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Abstract. Inthe previous work by Jacobs, Sokolova and the author, synchsono
parallel composition of coalgebras—yielding a coalgebra—and parahebosi-

tion of behaviors—yielding a behavior, where behaviors are identifiedstaties

of the final coalgebra—were observed to form an instance ahthecosm prin-
ciple. The microcosm principle, a term by Baez and Dolan, refers to the glener
phenomenon of nested algebraic structures such as a monoid in a alaradid
egory. Suitable organization of these two levels of parallel composition lad to
generalcompositionalitytheorem: the behavior of the composed system relies
only on the behaviors of its constituent parts. In the current paper tnisefr
work is extended so that it accommodates any process operator-estotted

to parallel composition—whose meaning is specified by means of GSOS rule
This generalizes Turi and Plotkin’s bialgebraic modeling of GSOS, by aipw

a process operator to act as a connector between components &bramlg

1 Introduction

1.1 Structural Operational Semantics and Its Bialgebraic Maleling

Structural operational semantics (SA3Y] is a well-developed mathematical tool for
defining operational semantics of a programming language.tdased or50S rules
from which transitions between program terms are derivels 8as been notably suc-
cessful forprocess calculisimple programming languages for concurrent processes.
Varioussyntactic formats-syntactic restrictions on SOS rules—have been proposed to
ensure good properties of SOS (see [1] for a survey)@8BOS formal6] is one of the
most common among them.

In SOS for process calculi, dynamic behaviors of processesh-as(a;b) || b
(0;b) || b—are derived by structural induction on the construction rafcpss terms.
In categorical terms, dynamics of processes (the formeryrardeled by @oalgebra
while the set of process terms forms an initidebrathat supports structural induction
(the latter); see e.qg. [15]. It is Turi and Plotkin’s seminalrk [22] that combines these
two on a categorical level, resulting irbéalgebraic modelingf SOS.

* Thanks are due to Marcelo Fiore, Masahito Hasegawa, Bart JacabsARde Mellies,
Bartek Klin, John Power, Ana Sokolova and Sam Staton for helpful dions. Helpful com-
ments from the reviewers for the earlier versions of this paper arefgjfgtacknowledged.
Supported by PRESTO Promotion Program, Japan Science and TagphAgency.



Basic bialgebraic modelingn the simplest setting in [22], a bialgebra is a cardér
equipped with both algebra and coalgebra structures: — X — FX. Typically,
the functor for the algebra part i€ = [] ..(_)*™(?) : Sets — Sets, a functor
that represents a process algebra signafijrand the other functor i§ = (P,_ )4 :
Sets — Sets, a functor for coalgebraic modeling of labeled transitipatems (LTSs).
HereP,, denotes the finite powerset functor, afAds the set of labels. The algebra and
coalgebra structures are further subject to a certain coliltg condition via a natural
transformation” F' = F'X7; this natural transformation is what represents SOS rules.
The following two are almost only examples of such bialgsbinahe literature.

— The one induced by the initial algebtal — I (or, slightly more generally, a free
algebra). Herd is the set of-terms. The induced coalgebfa— FI is the tran-
sition structure between process terms, which is what isettin the conventional
SOS framework [20].

— The one induced by the final coalgebta — FZ (or, slightly more generally,

a cofree coalgebra). Herg is the set of “behaviors’—specifically bisimilarity
classes of states of LTSs (see e.g. [§1.3]).} Existence of the induced algebra
structureX’Z — Z implies that the process operators are well-defined modulo
bisimilarity, that is,bisimilarity is a congruenceAs laid out shortly in§1.2, this
induced algebraic structure is what is generalized in theeatipaper.

Bialgebraic modeling of GSOS ruldsturns out, however, that only a very limited class
of SOS rules can be represented by a natural transformatitwe dorm X F = F .
Therefore in [22] a couple of extensions of the above badierme are proposed; the
most notable among which is for the GSOS format. It is suclr thaatural trans-
formation representing GSOS rules is of the fofiF, = FX*. Here Y* is the
free monadover X, with 3* X being the set of’-terms that can contain elements
of X as variables. The functdr, is thecofree copointed functaover F', concretely:
F,X = X x FX.In[22] itis shown that angzSOS specificatiera set of SOS rules
compliant with the GSOS format—can be represented by a natarsformation of
the formX'F, = F'X* and vice versa. See [16] for an introduction to the develagme

The idea of bialgebraic modeling of SOS has been furtheygarby many authors.
See [16] and the references therein.

1.2 Parallel Composition of Coalgebras and the Microcosm Priciple

In bialgebraic modeling, it is the elements of the carriea bfalgebra that are combined
using process operators. As described above, typical deangb such are: process
terms (combined syntactically); and “behaviors,” i.eitbitarity classes of LTS states
(combined thanks to ‘bisimilarity is a congruence’).

