
The Microcosm Principle and Compositionality of
GSOS-Based Component Calculi

Ichiro Hasuo⋆

University of Tokyo, Japan

Abstract. In the previous work by Jacobs, Sokolova and the author, synchronous
parallel composition of coalgebras—yielding a coalgebra—and parallel composi-
tion of behaviors—yielding a behavior, where behaviors are identified withstates
of the final coalgebra—were observed to form an instance of themicrocosm prin-
ciple. The microcosm principle, a term by Baez and Dolan, refers to the general
phenomenon of nested algebraic structures such as a monoid in a monoidal cat-
egory. Suitable organization of these two levels of parallel composition led toa
generalcompositionalitytheorem: the behavior of the composed system relies
only on the behaviors of its constituent parts. In the current paper this frame-
work is extended so that it accommodates any process operator—not restricted
to parallel composition—whose meaning is specified by means of GSOS rules.
This generalizes Turi and Plotkin’s bialgebraic modeling of GSOS, by allowing
a process operator to act as a connector between components as coalgebras.

1 Introduction

1.1 Structural Operational Semantics and Its Bialgebraic Modeling

Structural operational semantics (SOS)[20] is a well-developed mathematical tool for
defining operational semantics of a programming language. It is based onSOS rules
from which transitions between program terms are derived. SOS has been notably suc-
cessful forprocess calculi: simple programming languages for concurrent processes.
Varioussyntactic formats—syntactic restrictions on SOS rules—have been proposed to
ensure good properties of SOS (see [1] for a survey); theGSOS format[6] is one of the
most common among them.

In SOS for process calculi, dynamic behaviors of processes—such as(a; b) ‖ b
a
→

(0; b) ‖ b—are derived by structural induction on the construction of process terms.
In categorical terms, dynamics of processes (the former) are modeled by acoalgebra
while the set of process terms forms an initialalgebrathat supports structural induction
(the latter); see e.g. [15]. It is Turi and Plotkin’s seminalwork [22] that combines these
two on a categorical level, resulting in abialgebraic modelingof SOS.

⋆ Thanks are due to Marcelo Fiore, Masahito Hasegawa, Bart Jacobs, Paul-Andŕe Melliès,
Bartek Klin, John Power, Ana Sokolova and Sam Staton for helpful discussions. Helpful com-
ments from the reviewers for the earlier versions of this paper are gratefully acknowledged.
Supported by PRESTO Promotion Program, Japan Science and Technology Agency.

Basic bialgebraic modelingIn the simplest setting in [22], a bialgebra is a carrierX
equipped with both algebra and coalgebra structures:ΣX → X → FX. Typically,
the functorΣ for the algebra part isΣ =

∐

σ∈Σ()arity(σ) : Sets → Sets, a functor
that represents a process algebra signatureΣ; and the other functor isF = (Pω)A :
Sets → Sets, a functor for coalgebraic modeling of labeled transition systems (LTSs).
HerePω denotes the finite powerset functor, andA is the set of labels. The algebra and
coalgebra structures are further subject to a certain compatibility condition via a natural
transformationΣF ⇒ FΣ; this natural transformation is what represents SOS rules.

The following two are almost only examples of such bialgebras in the literature.

– The one induced by the initial algebraΣI → I (or, slightly more generally, a free
algebra). HereI is the set ofΣ-terms. The induced coalgebraI → FI is the tran-
sition structure between process terms, which is what is derived in the conventional
SOS framework [20].

– The one induced by the final coalgebraZ → FZ (or, slightly more generally,
a cofree coalgebra). HereZ is the set of “behaviors”—specifically bisimilarity
classes of states of LTSs (see e.g. [11,§1.3]).1 Existence of the induced algebra
structureΣZ → Z implies that the process operators are well-defined modulo
bisimilarity, that is,bisimilarity is a congruence. As laid out shortly in§1.2, this
induced algebraic structure is what is generalized in the current paper.

Bialgebraic modeling of GSOS rulesIt turns out, however, that only a very limited class
of SOS rules can be represented by a natural transformation of the formΣF ⇒ FΣ.
Therefore in [22] a couple of extensions of the above basic scheme are proposed; the
most notable among which is for the GSOS format. It is such that: a natural trans-
formation representing GSOS rules is of the formΣF• ⇒ FΣ∗. HereΣ∗ is the
free monadoverΣ, with Σ∗X being the set ofΣ-terms that can contain elements
of X as variables. The functorF• is thecofree copointed functoroverF , concretely:
F•X = X × FX. In [22] it is shown that anyGSOS specification—a set of SOS rules
compliant with the GSOS format—can be represented by a natural transformation of
the formΣF• ⇒ FΣ∗ and vice versa. See [16] for an introduction to the development.

The idea of bialgebraic modeling of SOS has been further pursued by many authors.
See [16] and the references therein.

1.2 Parallel Composition of Coalgebras and the Microcosm Principle

In bialgebraic modeling, it is the elements of the carrier ofa bialgebra that are combined
using process operators. As described above, typical examples of such are: process
terms (combined syntactically); and “behaviors,” i.e. bisimilarity classes of LTS states
(combined thanks to ‘bisimilarity is a congruence’).

However, the rise ofcomponent calculias a foundation of component-based system
design (see e.g. [4, 7]) poses a new challenge. In component-based design it is existing
systems that are to be composed; and this lies out of the realmof bialgebraic model-
ing. Specifically, ‘existing systems’ do not always mean ‘process terms’: one may be

1 “Bisimilarity” here is more preciselybehavioral equivalence; they coincide for functorsF that
weakly preserve pullbacks (see e.g. [15]). This is the case withF = (Pω)A.

given two LTSsS1 andS2 that are generated from two process terms written in two
different process calculi. ‘Existing systems’ do not necessarily mean their ‘behaviors’
either: given two LTSsS1 andS2, calculating their full behaviors is usually expensive.
Therefore it is nice to be able to combine LTSsas they are—much like a product of two
automata (e.g. in [4]), where one takes the product of two state spaces.

