Memoryful GoI with Recursion

Koko Muroya University of Tokyo Email: muroykk@is.s.u-tokyo.ac.jp Naohiko Hoshino RIMS, Kyoto University Email: naophiko@kurims.kyoto-u.ac.jp Ichiro Hasuo University of Tokyo Email: ichiro@is.s.u-tokyo.ac.jp

Abstract—In this preliminary report we extend our framework of memoryful Geometry of Interaction (mGoI) [Hoshino, Muroya & Hasuo, CSL-LICS 2014] by recursion. The mGoI framework provides a sound translation from λ -terms to transducers; notably it accommodates algebraic effects introduced by Plotkin and Power; and the translation, defined in terms of a coalgebraic component calculus, is extracted from categorical semantics (hence correct-byconstruction). In our current extension, recursion is additionally accommodated by introducing a new "fixed point" operator in the component calculus.

I. GOI INTERPRETATION

Girard's *Geometry of Interaction (GoI)* [1] is originally introduced as semantics of linear logic proofs and, via the Curry-Howard correspondence (and the Girard transformation), it has been successfully applied to denotational semantics of higher-order functional programs. The resulting semantics give so-called "*GoI interpretation*" of programs; one of its notable features is that GoI interpretation of function application is given by interactions of a function and its arguments.

Many representations of GoI interpretation have been studied so far: the original one by elements of a C^* -algebra (or a dynamic algebra) that can be seen as "valid paths" on type derivation trees [1]; the one by token machines [2]; and the categorical one by arrows in a traced symmetric monoidal category [3]. The second one by token machines plays an important role in bridging the gap between mathematical interpretation and low-level implementation. Namely it provides techniques of compilation and high-level synthesis, such as a compilation technique [2] and a high-level synthesis technique [4] that enables hardware acceleration of programs by FPGA.

We wish to contribute to this sequence of work by enable GoI interpretation to accommodate *computational effects*.

II. MEMORYFUL GOI

In the previous work [5] we developed the *memoryful GoI* (mGoI) framework that extends GoI interpretation of programs. Notably it accommodates *algebraic effects*—computational effects with algebraic operations as a syntactic interface, introduced by Plotkin and Power [6], [7]. Their examples include: nondeterminism, with a nondeterministic choice operation \Box as an algebraic operation; probability, with a probabilistic choice operation \Box_p for any $p \in [0, 1]$; and global states, with operations *lookup* and *update*.

A. Component Calculus over Transducers

The mGoI interpretation of a program is given by *T*transducers—an extension of Mealy machines (or sequential

machines) by effects specified by a monad T. Here we follow [8] and model algebraic effects by a monad T on the category **Set** of sets and functions.

Definition II.1 (*T*-transducers [5, Definition 4.1]). For sets *A* and *B*, a *T*-transducer (X, c, x) from *A* to *B* (written as $(X, c, x): A \rightarrow B$) consists of a set *X*, a function $c: X \times A \rightarrow T(X \times B)$ and an element $x \in X$.

A *T*-transducer $(X, c, x): A \rightarrow B$ can be seen as an (*T*-effectful) transition function c with input A, output B, a set of internal states X and an initial state x. It shall be presented, in diagrams, as in Fig. 1.

Fig. 1. a T-

transducer

In the mGoI framework, T-transducers are combined via a component calculus over them. It con-(X, c, x): $A \rightarrow B$

sists of primitive *T*-transducers (as basic building blocks) and the following operators on *T*-transducers: a) sequential composition \circ ; b) binary parallel composition \boxplus ; c) the trace operator Tr; d) the countable copy operator *F*; e) the operator $\overline{\alpha}$ for each algebraic operation α on *T*.¹ On top of these operators an auxiliary operator is defined: f) binary application \bullet .² The last is a well-known construction called *parallel composition and hiding* and is used here to translate function application. In Fig. 2 are graphical presentation of these operators; we refer readers to [5] for their precise definitions.

Fig. 2. Operators on T-transducers

¹We identify algebraic operations with their interpretations, as in [6]. ²Binary application \bullet presented here is an adaptation of that in [5].