However, the rise ofomponent calculas a foundation of component-based system
design (see e.g. [4, 7]) poses a new challenge. In compdraesatd design it is existing
systems that are to be composed; and this lies out of the refabialgebraic model-
ing. Specifically, ‘existing systems’ do not always mearot@ss terms’: one may be

! “Bisimilarity” here is more preciselpehavioral equivalengehey coincide for functor#’ that
weakly preserve pullbacks (see e.g. [15]). This is the caseMith (P,,_ ).



given two LTSsS; and S, that are generated from two process terms written in two
different process calculi. ‘Existing systems’ do not nesegdy mean their ‘behaviors’
either: given two LTSsS; andS,, calculating their full behaviors is usually expensive.
Therefore it is nice to be able to combine LT&sthey are—much like a product of two
automata (e.g. in [4]), where one takes the product of twie Sjgaces.

This idea of combining LTSs as they are, using a process tipendose mean-
ing is specified by SOS rules, has been in the literature aitiglior explicitly (e.g.
in [5, 8]). However this idea is often regarded as a “cosmetitension to SOS and its
mathematical/categorical foundation has not been sysiesiig pursued.

In our previous work [14] we formalized combination of LTSs: @ functor||:
Coalg(F) x Coalg(F') — Coalg(F) arising from a natural transformatieync y y :
FX x FY — F(X xY).If F = (P,_) this allows us to model synchronous par-
allel composition of LTSs (but hardly any other operatoih)efie the carrier of the LTS

(X S FX) || (Y < FY) is X x Y. The natural transformatiosync specifies a
“synchronization mechanism,” which represents a verytéiohiclass of SOS rules.
The operatior)| for composing LTSs yields a canonical op- F
eration|| for composing “behaviors” like the one in the bialf'(Z x Z) - =+ FZ
gebraic modelingil.1). Namely, behaviors are identified with _ T¢I¢ r

elements of the final coalgebta: Z = FZ and|| is induced IxZ-—m2Z
by the coinduction diagram on the right.
Furthermore in [14], the two composition operators
|| : Coalg(F) x Coalg(F) — Coalg(F) and |: ZxZ—Z

with the latter being a coalgebra morphide¢ || ¢ — ¢, are identified as an instance
of so-called thamicrocosm principlelt is a term coined in [2], referring to the phe-
nomenon that: a categofyand its objectX € C have the “same” algebraic structures,
with X'’s inner algebraic structure depending @rs outerone. A prototypical example
is a monoid objecX in a monoidal categor{: they both have a multiplication opera-
tor(m: X® X — X and® : C x C — C); and the definition ofn usesx init. In [14]
we formalized what the microcosm principle means—espgoietiat is meant by the
“same” algebraic structures on different lev€land X € C—using Lawvere theories.
As an application we proved @mpositionalityresult: beh(clld)
for any coalgebrast - FX andY % FY we have the X XY Z
top diagram on the right commute, where maps likl(c) Peh(¢)xben(d) H
are by coinduction (the bottom diagram). This reads: the beZ x Z

havior of the composed systeni| d can be computed from F beh(c)

the behaviors of andd, using||. In particular—denoting L - gZ
bisimilarity by ~—we have that ~ ¢’ andd ~ d’ implies X-—---2Z
c|l d~ | d, with regards to an appropriate choice of beh(c)
initial states.

1.3 Microcosm Interpretation of Full GSOS Rules



The state of art in [14] roughly corre- i _ | composing both
sponds to the basic bialgebraic mod- composing behaviofsy o ' henaviors
eling in§1.1 where an SOS specifica-sync | [22], XF = F~ [14]

tion is represented by a natural tran$ull GSOY| [22], *F., = F~~ | current work
formationX'F' = FX (see the table).

The current work extends [14] by accommodating any procpssator whose meaning
is specified by GSOS rules. Some GSOS rules are shown beloassuene that the set
of labels isN U N U {7}, consisting of names, conames and the internal action.

a ’ a / a / a /
X X — r— T —
— () —2— Ry T Y (syne) —— (AT)
zlly=aly zlly=ally zlly=a |y a—0
Ny x Va € A %y % af = af *
x:’ix/ (L) # ( ) y—y (R) ' aca—>/x ' 0 *ma—mln . ()
Ty — x5y m;yiy' le = o' ||z zt = ax
We use these rules for constructing a new LTS from given LT8& means:
v 2o [ms] vy [07]
(IISyNC) is read as (IIsync) (1)

zlly>a’lly |inS|T

with an additional class of variables (@and7") that tells in which LTS each transi-
tion takes place. The variablesy here designate states of LTSs—unlike in the usual
reading where they designate process terms. Differerabvias can designate states of
distinct LTSs: in (1) andx’ are states of, while y andy’ are of 7.