This idea of combining LTSs as they are, using a process operator whose mean-
ing is specified by SOS rules, has been in the literature implicitly or explicitly (e.g.
in [5,8]). However this idea is often regarded as a “cosmetic” extension to SOS and its
mathematical/categorical foundation has not been systematically pursued.

In our previous work [14] we formalized combination of LTSs as: a functor‖‖‖:
Coalg(F)×Coalg(F) → Coalg(F) arising from a natural transformationsyncX,Y :

FX × FY → F (X × Y). If F = (Pω)A this allows us to model synchronous par-
allel composition of LTSs (but hardly any other operator). There the carrier of the LTS

(X
c
→ FX) ‖‖‖ (Y

d
→ FY) is X × Y . The natural transformationsync specifies a

“synchronization mechanism,” which represents a very limited class of SOS rules.

F (Z × Z)
F‖

FZ

Z × Z
ζ‖‖‖ζ

‖
Z

ζ

The operation‖‖‖ for composing LTSs yields a canonical op-
eration‖ for composing “behaviors” like the one in the bial-
gebraic modeling (§1.1). Namely, behaviors are identified with
elements of the final coalgebraζ : Z

∼=→ FZ and‖ is induced
by the coinduction diagram on the right.

Furthermore in [14], the two composition operators

‖‖‖ : Coalg(F) × Coalg(F) −→ Coalg(F) and ‖ : Z × Z −→ Z

with the latter being a coalgebra morphism‖: ζ ‖‖‖ ζ → ζ, are identified as an instance
of so-called themicrocosm principle. It is a term coined in [2], referring to the phe-
nomenon that: a categoryC and its objectX ∈ C have the “same” algebraic structures,
withX ’s inner algebraic structure depending onC’s outerone. A prototypical example
is a monoid objectX in a monoidal categoryC: they both have a multiplication opera-
tor (m : X⊗X → X and⊗ : C×C → C); and the definition ofm uses⊗ in it. In [14]
we formalized what the microcosm principle means—especially what is meant by the
“same” algebraic structures on different levelsC andX ∈ C—using Lawvere theories.

X × Y
beh(c‖‖‖d)

beh(c)×beh(d)

Z

Z × Z
‖

FX
F beh(c)

FZ

X
c

beh(c)
Z

ζ

As an application we proved acompositionalityresult:

for any coalgebrasX
c
→ FX andY

d
→ FY we have the

top diagram on the right commute, where maps likebeh(c)
are by coinduction (the bottom diagram). This reads: the be-
havior of the composed systemc ‖‖‖ d can be computed from
the behaviors ofc andd, using‖. In particular—denoting
bisimilarity by∼—we have thatc ∼ c′ andd ∼ d′ implies
c ‖‖‖ d ∼ c′ ‖‖‖ d′, with regards to an appropriate choice of
initial states.

1.3 Microcosm Interpretation of Full GSOS Rules

composing behaviors
composing both

LTSs & behaviors

sync.‖ [22], ΣF ⇒ FΣ [14]
full GSOS [22], ΣF• ⇒ FΣ∗ current work

The state of art in [14] roughly corre-
sponds to the basic bialgebraic mod-
eling in §1.1 where an SOS specifica-
tion is represented by a natural trans-
formationΣF ⇒ FΣ (see the table).
The current work extends [14] by accommodating any process operator whose meaning
is specified by GSOS rules. Some GSOS rules are shown below; weassume that the set
of labels isN ∪N ∪ {τ}, consisting of names, conames and the internal action.

x
a
→ x′

x ‖ y
a
→ x′ ‖ y

(‖L)
y

a
→ y′

x ‖ y
a
→ x ‖ y′

(‖R)
x

a
→ x′ y

a
→ y′

x ‖ y
τ
→ x′ ‖ y′

(‖SYNC)
a

a
→ 0

(AT)

x
a
→ x′

x; y
a
→ x′; y

(;L)
x

a

6→ (∀a ∈ A) y
b
→ y′

x; y
b
→ y′

(;R)
x

a
→ x′

!x
a
→ x′ ‖!x

(!) x
a
→ x′

x∗ a
→ x′; x∗

(()∗)

We use these rules for constructing a new LTS from given LTSs.This means:

(‖SYNC) is read as
x

a
→ x′ in S y

a
→ y′ in T

x ‖ y
τ
→ x′ ‖ y′ in S ‖ T

(‖SYNC) (1)

with an additional class of variables (S andT) that tells in which LTS each transi-
tion takes place. The variablesx, y here designate states of LTSs—unlike in the usual
reading where they designate process terms. Different variables can designate states of
distinct LTSs: in (1),x andx′ are states ofS, while y andy′ are ofT .

1.4 A Technical Challenge: State Spaces

Think of the new reading of the rules (;R) and (!). The challenge is: what is the state
space of the sequential compositionS; T ? We can start withX × Y—whereX andY
are the state spaces ofS andT , respectively—denoting its element byx; y. According
to the rule (;R), however, a statex; y can “evolve” intoy′, which is no longer inX×Y .
So the answer seems to beX × Y + Y . But how about the replication!S ? One would
think ofX+ =

∐

1≤nX
n orXω; both seem plausible.

In this paper we introduce a uniform, syntactic and modular way of constructing
such a state space, so that it is compatible with the given setR of GSOS rules. We shall
call it anR-state space. The construction is syntactic in the sense that anR-state space
consists of rather simple sets likeX1 × · · · × Xm, summed up over all the relevant
algebraic terms (Def. 2.10). The construction is modular because theR-state space for
a composed termt can be calculated using the state spaces fort’s subterms as building
blocks ((4) later). Such modularity is an essential property of an “algebra.”

As a technical tool in this construction we introduce the notion of term lineage
graph (TLG). A TLG is roughly a graph between two terms (thought of as parse trees)
that keeps track of evolution of terms (likex; y 7→ y′ in (; R) above).