B. Translation from Terms to Transducers

In our mGoI framework, to be precise, the provided interpretation (-) is from a type judgment $\Gamma \vdash M : \tau$ to a *T*-transducer

$$(\!(\Gamma \vdash M \colon \tau)\!) \colon \coprod_{i=0}^m \mathbb{N} \twoheadrightarrow \coprod_{i=0}^m \mathbb{N} \ .$$

Here \mathbb{N} is the set of natural numbers. The interpretation is defined inductively on the type derivations, using the component calculus introduced in the above.

In [9] we presented a prototype implementation—TtT, short for "Terms to Transducers"—of the translation ([-]). Given a closed term M of type τ , the tool first generates a Haskell program that implements a transition function of the T-transducer $([-M: \tau])$; and then it produces a simulation result of the execution of the transducer. We believe that the tool serves as a first step towards high-level synthesis (that translates a λ term to hardware design like on FPGA)—much like in [4] but now with algebraic effects.

Some further comments are in order on: 1) a categorical model behind the translation (-); and 2) prospects of accommodating recursion. In fact the translation (-) is extracted from a categorical model \mathbf{Per}_{Φ} —a Kleisli category of a strong monad Φ on a cartesian closed category \mathbf{Per} —built on Ttransducers and the component calculus. It is an instance of the class of models, that is provided in [6], of the Moggi's computational λ -calculus [8] with algebraic operations and arithmetic primitives. In [6] a class of models that accommodates recursion is studied as well; the key is a fixed point operator on a categorical model. However it was not clear, at the time of writing our previous paper [5], how to obtain a fixed point operator on the categorical model \mathbf{Per}_{Φ} and extend the translation (-) to recursion.

III. TRANSLATION OF RECURSION

Here we report our ongoing work that introduces recursion to the mGoI framework in [5].

A. Extension of Component Calculus and Translation

Our approach is to extend the component calculus shown in Fig. 2: binary parallel composition \boxplus is extended to a countable one $\boxplus_{i \in I}$; and on top of the calculus, a "fixed point" operator Fix is introduced. It is presented in Fig. 3.

Fig. 3. Fix(X, c, x): $A \rightarrow A$. Here one dashed box means countable duplication of a component.

It indeed gives a fixed point with respect to binary application •.

Lemma III.1. Let (X, c, x): $A + \mathbb{N} \times A \Rightarrow A + \mathbb{N} \times A$ be a *T*-transducer. The *T*-transducer Fix(X, c, x): $A \Rightarrow A$ satisfies the behavioral equivalence

$$(X, c, x) \bullet \operatorname{Fix}(X, c, x) \simeq \operatorname{Fix}(X, c, x).$$

Here the behavioral equivalence \simeq [5, Definition 5.2] is used for (equational) reasoning on *T*-transducers; it enables us to abstract away from internal state spaces of *T*-transducers.

With this extension of the component calculus the translation (|-|) can be extended to recursion: the following definition is precisely what is given in [5], except recursion that is new.

Definition III.2 (translation (-)). For each type judgment $\Gamma \vdash M : \tau$ where $\Gamma = x_1 : \tau_1, \ldots x_m : \tau_m$, we inductively define a T-transducer

$$(\Gamma \vdash M : \tau) = \underbrace{\bigcap_{\mathbb{N}}^{\mathbb{N}} \underbrace{\bigcap_{\mathbb{N}} \cdots \bigoplus_{\mathbb{N}}^{m}}_{m}}_{\mathbb{N} \underbrace{(\Gamma \vdash M : \tau)}{m}} : \prod_{i=0}^{m} \mathbb{N} \to \prod_{i=0}^{m} \mathbb{N}$$

as in Fig. 4. In Fig. 4, α is an *n*-ary algebraic operation on *T* that is the interpretation of op; and all the *T*-transducers other than those in the form $(\Gamma \vdash M : \tau)$ are primitives (see [5] for their definitions).

The translation (-) is sound with respect to the equational theory given in [6]. The latter is (an almost full fragment of) the Moggi's equational theory of computational λ -calculus, extended by algebraic operations, arithmetic primitives and recursion.

Theorem III.3 (soundness of (-)). For closed terms M and N of the base type nat, $\vdash M = N$: nat implies $(\vdash M : nat) \simeq (\vdash N : nat)$.