1.4 A Technical Challenge: State Spaces

Think of the new reading of the rulesR) and (). The challenge is: what is the state
space of the sequential compositiSn7 ? We can start withk' x Y—whereX andY
are the state spaces®fand7, respectively—denoting its element byy. According

to the rule (R), however, a state; y can “evolve” intoy’, which is no longer inX x Y.
So the answer seems to Bex Y + Y. But how about the replicatiol& ? One would
think of X+ = [[,_,, X™ or X*; both seem plausible.

In this paper we introduce a uniform, syntactic and modulay wf constructing
such a state space, so that it is compatible with the giveR s8tGSOS rules. We shall
call it an’R-state spaceThe construction is syntactic in the sense thaRastate space
consists of rather simple sets liké; x --- x X,,, summed up over all the relevant
algebraic terms (Def. 2.10). The construction is modul@ahbse théR-state space for
a composed terrhcan be calculated using the state spaceg'$@mubterms as building
blocks ((4) later). Such modularity is an essential prgpeftan “algebra.”

As a technical tool in this construction we introduce theiomobof term lineage
graph (TLG) A TLG is roughly a graph between two terms (thought of ase&ees)
that keeps track of evolution of terms (likey — ¢’ in (; R) above).

Organization of the papern §2, after fixing notations for GSOS rules we describe
the construction ofR-state spaces. I§8 we present a GSOS specification as a natural



transformation: this generalizesfF, = FX* in [22] (for composing different LTSs)
as well assyncy y @ FX x FY — F(X xY) in [14] (for the full GSOS format).
This results in the two interpretations of process opesaitog4, acting on LTSs and
on behaviors. We prove a compositionality result, and stataur framework indeed
generalizes the GSOS fragment of [22] sBiwe conclude and discuss related work.

2 State Space Compatible with GSOS rules

2.1 GSOS specification

We first fix a signature” of a process calculus. For eaghe N it determines the set
X, of n-ary operators

Definition 2.1 (GSOS) A GSOS ruleR (as in [22]) over a signatur®’ is a syntactic
expression of the following form.

a a A, 1 i
{w; &y yogagtm] o, %}féﬁm @)
o(x1,. .., Ty) >t

Here A is a fixed set ofabels xi,yf’j are distinct variablesN¢ is a natural number
that is0 for almost everyi anda; B; is a (possibly infinite) subset of; o is anm-ary
operator inX’; andt is aX-term where only:; andy;”’ occur as variables. For a GSOS
rule R like (2), the operatos on the left in the conclusion shall be denoteddyy, the
termt on the right is denoted bi.

A GSOS specificatiois a pair(X, R) of a signatureX’ and animage-finitesetR
of GSOS rules ovel’. Here image-finiteness means that there are only finitelyyman
rules inR, onces € X andc € A are fixed.

Our another reading of (2)—in the sense of (1)—is as followsyitgy a transition
inanew LTSo(S1,...,Sm).

b
{2 &y mS}jg;‘gj N gy A inS PR

(fl,...,wm)ﬁt inO'(Sl,...7Sm)

HereS,,...,S,, are a new class of variables that designate LTSs; variablesdyf’j
with a subscript therefore designate states$f
We will need a careful inspection of the structuregdterms. We fix some notations.

Notation 2.2 We assume that &'-term ¢ always comes with an explicitontextof
variablesx, ..., x,, - t. Any occurrence of a variable inmust be that of:1, z-, . ..

or x,,; each variabler; can have multiple or no occurrencestinFor example, we
distinguish two terms:; F x; || 1 andxy, z2 F 21 || 1 because of different contexts.
In the sequel, however, we suppress the contextdftarm when it is obvious.



Definition 2.3 (i¢, |t| and t) Given aX-termzy,...,z,, - t, the number obccur-
rencesof variables irt is denoted byz|. Note that this is not necessarily the sameas
Then the ternt induces an “indexing” functioi} : [1, |t|]] — [1,m] such that: the-th
occurrence of variables (counted from left to rightyiis that ofz;, ;).

The term obtained from, by replacing all the occurrences of variables by those of
distinct variablesry, . . ., z; from left to right, is denoted by/. This is thelinear term
induced byt. An easy consequence ts= te[wit(l)/xl, s T ey /)

For example, let be the termeq,z2 F 2o || (z1 ||'z1). Thenjt| = 3,0 : 1 —
2,2+ 1,3 — 1. The termt’ is z1, w9, 23 - 21 || (22 [|'z3).

2.2 Requirements on State Spaces

Shortly we will introduce the notion gérm lineage graph (TLGince it is technically
rather involved, we shall first lay out what we aim to achiesig TLGs.