Organization of the paperIn §2, after fixing notations for GSOS rules we describe
the construction ofR-state spaces. In§3 we present a GSOS specification as a natural

transformation: this generalizesΣF• ⇒ FΣ∗ in [22] (for composing different LTSs)
as well assyncX,Y : FX × FY → F (X × Y) in [14] (for the full GSOS format).
This results in the two interpretations of process operators in §4, acting on LTSs and
on behaviors. We prove a compositionality result, and show that our framework indeed
generalizes the GSOS fragment of [22]. In§5 we conclude and discuss related work.

2 State Space Compatible with GSOS rules

2.1 GSOS specification

We first fix a signatureΣ of a process calculus. For eachn ∈ N it determines the set
Σn of n-ary operators.

Definition 2.1 (GSOS) A GSOS ruleR (as in [22]) over a signatureΣ is a syntactic
expression of the following form.

{xi
a
→ ya,j

i }
a∈A,j∈[1,Na

i]

i∈[1,m] {xi

b

6→ }b∈Bi

i∈[1,m]

σ(x1, . . . , xm)
e
→ t

(2)

HereA is a fixed set oflabels; xi, y
a,j
i are distinct variables;Na

i is a natural number
that is0 for almost everyi anda; Bi is a (possibly infinite) subset ofA; σ is anm-ary
operator inΣ; andt is aΣ-term where onlyxi andya,j

i occur as variables. For a GSOS
ruleR like (2), the operatorσ on the left in the conclusion shall be denoted byσR; the
termt on the right is denoted bytR.

A GSOS specificationis a pair(Σ,R) of a signatureΣ and animage-finitesetR
of GSOS rules overΣ. Here image-finiteness means that there are only finitely many
rules inR, onceσ ∈ Σ andc ∈ A are fixed.

Our another reading of (2)—in the sense of (1)—is as follows, deriving a transition
in a new LTSσ(S1, . . . ,Sm).

{xi
a
→ ya,j

i in Si }
a∈A,j∈[1,Na

i]

i∈[1,m] {xi

b

6→ in Si }
b∈Bi

i∈[1,m]

σ(x1, . . . , xm)
e
→ t in σ(S1, . . . ,Sm)

HereS1, . . . ,Sm are a new class of variables that designate LTSs; variablesxi andya,j
i

with a subscripti therefore designate states ofSi.
We will need a careful inspection of the structure ofΣ-terms. We fix some notations.

Notation 2.2 We assume that aΣ-term t always comes with an explicitcontextof
variables:x1, . . . , xm ⊢ t. Any occurrence of a variable int must be that ofx1, x2, . . .
or xm; each variablexi can have multiple or no occurrences int. For example, we
distinguish two termsx1 ⊢ x1 ‖ x1 andx1, x2 ⊢ x1 ‖ x1 because of different contexts.
In the sequel, however, we suppress the context of aΣ-term when it is obvious.

Definition 2.3 (it, |t| and tℓ) Given aΣ-term x1, . . . , xm ⊢ t, the number ofoccur-
rencesof variables int is denoted by|t|. Note that this is not necessarily the same asm.
Then the termt induces an “indexing” functionit : [1, |t|] → [1,m] such that: thei-th
occurrence of variables (counted from left to right) int is that ofxit(i).

The term obtained fromt, by replacing all the occurrences of variables by those of
distinct variablesx1, . . . , x|t| from left to right, is denoted bytℓ. This is thelinear term
induced byt. An easy consequence is:t = tℓ[xit(1)/x1, . . . , xit(|t|)/x|t|].

For example, lett be the termx1, x2 ⊢ x2 ‖ (x1 ‖!x1). Then|t| = 3, it : 1 7→
2, 2 7→ 1, 3 7→ 1. The termtℓ is x1, x2, x3 ⊢ x1 ‖ (x2 ‖!x3).

2.2 Requirements on State Spaces

Shortly we will introduce the notion ofterm lineage graph (TLG). Since it is technically
rather involved, we shall first lay out what we aim to achieve using TLGs.

We construct state spaces for LTSs likeS1 ‖ S2, S1;S2, !S, etc., deriving from
given GSOS rules. Letx1, . . . , xm ⊢ t be aΣ-term andX1, . . . ,Xm be sets, with
the idea thatXi is the state space of the LTSSi. We shall define anR-state space
LtM(X1, . . . ,Xm). The following requirements are essential to to base the framework
in [14] on it; these will be exploited in the technical development later in§3.

Requirements 2.4 1. The setLtM(~X) should accommodateinitial states that are there
prior to any evolution—such asx1 ‖ x2 in S1 ‖ S2 or !x in !S (see§1.4). The set
of such initial states are given by

|t|(X1, . . . ,Xm) := Xit(1) × · · · ×Xit(|t|) , (3)

whereit and|t| are from Def. 2.3. Note that|t|(~X) need not be the same asX1 ×
· · · × Xm. Our definition (3) implies, for example, that we allowx1 ‖ x′1 (with
x1, x

′
1 ∈ X1 andx1 6= x′1) as an initial state in an LTSS1 ‖ S1.

2. The setLtM(~X) should also accommodate those states which would arise through
“evolution” specified by GSOS rules (see§1.4).

3. Functoriality: the operationLtM extends to a functorSetsm → Sets.
4. Modularity: the operationL M—applied to a termt and yielding a functorLtM :

Setsm → Sets—is compatible with substitution of terms. That is,

L t[ti/xi] M (X1, . . . ,Xm) ∼= LtM
(
Lt1M(~X), . . . , LtnM(~X)

)
. (4)

2.3 Term Lineage Graph (TLG)

‖

x1 !

x1

First we note that aΣ-termt can be identified with itsparse tree. Its leaves
are variables and0-ary operators; and its internal nodes are operators with
positive arities with a suitable branching degree. For example the term
x1 ‖!x1 is understood as on the right.

