduhe proof of Lem.5.9. O

Lem. 5.7 and 5.9 proves Lem. 5.5, which in combination witbg?#.7 proves our main result,
Thm. 4.4.
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6. Conclusions and Future Work

Inspired by the common graphical understanding (boxesexed by typed wires), we have
elaborated on a connection between computations and canfsymore specifically, algebraic
structure possessed by these. The algebraic structurergfutations has been axiomatized by
the notion of arronv—by Hughes [4]—which is equivalent to thbFceyd category [5, 6]. We
have demonstrated that the arrow structure is also carjiedimponents. Its operatorart, >>
andfirst) serve agonnectordetween components, hence as a basimponent calculusThe
latter “component-arrow” turns out to becategorified[12] notion of arrow, whose satisfaction
of axioms only up-to isomorphisms is exemplary.

Our technical contribution is as follows. Arrow-basédcomponents-described as coal-
gebras, withA representing the machines’ computatidieet—carry canonical (categorified)
arrow structure, which is in fact a lifting of the arrow sttuie of A itself. The “lifting” is best
presented irProf, the bicategory of categories and profunctors. There weawrlthe second
author’s observation [16] that an arrdwis the same thing as an internal strong monaBriof .
When compared to the previous workshop version [1], the otwersion presents the lifting
process in a more structural manner, using a novel bicatest&rof.

The notion of categorical arrow, as a component calculugrng basic. In fact for the notion
of arrow (composing computations) some extensions have jregposed. Notable among them
is an extension with a feedbatdop operator [28, 29]. Its categorified version—that is, the
corresponding (extended) component calculus—has beeredtid[24]. However, unlike the
current work, the calculations in [24] are all direct and dx happen inProf. Much like the
characterization in [16], the current authors have fortadan arrow with loop as a monad in
Prof with suitable additional structure. Unfortunately we hae¢ yet found its good use.
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