We construct state spaces for LTSs liRe || Sq, S1;S2, !S, etc., deriving from
given GSOS rules. Lety,...,x,, F t be aX-term andX,,..., X,, be sets, with
the idea thatX; is the state space of the L1§. We shall define arR-state space
(t)(X1,..., X.m). The following requirements are essential to to base thadveork
in [14] on it; these will be exploited in the technical devehaent later ir§3.

—

Requirements 2.4 1. The seft)(X) should accommodatsitial states that are there
prior to any evolution—such as, || z2 in S; || Sz or lx in IS (see§l.4). The set
of such initial states are given by

|t|(X1,...,Xm) = Xit(l) Xoee XXit(\tl) s (3)

wherei, and|¢| are from Def. 2.3. Note that|(X) need not be the same &3 x
- x X,,. Our definition (3) implies, for example, that we allawy || =} (with
x1,x) € Xy andzy # 2}) as an initial state in an LTS, || S;.
2. The set(t)(X) should also accommodate those states which would ariseghro
“evolution” specified by GSOS rules (s€&.4).
3. Functoriality: the operatior(t) extends to a functdbets™ — Sets.
4. Modularity: the operation|_)—applied to a termt and yielding a functoit) :

Sets™ — Sets—is compatible with substitution of terms. That is,

Qtlte/wil) (Xa,eo Xon) 228 ((ED(X), -, (EaD(X)) (4)

2.3 Term Lineage Graph (TLG)

First we note that &’-termt can be identified with itparse treelts leaves n
are variables an@-ary operators; and its internal nodes are operators w,i)th/.‘
positive arities with a suitable branching degree. For glanthe term o ]
x1 ||'z1 is understood as on the right. o
Definition 2.5 (Term lineage graph) Let s, t be X'-terms. We require them to be in the
same variable context (Notation 2.2}, ...,z b s,t. A term lineage graph (TLG)

p from s to ¢, denoted by : s = ¢, is an unlabeled directed graph (like in (5)) whose
nodes are nodes efandt (seen as parse trees), such that:



— any edge is from a node in tliklwmain terms to a node in theodomain ternt;

— each node i has exactly one outgoing edge;

— the edges armonotoneassume that the origin of one edge is a descendant (in the
parse trees) of the origin of another edge. Then the target of the formeti$o a
descendant of (or the same as) that of the latter;

— an edge from an operator symhofoes into a (not necessarily the same) operator
symbol,

— an edge from a variable; in s goes into the same variablg in ¢.

A TLG is sometimes denoted by, . .., z,, - p : s = ¢, making its context explicit.

Definition 2.6 (The TLG pgr) Let R be a GSOS rule of the form (2). It induce3 G
pr defined as follows. Its type isg : tr[xi/y;”] = or(x1,...,xm). Concretely

— each node in the domain tertp [z, /y;"’] that is labeled with an operator symbol
is tied to the root node (labeled witty;) of the codomain termarg(x1, . .., T );

— each node in the domain term that is labeled with a variaple tied to the unique
occurrence of the same variahlgin the codomair g (1, . . ., ).

Intuitively, the substitutioryf’j — x; in the domain termg[z; /yf’j ] forces every
occurrence of a state & to be denoted by;.

Here are some examples of TLGs induced by GSOS rules. Thkls@s represent
the order in each parse tree; the dotted lines are the edgjes oL Gs.

2
o2 w = o]
o n R o T2 . » (%)
¥ z > Z2

T

Definition 2.7 (Operations on TLGs) — (Identity) For each¥-term s, the identity
TLGid, : s = s is the one in which each node in the domain term is tied to the
same node of the codomain term.

— (Composition) Given two successive TL@S ¢t = s andp’ : s = u, thecompo-
sition p’ e p : t = wu is obtained by composing two successive edgesaridp’,
and then forgetting about the mediating teym

— (Substitution) Letry,...,z, F p: t = ¢’ be a TLG. Assume further that we have
aTLGzy,...,om F pi : t; = t}, for eachi € [1,n].2 We define thesubstitution
plpi/xi], which is a TLG between substituted terms frofh /«;] to t'[t;/x;], as
follows. Pictorially:

= L1, L2
N o ARV (A A

That is,

2 Distinguishm andn. Note we have the same context for allgf



e Each node in the (uppet)part of the domain ternit; /z;] has the same out-
going edge as ip, into thet’-part of the codomain term.

e As for a node in the (lower);-part of the domain term: basically the outgoing
edge is the same as the corresponding ong int; = t.. However, liket}
in the above example, there can be multiple occurrencésiofthe codomain
term; we must decide which occurrence the edge points taeTle use the
information inp : ¢t = t': we follow the edge irp that starts from the corre-
sponding occurrence of a variable.