Definition 2.5 (Term lineage graph) Let s, t beΣ-terms. We require them to be in the
same variable context (Notation 2.2):x1, . . . , xm ⊢ s, t. A term lineage graph (TLG)
ρ from s to t, denoted byρ : s ⇒ t, is an unlabeled directed graph (like in (5)) whose
nodes are nodes ofs andt (seen as parse trees), such that:

– any edge is from a node in thedomain terms to a node in thecodomain termt;
– each node ins has exactly one outgoing edge;
– the edges aremonotone: assume that the origin of one edge is a descendant (in the

parse trees) of the origin of another edge. Then the target of the former is also a
descendant of (or the same as) that of the latter;

– an edge from an operator symbolσ goes into a (not necessarily the same) operator
symbol;

– an edge from a variablexi in s goes into the same variablexi in t.

A TLG is sometimes denoted byx1, . . . , xm ⊢ ρ : s⇒ t, making its context explicit.

Definition 2.6 (The TLG ρR) LetR be a GSOS rule of the form (2). It induces aTLG
ρR defined as follows. Its type isρR : tR[xi/y

a,j
i] ⇒ σR(x1, . . . , xm). Concretely

– each node in the domain termtR[xi/y
a,j
i] that is labeled with an operator symbol

is tied to the root node (labeled withσR) of the codomain termσR(x1, . . . , xm);
– each node in the domain term that is labeled with a variablexi is tied to the unique

occurrence of the same variablexi in the codomainσR(x1, . . . , xm).

Intuitively, the substitutionya,j
i 7→ xi in the domain termtR[xi/y

a,j
i] forces every

occurrence of a state ofSi to be denoted byxi.

Here are some examples of TLGs induced by GSOS rules. The solid lines represent
the order in each parse tree; the dotted lines are the edges ofthe TLGs.

‖

ρ(!)
=⇒

!

x1 ! x1

x1

x2

ρ(;R)
=⇒ ;

x1 x2

;

ρ(()∗)
=⇒

()∗

x1 ()∗ x1

x1

(5)

Definition 2.7 (Operations on TLGs) – (Identity) For eachΣ-term s, the identity
TLG ids : s ⇒ s is the one in which each node in the domain term is tied to the
same node of the codomain term.

– (Composition) Given two successive TLGsρ : t ⇒ s andρ′ : s ⇒ u, thecompo-
sition ρ′ • ρ : t ⇒ u is obtained by composing two successive edges ofρ andρ′,
and then forgetting about the mediating terms.

– (Substitution) Letx1, . . . , xn ⊢ ρ : t ⇒ t′ be a TLG. Assume further that we have
a TLGx1, . . . , xm ⊢ ρi : ti ⇒ t′i, for eachi ∈ [1, n].2 We define thesubstitution
ρ[ρi/xi], which is a TLG between substituted terms fromt[ti/xi] to t′[t′i/xi], as
follows. Pictorially:

t

x1 x2

ρ
=⇒

t′

x2 x1 x1

t1

ρ1=⇒
t′1 t2

ρ2=⇒
t′2

t

t1 t2

ρ[ρ1/x1,ρ2/x2]
=⇒ t′

t′2 t′1 t′1
That is,

2 Distinguishm andn. Note we have the same context for all ofρi.

• Each node in the (upper)t-part of the domain termt[ti/xi] has the same out-
going edge as inρ, into thet′-part of the codomain term.

• As for a node in the (lower)ti-part of the domain term: basically the outgoing
edge is the same as the corresponding one inρi : ti ⇒ t′i. However, liket′1
in the above example, there can be multiple occurrences oft′i in the codomain
term; we must decide which occurrence the edge points to. There we use the
information inρ : t ⇒ t′: we follow the edge inρ that starts from the corre-
sponding occurrence of a variable.

Let us now illustrate the operations on TLGs. Using three TLGs ρ(;R) : x2 ⇒ x1;x2,
idx1

: x1 ⇒ x1 andidx∗
1

: x∗1 ⇒ x∗1, we can form the substitutionρ(;R)[idx1
/x1, idx∗

1
/x2]

that is shown below on the left. The equality below asserts that, if we pre-compose
ρ(()∗) to that substitution, then it is the same as the identity TLG.

()∗
ρ(;R)[idx1

/x1,idx∗
1
/x2]

=⇒ ;

ρ(()∗)
=⇒

()∗

x1 x1 ()∗ x1

x1

= ()∗
idx∗
=⇒

()∗

x1 x1

(6)

Finally, a given setR of GSOS rules determines a class of TLGs that are relevant to it.

Definition 2.8 (R-TLG) Let (Σ,R) be a GSOS specification (Def. 2.1). The class of
R-TLGsis a subclass of TLGs betweenΣ-terms, defined inductively as follows: 1) for
each GSOS ruleR ∈ R, the induced TLGρR (Def. 2.6) is anR-TLG; 2) the class of
R-TLGs is closed under identities, composition, and substitution (Def. 2.7).

2.4 R-State Space

We define anR-state spaceoperatorLtM. Let us fix a GSOS specification(Σ,R).

Definition 2.9 (Initial state space) Given aΣ-termx1, . . . , xm ⊢ t, we define theini-
tial state space functor|t| : Setsm → Sets by (3) in §2.2. Its functoriality is obvious.
We are overriding the notation|t| (cf. Def. 2.3); this will not cause any confusion.

Definition 2.10 (R-state space)Let t be aΣ-term. We define theR-state space func-
tor LtM : Setsm → Sets by:

LtM(X1, . . . , Xm) :=
a{

|s|(X1, . . . , Xm) | ρ : s ⇒ t, R-TLG
}

. (7)

Here |s| is the initial state space functor (Def. 2.9); the sum
∐

is taken over all the
R-TLGsρ with a codomain termt. We have one summand for eachρ, not for eachs.

Let us now calculate someR-state spaces. We take asR the set of rules presented
in §1.3; we take the corresponding signatureΣ = {‖, !, ; , ()∗} ∪ {a | a ∈ A}.