For simplicity we have restricted to algebraic operations with finite arities; accommodating countable arities is straightforward (much like in [5], [10]). On top of soundness, we expect adequacy to hold too, against the operational semantics in [6]. Extension of our implementation tool TtT with recursion is future work, too.

B. The Categorical Model

The translation (-) extended with recursion (Def. III.2) is backed up by a categorical model, too—this fact underlies Thm. III.3. Starting from the model \mathbf{Per}_{Φ} used in [5], we use its modification $\mathbf{Per}_{\Phi'}$ (whose details we do not describe here); then we can show that the construction Fix in Lem. III.1 indeed yields a (categorical) fixed point operator in $\mathbf{Per}_{\Phi'}$. In showing the latter, the following is a key technical lemma.

Lemma III.4. Let Cppo be the category of pointed ω -cpo's (i.e. with the least element \perp) and continuous maps. Assume that the Kleisli category Set_T satisfies the following:

- *it is* Cppo-enriched (with a partial order ⊑) and has Cppo-enriched (countable) cotupling;
- its compositions ◦_T is strict, in the restricted sense as in [5, Lem. 4.3];

its premonoidal structures X ⊗ −, − ⊗ X are locally continuous and strict, for any X ∈ Set.

The **Cppo**-enrichment of \mathbf{Set}_T induces the following ω cpo structure on *T*-transducers. A partial order \trianglelefteq on *T*transducers $(X, c, x), (Y, d, y) \colon A \to B$ is defined by

$$(X,c,x) \trianglelefteq (Y,d,y) \stackrel{\text{def.}}{\Longleftrightarrow} X = Y \land x = y \land c \sqsubseteq d$$
.

Minimal T-transducers with respect to \trianglelefteq are given by (Z, \bot, z) for any set Z. Now for a T-transducer (X, c, x): $A + \mathbb{N} \times A \rightarrow A + \mathbb{N} \times A$, the T-transducer Fix(X, c, x): $A \rightarrow A$ is a supremum of the following ω -chain.

ACKNOWLEDGMENT

The authors are supported by the JSPS-INRIA Bilateral Joint Research Project *CRECOGI*; K.M. and I.H. are supported by Grants-in-Aid No. 24680001 & 15K11984, JSPS; and N.H. is supported by Grant-in-Aid No. 26730004, JSPS.

REFERENCES

- J.-Y. Girard, "Geometry of Interaction I: interpretation of system F," in Logic Colloquium 1988, ser. Studies in Logic & Found. Math., vol. 127. Elsevier, 1989, pp. 221–260.
- [2] I. Mackie, "The Geometry of Interaction machine," in POPL 1995. ACM, 1995, pp. 198–208.
- [3] S. Abramsky, E. Haghverdi, and P. J. Scott, "Geometry of Interaction and linear combinatory algebras," *Math. Struct. in Comp. Sci.*, vol. 12, no. 5, pp. 625–665, 2002.
- [4] D. Ghica, "Geometry of Synthesis: a structured approach to VLSI design," in POPL 2007. ACM, 2007, pp. 363–375.
- [5] N. Hoshino, K. Muroya, and I. Hasuo, "Memoryful Geometry of Interaction: from coalgebraic components to algebraic effects," in *CSL-LICS* 2014. ACM, 2014, p. 52.
- [6] G. Plotkin and J. Power, "Adequacy for algebraic effects," in *FoSSaCS 2001*, ser. Lect. Notes Comp. Sci., vol. 2030. Springer, 2001, pp. 1–24.
- [7] —, "Semantics for algebraic operations," *Elect. Notes in Theor. Comp. Sci.*, vol. 45, pp. 332–345, 2001.
- [8] E. Moggi, "Computational lambda-calculus and monads," *Tech. Report*, pp. 1–23, 1988.
- [9] K. Muroya, T. Kataoka, I. Hasuo, and N. Hoshino, "Compiling effectful terms to transducers: prototype implementation of memoryful Geometry of Interaction," in *LOLA 2014*, 2014.
- [10] G. Plotkin and J. Power, "Algebraic operations and generic effects," *Appl. Categorical Struct.*, vol. 11, no. 1, pp. 69–94, 2003.

Fig. 4. inductive definition of the translation (-)