Let us now illustrate the operations on TLGs. Using three Sl : x2 = 71; 22,
idg, : 1 = 21 andid,s : 27 = 27, we can form the substitution.r) [id., /21,1d.: /2]
that is shown below on the left. The equality below asseds, i we pre-compose
p((_)+) to that substitution, then it is the same as the identity TLG.

P(R) 1(1751 Jx1,id */322

S8 e - gt e
y L1

Finally, a given seR of GSOS rules determines a class of TLGs that are relevant to i

Definition 2.8 (R-TLG) Let (X, R) be a GSOS specification (Def. 2.1). The class of
R-TLGsis a subclass of TLGs betweérnterms, defined inductively as follows: 1) for
each GSOS rulé& € R, the induced TLG i (Def. 2.6) is anR-TLG; 2) the class of
R-TLGs is closed under identities, composition, and sultsit (Def. 2.7).

2.4 7R-State Space

We define arR-state spaceperator(t). Let us fix a GSOS specificatidil’, R).

Definition 2.9 (Initial state space) Given aX-termzxy, ..., z,, - t, we define theni-
tial state space functot| : Sets™ — Sets by (3) in§2.2. Its functoriality is obvious.
We are overriding the notatide| (cf. Def. 2.3); this will not cause any confusion.

Definition 2.10 (R-state space)Let ¢t be aX-term. We define th&-state space func-
tor (t) : Sets™ — Sets by:

(X1, Xm) = [[{Isl(X1,....Xm) [ p:s =1t R-TLG} . @

Here|s| is the initial state space functor (Def. 2.9); the sliinis taken over all the
R-TLGs p with a codomain tern. We have one summand for eggmot for eachs.

Let us now calculate sonig-state spaces. We take Rsthe set of rules presented
in §1.3; we take the corresponding signatire= {||,!,;,(_)*} U{a | a € A}.

ForaruleR € R whoseprincipal operatoris |—namely(||L), (||R) and(||Sync)—
the induced TLGyg coincides with the identity (Def. 2.7). It follows that aR¢TLG of



the form- = 1 || 2 is the identity TLG. Hence by (7) we haje; || z2)(X1, X2) =
|l’1 || $2|(X1,X2) = X1 X X2.

For the operator, an R-TLG whose codomain term isy,zo F xq;xo IS €i-
ther the identity orp.ry (see (5)). Hencdw:; zo) (X1, Xo) = |v1;22](X1, X2) +
|22 (X1, X2) = X1 x Xa+ Xo. Here the termx, inside the expressions| is 1, z2 F
22, t0 be precise about its context.

Regarding!, we have countably manR-TLGs
whose codomain iseq:

Moy g o) /72)

O

id: lxy =z,
pey:  z1||ley =l
pay ® (idg, znlpy/m2]) © 21 || (21 |'21) =121, etc. 1

The third one is depicted above. Therefore we have:

(e )(X) =TT | ) Gl G ) - | (x0) = T X = X

i>0 i>0

Regarding(_)*, from the equality (6) it follows that the situation is sianilto
! above. Namely, we have orfe-TLG for each of the following typest; = =7,
ry; 2} = 2%, 71; (21 2%) = 27, etc. Hence we haver?) (X)) = X

We now verify that Requirements 2.4 are indeed fulfilled. Tthen 3 is obvious.
The proof is in [12, Appendix A].

Proposition 2.11 1. There is a canonical embedding ) ¢ : t|(X) — (t)(X). This
extends to a natural transformation : |t| = (¢) : Sets™ — Sets.

2. Given anR-TLGp : s = t, it induces a canonical mafp) ¢ : (s)(X) — (t)(X).
It also extends to a natural transformatigp) : (s) = (¢).

4. The operatiorf_ ) is compatible with substitution: for-termsz;, ..., z, - t and
x1,...,Tm  t; for eachi € [1,n], we have a canonical isomorphism (4). O

Using the embedding; ) ;; in Prop. 2.11.1, we can also embed theXetx - - - x X,
in the R-state spacét) (X1,. .., X,,). Thisis by the followingx, . x,.:

(vt) g

0g == (Xix-— xXpm 2577 X0y % x X, o = (X)) — @)(X)) . (8)

where(v;) ¢ is a function such thates, . .., xm) = (75,1, - - -, Ti,(e))) (cf. Def. 2.3).
It rearranges arguments, . . . , z,,, according to the occurrences of variableg.in

Remark 2.12 Our choice of state spaces (Def. 2.10) is in fact one out ofeatspm.
The smallest extreme in the spectrum is obtained by: sigglirt the “reachable” part
of ourR-state space and then quotienting it out by the bisimilafitthough this yields
a smaller state space, calculating such is expensive. Meréodoes not satisfy Re-
quirements 2.4.4, breaking modularity/algebraicity & whole framework.