For a ruleR ∈ Rwhoseprincipal operatoris‖—namely(‖L), (‖R) and(‖SYNC)—
the induced TLGρR coincides with the identity (Def. 2.7). It follows that anyR-TLG of

the form· ⇒ x1 ‖ x2 is the identity TLG. Hence by (7) we haveLx1 ‖ x2M(X1,X2) =
|x1 ‖ x2|(X1,X2) = X1 ×X2.

For the operator; , an R-TLG whose codomain term isx1, x2 ⊢ x1;x2 is ei-
ther the identity orρ(;R) (see (5)). HenceLx1;x2M(X1,X2) = |x1;x2|(X1,X2) +
|x2|(X1,X2) = X1 ×X2 +X2. Here the termx2 inside the expression|x2| is x1, x2 ⊢
x2, to be precise about its context.

‖

idx1‖x2
[ρ(!)/x2]

=⇒
‖

ρ(!)
=⇒

!

x1 ‖ x1 ! x1

x1 ! x1

x1

Regarding! , we have countably manyR-TLGs
whose codomain is!x1:

id : !x1 ⇒ !x1 ,
ρ(!) : x1 ‖!x1 ⇒ !x1 ,
ρ(!) • (idx1‖x2

[ρ(!)/x2]) : x1 ‖ (x1 ‖!x1) ⇒ !x1 , etc.

The third one is depicted above. Therefore we have:

L !x1 M(X1) =
∐

i≥0

∣
∣
∣x1 ‖ (· · · ‖ (x1
︸ ︷︷ ︸

i

‖!x1) · · ·)
∣
∣
∣ (X1) =

∐

i≥0

Xi+1
1 = X+

1 .

Regarding()∗, from the equality (6) it follows that the situation is similar to
! above. Namely, we have oneR-TLG for each of the following types:x∗1 ⇒ x∗1,
x1;x

∗
1 ⇒ x∗1, x1; (x1;x

∗
1) ⇒ x∗1, etc. Hence we haveLx∗1M(X1) = X+

1 .
We now verify that Requirements 2.4 are indeed fulfilled. Theitem 3 is obvious.

The proof is in [12, Appendix A].

Proposition 2.11 1. There is a canonical embedding(νt) ~X
: |t|(~X) → LtM(~X). This

extends to a natural transformationνt : |t| ⇒ LtM : Setsm → Sets.
2. Given anR-TLGρ : s ⇒ t, it induces a canonical mapLρM ~X

: LsM(~X) → LtM(~X).
It also extends to a natural transformationLρM : LsM ⇒ LtM.

4. The operationL M is compatible with substitution: forΣ-termsx1, . . . , xn ⊢ t and
x1, . . . , xm ⊢ ti for eachi ∈ [1, n], we have a canonical isomorphism (4). ⊓⊔

Using the embedding(νt) ~X
in Prop. 2.11.1, we can also embed the setX1 × · · · ×Xm

in theR-state spaceLtM(X1, . . . ,Xm). This is by the followingθX1,...,Xm
:

θ ~X :=
(

X1 ×· · ·×Xm

(ψt)X1,...,Xm
−→ Xit(1) ×· · ·×Xit(|t|) = |t|(~X)

(νt) ~X−→ LtM(~X)
)

, (8)

where(ψt) ~X
is a function such that(x1, . . . , xm) 7→ (xit(1), . . . , xit(|t|)) (cf. Def. 2.3).

It rearranges argumentsx1, . . . , xm according to the occurrences of variables int.

Remark 2.12 Our choice of state spaces (Def. 2.10) is in fact one out of a spectrum.
The smallest extreme in the spectrum is obtained by: singling out the “reachable” part
of ourR-state space and then quotienting it out by the bisimilarity. Although this yields
a smaller state space, calculating such is expensive. Moreover it does not satisfy Re-
quirements 2.4.4, breaking modularity/algebraicity of the whole framework.

The biggest extreme is to take, as the state spaceLtM(X1, . . . ,Xm), the whole set
of Σ-terms with all statesxi ∈ Xi as variables. This satisfies Requirements 2.4 so we
could develop the theory on top of it. However, we claim it to be our finding that we

can trim down this big state space into the one in Def. 2.10. Inparticular, our refined
definition yieldsL ‖ M(X1,X2) = X1×X2 which matches with intuition as well as with
the usual definitions of product of automata in e.g. [4].

In-between is the “Kleene-style” composition of automata.The classic result on
regular language and DFA/NFA has recently seen its vast generalization in coalgebraic
terms; see e.g. [21]. In this approach the Kleene star()∗ preserves finiteness of state
spaces, whereas our approach yields the state spaceX∗ that is inevitably infinite. How-
ever the definition of Kleene-style composition calls for different ingenuity for each
operator; it is not clear if that can be done uniformly for anyoperation defined in GSOS.

We further note that our choice goes well withfirst-order representationof LTSs.
(Variants of) the latter are now widely used (e.g. CARML in [3]) because it enables
BDD-based representation and symbolic model checking [9].In first-order representa-
tion, a state is represented by an assignment of values to variables such as[agent1 7→
critical, agent2 7→ noncritical]; hence a state space is theproductof the value
domains for the variables. Combining such state spaces by means of products and co-
products (7) could be done in a programming language with advanced type constructors.

3 Categorical GSOS Specification

We introduced appropriate state spaces forS1 ‖ S2,S1;S2, etc. in§2; we wish to derive
transition structures on those state spaces, making them LTSs. In concrete terms it is via
derivations using GSOS rules, with their reading like (1). In categorical terms, GSOS
rules are first translated into a natural transformationξt (for each termt, this section);
which gives rise to transition structures (§4).

3.1 Copointed Functors and Copointed Coalgebras

We will need the following notion of copointedness—a technical but standard one in
the field (see e.g. [18, 22]). For the functorF = (Pω)A : Sets → Sets, we set a
functorF• : Sets → Sets byF•X := X × FX = X × (PωX)A. We denote the first
projectionF•X(= X × FX) → X by εX .