The biggest extreme is to take, as the state spd¢é&, ..., X,,), the whole set
of XY-terms with all states; € X; as variables. This satisfies Requirements 2.4 so we
could develop the theory on top of it. However, we claim it ®odur finding that we



can trim down this big state space into the one in Def. 2.1(alicular, our refined
definition yields( || ) (X1, X2) = X1 x X3 which matches with intuition as well as with
the usual definitions of product of automata in e.qg. [4].

In-between is the “Kleene-style” composition of automathe classic result on
regular language and DFA/NFA has recently seen its vastrgkzegion in coalgebraic
terms; see e.g. [21]. In this approach the Kleene (staF preserves finiteness of state
spaces, whereas our approach yields the state spatigat is inevitably infinite. How-
ever the definition of Kleene-style composition calls foffetient ingenuity for each
operator; it is not clear if that can be done uniformly for aperation defined in GSOS.

We further note that our choice goes well witfst-order representatioof LTSs.
(Variants of) the latter are now widely used (e.g. CARML if)[Because it enables
BDD-based representation and symbolic model checkindfd]rst-order representa-
tion, a state is represented by an assignment of valuesitibles such afagent1 —
critical, agent2 — noncriticall; hence a state space is tpeductof the value
domains for the variables. Combining such state spaces aysn& products and co-
products (7) could be done in a programming language withmckd type constructors.

3 Categorical GSOS Specification

We introduced appropriate state spacesSofl Sz, S1; Sa, etc. in§2; we wish to derive
transition structures on those state spaces, making th&s. il concrete terms it is via
derivations using GSOS rules, with their reading like (h)categorical terms, GSOS
rules are first translated into a natural transformafio¢for each ternt, this section);
which gives rise to transition structureglj.

3.1 Copointed Functors and Copointed Coalgebras

We will need the following notion of copointedness—a techhilout standard one in
the field (see e.g. [18, 22]). For the functBr= (P,_)* : Sets — Sets, we set a
functorF, : Sets — Setsby F, X := X x FX = X x (P,X)*. We denote the first
projectionF, X (= X x FX) — X byex.

An F,-coalgebra: : X — F,X is said to becopointedif the
diagram on the right commutes. Intuitively, the additionam- X f FX X
ponentX in F, X = X x F'X records the “original” state before ;}
a transition; indeed for a copointdé,-coalgebrac : X — X x (P, X)* we have
c(z) = (x, Aa. {2’ | + % 2'}). The next result is standard and easy; see [18].

Lemma 3.1 Let us denote the category Btcoalgebras byCoalg(F'); and the cate-
gory of copointedr,-coalgebras byCoalg, (F,). The two categories are isomorphic:
Coalg(F) = Coalg,(F,). In particular, Coalg, (F,) has a final object (dinal co-
pointedF,-coalgebrathat corresponds to a final object @oalg(F). ad

Due to this result, in the sequel we identify an LTS with a dofeal coalgebra for the
functor F,X = X x (P,X)A. Bisimilarity in LTSs can then be captured by the final
copointedF,-coalgebra—which we denote jy : Z — F,Z. Note that the coalgebra
(e has the same carrier sétas the finalF’-coalgebra; this is also a standard fact.



3.2 GSOS Rules, Categorically

We shall translate a s& of GSOS rules into functions of the following type:

g W(FX1, o, FoXm) — Fo((E)(X1,- ., X)) ©)
defined for eacho-termzy, ..., z,, F t and setsXy,..., X,,. HereF = (P,_)4,
andm is the length ot’s contextzy, . .., z,,, - t. These functiong;) ¢+ form a natural

transformatiort;, defined for each terrh The difference from the natural transforma-
tion YF, X = FX*X in [22] is that ours(¢;) ¢ is required to be natural in multiple
setsXy, ..., X,,. This is because we deal with state spaces of multiple LTSs.

Towards the natural transformatignin (9) we proceed step by step: we first derive
from a GSOS rulgr a natural transformatiofﬁ), from which we derivegg), @,
finally reachings; of the desired form.

Step 1. Let R € R be a GSOS rule in (2). It induces the following function
( g))x1 ..... Xt

GO 0
lor| (FoXa, o, FoXpm) =% F([trloi/y7]] (Xn, - X))

e Tliepm(Xi x (PuXi)?) (€ (P ([ talz/v1 (X))

by ((€5))5(x1, 01, Xm, om) ) (€)

; i | Vi.Vb € B;. ¢i(b) =0, and
_ o o @d [, Q] ) ¢
- {tR[Xl/“’“Yi W Viva.v € [, NE]. 359 € i(a).

A

Herex; andy?’j denote elements of;; ¢; belongs ta P, X;)4; ande € A is a label.
Note thatjo g |(Fo X1, -+, FeXp) = Fo X1 X --- X Fo X, (Def. 2.9). The expression
trlxi/zi, ;7 /y;’] denotes the obvious element of the|set|x; /y] |( X1, ..., Xm).
To be precise, the latter set is of the foria,, x --- X X’wa with each component
X}, coming from an occurrence of eithey or yf’j in tg. If Xy, is from x; then the
I-th component of g [x; /x;, y*7 /y®7] is x;; if X}, is fromy®7 then itisy®.

Step 2. We exploit properties of_) (Prop. 2.11.1-2) to obtain the following two
successive functions. Hepg, is theR-TLG induced by the GSOS rulg (Def. 2.6).

W i)+ |12/ 90 TIX) — (tnloi /71X
(oD 5 : (trlzi/yi " IN(X) — (or)(X) .
The functions are natural iX4, ..., X,,. We compose these arrows, apply the functor
F, and then post-compose it @g)))? in Step 1. The outcome is a natural transforma-
tion (€ x, . x ¢ or| (Fo X1, FoXpm) — F((or) (X1, -, Xm) ).
Step 3. The natural transformatio@g) has been defined for each rule € R;

we shall take their “union” to defineé3), now for each operatar € Y. Specifically,
for each operator € ¥ ande € A, let R, . denote the collection of those rules

R € R whose conclusion is of the fore(z1, ..., =) 5 .. By the image finiteness
assumption (Def. 2.1) the sB, . is finite. We define a function

D) g o] (FoX1, -, FoXm) — F( (o) (X1, Xm))

by (653)(}(179017 . ~7Xm:@m) )(e)
= URe’Rd,E (§g>(xlv 3017 e ,Xm,SDm) )(6) N



—

Recall thatF' X = (P, X)# andF X = X x (P, X)A the union is inP,, ((o) (X)).
Step 4. We shall extend” in the codomain ofg % to F,, so that we Obtal(lf(4 )%
|0|(F.X) — F,({o)(X)). What we need is a function of the tyne|(F.X) —
(o) (X); then we can tuple it Wltﬁc(, ) and 0btairﬁ§4). Such a function is given by

—

o] (FeX) 5 1] (%) " o) (X) .
Herecy, : FoX; — X; is the first projection§3.1); v, is from Prop. 2.11.1. We used

the functoriality of the operatiofrr| (Def. 2.9).

We shall further extend this definition 6§ to (¢(")) ¢ : [|(FeX) — Fu((£)(X)),
now defined for eaclU-term¢. This is by induction on the formation df-terms.

If tis a variablex; (i.e.x1,..., 2z, - x;), we have\a;i|(F.—)>() = F, X, (Def. 2.9)
and (z;)(X) = X, (Def. 2.10, the onlyR-TLG into z; is the identity). Hence the
function (gg(jf)))z we are defining is of the typ€, X; — F,X;; it is defined to be the
identity. If ¢ is a composed term(sy, . .., s,), we define(gt“)))g by the composite:

lo(s1,. ., $n)|(FeX1,..., FeXm)

1 1 o (s1](FoX), ..., |sn](FeX)
EGRPNGFS ( )ﬁ
@ o (Fo((s , Fo((sn)(X)))
(€ ) 510 (%), 5nd (R) N
N F.( o ( s (s (X) )
— Fo((o(s1,.- -, )D(Xh. , Xm))

Here the first isomorphism is a variant of (4), for| instead of{_), which we readily
obtain. The second one uses functorialitydfapplied to function:ég,ﬁf)) < the latter
are available by the induction hypothesis. The third furcis what we defined in the
first half of the current Step 4; the last isomorphism is bypPgo11.4.

Step 5. Finally we shall obtain the goal (9) of the currej.2, by extendingdt|
into (¢) in the domain of the previOL(agt(‘l))X : \t|(F.—>X) — F,((t)(X)). By Def. 2.10
of (t), such an extension can be done through finding, for €&diLG p : s = ¢, a
function of the type}s|(F.—)X) — F,((t)(X)). The following composite does this job.

63 =\ Felle) %)
—

05 B () () Fo((t)(X))

Here(p) is from Prop. 2.11.2. We take the cotuple of these functioasdefinition by
cases) to obtaif;) ¢

IS|(FoaX1,..., FoXp) ot

4 The Microcosm Interpretation of GSOS Rules

Let (¥, R) be a GSOS specification. We shall defineniti&rocosm interpretationit
consists of, for eacy-termz+, ...,z F ¢,

theouterinterpretation[t] : (Coalg,(F,))" — Coalg,(F,) ; and
theinner interpretation[t] : Z™ — Z .



Recall §3.1) that we identify an LTS witlke € Coalg,(F,). Hence the outer inter-
pretation is a “process operator’acting on LTSs. Therefore the two interpretations
combined constitute an instance of the microcosm princgaes1.2.