X × FX
εX

X

X
c

An F•-coalgebrac : X → F•X is said to becopointedif the
diagram on the right commutes. Intuitively, the additionalcom-
ponentX in F•X = X × FX records the “original” state before
a transition; indeed for a copointedF•-coalgebrac : X → X × (PωX)A we have
c(x) = (x, λa. {x′ | x

a
→ x′}). The next result is standard and easy; see [18].

Lemma 3.1 Let us denote the category ofF -coalgebras byCoalg(F); and the cate-
gory of copointedF•-coalgebras byCoalg•(F•). The two categories are isomorphic:
Coalg(F) ∼= Coalg•(F•). In particular, Coalg•(F•) has a final object (afinal co-
pointedF•-coalgebra) that corresponds to a final object inCoalg(F). ⊓⊔

Due to this result, in the sequel we identify an LTS with a copointed coalgebra for the
functorF•X = X × (PωX)A. Bisimilarity in LTSs can then be captured by the final
copointedF•-coalgebra—which we denote byζ• : Z → F•Z. Note that the coalgebra
ζ• has the same carrier setZ as the finalF -coalgebra; this is also a standard fact.

3.2 GSOS Rules, Categorically

We shall translate a setR of GSOS rules into functions of the following type:

(ξt) ~X
: LtM(F•X1, . . . , F•Xm) −→ F•

(
LtM(X1, . . . ,Xm)

)
, (9)

defined for eachΣ-termx1, . . . , xm ⊢ t and setsX1, . . . ,Xm. HereF = (Pω)A,
andm is the length oft’s contextx1, . . . , xm ⊢ t. These functions(ξt) ~X

form a natural
transformationξt, defined for each termt. The difference from the natural transforma-
tion ΣF•X ⇒ FΣ∗X in [22] is that ours(ξt) ~X

is required to be natural in multiple
setsX1, . . . ,Xm. This is because we deal with state spaces of multiple LTSs.

Towards the natural transformationξt in (9) we proceed step by step: we first derive
from a GSOS ruleR a natural transformationξ(1)R , from which we deriveξ(2)R , ξ

(3)
σ , . . . ,

finally reachingξt of the desired form.
Step 1. Let R ∈ R be a GSOS rule in (2). It induces the following function

(ξ
(1)
R)X1,...,Xm

:

|σR| (F•X1, · · · , F•Xm)
(ξ

(1)
R

) ~X−→ F
`

|tR[xi/ya,ji]| (X1, . . . , Xm)
´

,

i.e.
Q

i∈[1,m]

`

Xi × (PωXi)
A

´ (ξ
(1)
R

) ~X−→
“

Pω
“

˛

˛ tR[xi/ya,ji]
˛

˛(~X)
” ”A

by
`

(ξ
(1)
R) ~X(x1, ϕ1, . . . , xm, ϕm)

´

(e)

=



tR[xi/xi, y
a,j
i /ya,ji]

˛

˛

˛

∀i. ∀b ∈ Bi. ϕi(b) = ∅, and
∀i. ∀a. ∀j ∈ [1, Na

i]. y
a,j
i ∈ ϕi(a).

ff

.

Herexi andya,j
i denote elements ofXi; ϕi belongs to(PωXi)

A; ande ∈ A is a label.
Note that|σR|(F•X1, · · · , F•Xm) = F•X1 × · · · × F•Xm (Def. 2.9). The expression
tR[xi/xi, y

a,j
i /ya,j

i] denotes the obvious element of the set| tR[xi/y
a,j
i] |(X1, . . . ,Xm).

To be precise, the latter set is of the formXk1
× · · · × Xk|tR|

, with each component

Xkl
coming from an occurrence of eitherxi or ya,j

i in tR. If Xkl
is from xi then the

l-th component oftR[xi/xi, y
a,j
i /ya,j

i] is xi; if Xkl
is fromya,j

i then it isya,j
i .

Step 2. We exploit properties ofL M (Prop. 2.11.1–2) to obtain the following two
successive functions. HereρR is theR-TLG induced by the GSOS ruleR (Def. 2.6).

(ν
tR[xi/y

a,j
i]

) ~X : | tR[xi/ya,ji] |(~X) −→ L tR[xi/ya,ji] M(~X) ,

LρRM ~X : L tR[xi/ya,ji] M(~X) −→ LσRM(~X) .

The functions are natural inX1, . . . ,Xm. We compose these arrows, apply the functor
F , and then post-compose it to(ξ(1)R) ~X

in Step 1. The outcome is a natural transforma-

tion (ξ
(2)
R)X1,...,Xm

: |σR| (F•X1, · · · , F•Xm) −→ F
(
LσRM (X1, . . . ,Xm)

)
.

Step 3. The natural transformationξ(2)R has been defined for each ruleR ∈ R;

we shall take their “union” to defineξ(3)σ , now for each operatorσ ∈ Σ. Specifically,
for each operatorσ ∈ Σ and e ∈ A, let Rσ,e denote the collection of those rules
R ∈ R whose conclusion is of the formσ(x1, . . . , xm)

e
→ · . By the image finiteness

assumption (Def. 2.1) the setRσ,e is finite. We define a function

(ξ
(3)
σ) ~X : |σ| (F•X1, · · · , F•Xm) −→ F

`

LσM (X1, . . . , Xm)
´

by
`

ξ
(3)
σ (x1, ϕ1, . . . , xm, ϕm)

´

(e)

:=
S

R∈Rσ,e

`

ξ
(2)
R (x1, ϕ1, . . . , xm, ϕm)

´

(e) .

Recall thatFX = (PωX)A andF•X = X × (PωX)A; the union is inPω(LσM(~X)).
Step 4. We shall extendF in the codomain ofξ(3)σ toF•, so that we obtain(ξ(4)σ) ~X

:

|σ|(
−−→
F•X) → F•(LσM(~X)). What we need is a function of the type|σ|(

−−→
F•X) →

LσM(~X); then we can tuple it withξ(3)σ and obtainξ(4)σ . Such a function is given by

|σ|(
−−→
F•X)

|σ|(~εX)
−→ |σ|(~X)

(νσ) ~X
−→ LσM(~X) .

HereεXi
: F•Xi → Xi is the first projection (§3.1);νσ is from Prop. 2.11.1. We used

the functoriality of the operation|σ| (Def. 2.9).

We shall further extend this definition ofξ(4)σ to (ξ
(4)
t) ~X

: |t|(
−−→
F•X) → F•(LtM(~X)),

now defined for eachΣ-termt. This is by induction on the formation ofΣ-terms.
If t is a variablexi (i.e. x1, . . . , xm ⊢ xi), we have|xi|(

−−→
F•X) = F•Xi (Def. 2.9)

and LxiM(~X) = Xi (Def. 2.10, the onlyR-TLG into xi is the identity). Hence the
function (ξ

(4)
xi) ~X

we are defining is of the typeF•Xi → F•Xi; it is defined to be the

identity. If t is a composed termσ(s1, . . . , sn), we define(ξ(4)t) ~X
by the composite:

|σ(s1, . . . , sn)|(F•X1, . . . , F•Xm)
∼=

|σ|
`

|s1|(
−−→
F•X), . . . , |sn|(

−−→
F•X)

´

|σ|
`

(ξ
(4)
s1) ~X , . . . , (ξ

(4)
sn) ~X

´

|σ|
`

F•(Ls1M(~X)), . . . , F•(LsnM(~X))
´

(ξ
(4)
σ)Ls1M(~X),...,LsnM(~X)

F•

`

LσM
`

Ls1M(~X), . . . , LsnM(~X)
´ ´

∼=
F•

`

Lσ(s1, . . . , sn)M(X1, . . . , Xm)
´

.

Here the first isomorphism is a variant of (4), for| | instead ofL M, which we readily
obtain. The second one uses functoriality of|σ| applied to functions(ξ(4)si) ~X

; the latter
are available by the induction hypothesis. The third function is what we defined in the
first half of the current Step 4; the last isomorphism is by Prop. 2.11.4.

Step 5. Finally we shall obtain the goal (9) of the current§3.2, by extending|t|

into LtM in the domain of the previous(ξ(4)t) ~X
: |t|(

−−→
F•X) → F•(LtM(~X)). By Def. 2.10

of LtM, such an extension can be done through finding, for eachR-TLG ρ : s ⇒ t, a

function of the type|s|(
−−→
F•X) → F•(LtM(~X)). The following composite does this job.

|s|(F•X1, . . . , F•Xm)
(ξ(4)

s) ~X
−→ F•(LsM(~X))

F•(LρM ~X)
−→ F•(LtM(~X))

HereLρM is from Prop. 2.11.2. We take the cotuple of these functions (i.e. definition by
cases) to obtain(ξt) ~X

.

4 The Microcosm Interpretation of GSOS Rules

Let (Σ,R) be a GSOS specification. We shall define itsmicrocosm interpretation. It
consists of, for eachΣ-termx1, . . . , xm ⊢ t,

theouter interpretationJtK :
(
Coalg•(F•)

)m
→ Coalg•(F•) ; and

the inner interpretation[t] : Zm → Z .

Recall (§3.1) that we identify an LTS withc ∈ Coalg•(F•). Hence the outer inter-
pretation is a “process operator”t acting on LTSs. Therefore the two interpretations
combined constitute an instance of the microcosm principle; see§1.2.

Definition 4.1 Let (Σ,R) be a GSOS specification, andt be aΣ-term.

1. We definet’s outer interpretationJtK : (Coalg•(F•))
m → Coalg•(F•) as fol-

lows, using functoriality ofLtM. The function(ξt) ~X
was introduced in§3.2 as “cat-

egorical GSOS rules.” Functoriality of thus definedJtK is easy.

(F•X1

X1

c1 , . . . ,
F•Xm

Xm

cm
)

JtK
7−→

F•

`

LtM(X1, . . . , Xm)
´

LtM(F•X1, . . . , F•Xm)
(ξt)X1,...,Xm

LtM(X1, . . . , Xm)
LtM(c1, . . . , cm)

The copointedness (§3.1) of the resultingF•-coalgebra is easy, too. It hasLtM(~X)—
theR-state space from§2—as a carrier.

2. We definet’s inner interpretation[t] : Zm → Z as follows. Once we have the outer
interpretationJtK, we can apply it to them-tuple(ζ•, . . . , ζ•) of the final copointed
coalgebraζ• : Z → F•Z. Then the resulting coalgebraJtK(~ζ•) induces a unique
“behavior” map into the final one, as below. This behavior mapis almost what we
want; we pre-composeθZ,...,Z : Zm → LtM(~Z) (from (8)) to it and obtain[t]. That
is, [t] := beh(JtK)(~ζ•) ◦ θ~Z

: Zm → Z.

F•(LtM(~Z)) F•Z

LtM(~Z)

JtK(~ζ•)

beh(JtK(~ζ•))
Z

finalζ•

Proposition 4.2 (Modularity) AssumeΣ-termst and ti are as in Prop. 2.11.4. The
operationsJ K and [] are compatible with substitution: given LTSsc1, . . . , cm ∈
Coalg•(F•) and “behaviors”z1, . . . , zm ∈ Z, we have

J t[ti/xi] K (c1, . . . , cm) ∼= JtK
(
Jt1K(~c), . . . , JtnK(~c)

)
;

[t[ti/xi]] (z1, . . . , zm) = [t]
(
[t1](~z), . . . , [tn](~z)

)
. ⊓⊔

We present our main result on compositionality. It relates the outer and inner inter-
pretations. The latter arose from the former via finality (Def. 4.1); the following result
follows straightforward from finality, too.

Theorem 4.3 (Compositionality) Given aΣ-termx1, . . . , xm ⊢ t and LTSsc1, . . . , cm
that belong toCoalg•(F•), we have the following diagram commute.

X1 × · · · × Xm

beh(c1) × · · · × beh(cm)

(θt)X1,...,Xm

Z × · · · × Z
[t]

LtM(X1, . . . , Xm)
beh(JtK(c1, . . . , cm))

Z

Here(θt)X1,...,Xm
is the “bookkeeping” function from (8);Z is the carrier of the final

coalgebra (§3.1). Putting it equationally: for any statexi ∈ Xi of each LTS we have

beh
(
JtK(c1, . . . , cm)

)
(θt(x1, . . . , xm)) = [t]

(
beh(c1)(x1), . . . , beh(cm)(xm)

)
.

That is: the behavior of a composed systemJtK(~c) can be computed from the behaviors
beh(ci) of its constituent parts, using the inner operator[t]. ⊓⊔

Let ζ̂ : Σ∗Z → Z be the (Eilenberg-Moore)Σ∗-algebra onZ induced by a GSOS
specification(Σ,R), due to [22, Cor. 7.2]. HereΣ∗ is the free monad induced by the
signatureΣ. The following result—claiming that our framework is indeedan extension
of (the GSOS fragment of) [22]—holds because ourξt in §3, when suitably restricted,
coincides with the categorical GSOS in [22].

Theorem 4.4 Let x1, . . . , xm ⊢ t be aΣ-term; letκt be the corre-
sponding coprojectionZm →֒ Σ∗Z. For these, the diagram on the
right commutes. ⊓⊔

Σ∗Z
ζ̂

Z

Zm

κt
[t]

5 Conclusions and Future Work

We have extended our previous work [14] so that any process operator specified by
GSOS rules can now be interpreted as a component connector that combines LTSs as
components. This outer interpretation gives rise to a canonical inner interpretation that
coincides with what is derived by the bialgebraic modeling of SOS [22].

Our framework is categorical, hence comes with great potential generality. This
includes application to systems other than LTS—like bialgebraic modeling applied to
weighted systems [17]—which we wish to pursue. In particularwe believe our generic
construction ofR-state spaces will carry over.

Regular languages and automata seem to be the first computer science example of
the microcosm principle. Our current framework fails to include it. One difficulty is:
the outer operators (specified in GSOS-like rules) are naturally defined onNFAs, while
the inner operators is on regular languages that form the final DFA. Use of coalgebraic
techniques such as trace semantics [13] is being investigated.

The notion of TLG and operations on them (§2) indicates strong relevance of rewrit-
ing logic [19] and the theory ofgeneralized operads/combinatorial species/clonesre-
cently pursued by many authors, including [10]. We are especially interested in the
latter, but not only because of TLGs. Roughly we can call their theoryuniversal al-
gebra in varying contexts. Here a “context” can be a monoidal one (where variables
are not to be deleted, duplicated or swapped), a symmetric monoidal one (where swap-
ping is allowed), a Cartesian one (where all three are allowed), and so on. In fact such
a context can be thought of as algebraic structure itself; hence the theory may be also
calleduniversal (algebra in algebra). The microcosm principle then offers a degenerate
example of such, where we have the same structure on the two levels.

References

1. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Bergstra, J., Ponse,
A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 197–292. Elsevier (2001)

2. Baez, J.C., Dolan, J.: Higher dimensional algebra III:n-categories and the algebra of
opetopes. Adv. Math 135, 145–206 (1998)

3. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for modeling and
verifying components and connectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINA-
TION. Lect. Notes Comp. Sci., vol. 5521, pp. 247–267. Springer (2009)

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in reo
by constraint automata. Science of Comput. Progr. 61(2), 75–113 (2006)

5. Bliudze, S., Krob, D.: Modelling of complex systems: Systems as dataflow machines. Fun-
dam. Inform. 91(2), 251–274 (2009)

6. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journ. ACM 42(1), 232–268
(1995)

7. Bonsangue, M.M., Clarke, D., Silva, A.: Automata for context-dependent connectors. In:
Field, J., Vasconcelos, V.T. (eds.) COORDINATION. Lect. Notes Comp. Sci., vol. 5521, pp.
184–203. Springer (2009)

8. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comp.
Sci. 366(1–2), 98–120 (2006)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
10. Curien, P.L.: Operads, clones, and distributive laws (2008), preprint, available online
11. Hasuo, I.: Tracing Anonymity with Coalgebras. Ph.D. thesis, Radboud Univ. Nijmegen

(2008)
12. Hasuo, I.: The microcosm principle and compositionality of GSOS-based component calculi.

Extended version with proofs, available online (May 2011)
13. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Meth-

ods in Comp. Sci. 3(4:11) (2007)
14. Hasuo, I., Jacobs, B., Sokolova, A.: The microcosm principle and concurrency in coalgebra.

In: Foundations of Software Science and Computation Structures. Lect.Notes Comp. Sci.,
vol. 4962, pp. 246–260. Springer-Verlag (2008)

15. Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and observations
(2005), Draft of a book,www.cs.ru.nl/B.Jacobs/PAPERS

16. Klin, B.: Bialgebraic methods and modal logic in structural operational semantics. Inf. &
Comp. 207(2), 237–257 (2009)

17. Klin, B.: Structural operational semantics for weighted transition systems. In: Palsberg, J.
(ed.) Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday, Lect. Notes Comp. Sci., vol. 5700, pp. 121–139. Springer-
Verlag (2009)

18. Lenisa, M., Power, J., Watanabe, H.: Category theory for operational semantics. Theor.
Comp. Sci. 327(1–2), 135–154 (2004)

19. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor. Comp. Sci.
285(2), 121–154 (2002)

20. Plotkin, G.D.: A structural approach to operational semantics (1981), report DAIMI FN-19,
Aarhus Univ.

21. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Quantitative kleene coalgebras.
Inf. & Comp. 209(5), 822–849 (2011)

22. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer
Science. pp. 280–291. IEEE, Computer Science Press (1997)