Definition 4.1 Let (X, R) be a GSOS specification, anthe aX-term.

1. We definet’s outer interpretation[t] : (Coalg,(F.))™ — Coalg,(F,) as fol-
lows, using functoriality oflt). The function(¢;) ¢ was introduced i§3.2 as “cat-
egorical GSOS rules.” Functoriality of thus defingflis easy.

Fo((#)(X1,..., Xm))

FoX1 FoXom 11 M(Ee) X1, Xom
(e e ) B wEx. RX)
Xl Xm, 4‘(]t[)(cl,...,cm)
(t)(X1,. s Xm)

The copointednes$§g.1) of the resulting”, -coalgebra is easy, too. It h@@()?)—
theR-state space frorje—as a carrier.

2. We defing’s inner interpretationt] : Z™ — Z as follows. Once we have the outer
interpretatior{¢], we can apply it to then-tuple (¢, . . . , ¢ ) Of the final copointed
coalgebral, : Z — F,Z. Then the resulting coalgebﬂa]](f.) induces a unique
“behavior” map into the final one, as below. This behavior nsagimost what we
want; we pre-composg; .z : Z™ — QtD(Z) (from (8)) to it and obtairjt]. That
is, [t] := beh([t])(() 0 6 : Z™ — Z.

Fo((t)(2) - —— -+ FZ
[t T C.Tﬁnal
n(z)— -~~~ ~Z

beh([¢](Ce))

Proposition 4.2 (Modularity) AssumeX-termst and ¢; are as in Prop. 2.11.4. The
operations[_] and [_] are compatible with substitution: given LT8§...,¢,, €

Coalg, (F,) and “behaviors”zy, ..., z,, € Z, we have
[tlti/2i]] (crs- o vem) Z [E] ([0D(E), -, [t (D)
[¢[ti/2i]] (21, 2m) =[] ([02)(2), ..., [ta)(2)) - O

We present our main result on compositionality. It relabesduter and inner inter-
pretations. The latter arose from the former via finality f2¥e1); the following result
follows straightforward from finality, too.

Theorem 4.3 (Compositionality) Given a¥X-termzy,. .., x,,, F tand LTSy, ..., cn
that belong toCoalg, (F, ), we have the following diagram commute.

beh(c1) X - -+ X beh(cm)

X1 X x X Z XX Z
(et)xl 77777 >(rrz‘L \L[t]
(X1, .., Xm) Z

beh([t](c1,-.-,cm))



,,,,, x,, IS the “bookkeeping” function from (8)7 is the carrier of the final
coalgebra §3.1). Putting it equationally: for any state € X; of each LTS we have

beh([t](c1,. cm)) (6e(z1,...,@m)) = [t] (beh(ci)(z1),. .., beh(cm)(zm)) -

That is: the behavior of a composed systifiic) can be computed from the behaviors
beh(c;) of its constituent parts, using the inner operattjr ad

Let( : ¥*Z — Z be the (Eilenberg-MooreY*-algebra onZ induced by a GSOS
specification( X, R), due to [22, Cor. 7.2]. Her&™ is the free monad induced by the
signatureX’. The following result—claiming that our framework is indeguextension
of (the GSOS fragment of) [22]—holds because §uin §3, when suitably restricted,
coincides with the categorical GSOS in [22].

Theorem 4.4 Letxq,...,z,, - t be aX-term; letx; be the corre- sy ¢ 7
sponding coprojectioly™ — X*Z. For these, the diagram on thgﬂ\ j
right commutes. g gm~ W

5 Conclusions and Future Work

We have extended our previous work [14] so that any processatqy specified by
GSOS rules can now be interpreted as a component conneatardimbines LTSs as
components. This outer interpretation gives rise to a caabmner interpretation that
coincides with what is derived by the bialgebraic modelih§0S [22].

Our framework is categorical, hence comes with great piatiegenerality. This
includes application to systems other than LTS—Ilike biatgebmodeling applied to
weighted systems [17]—which we wish to pursue. In particulambelieve our generic
construction ofR-state spaces will carry over.

Regular languages and automata seem to be the first compigieces example of
the microcosm principle. Our current framework fails tolute it. One difficulty is:
the outer operators (specified in GSOS-like rules) are atiyuttefined orNFAS while
the inner operators is on regular languages that form theBiRA. Use of coalgebraic
techniques such as trace semantics [13] is being investigat

The notion of TLG and operations on thef2) indicates strong relevance of rewrit-
ing logic [19] and the theory ofeneralized operads/combinatorial species/clores
cently pursued by many authors, including [10]. We are dsfigdnterested in the
latter, but not only because of TLGs. Roughly we can callrttig@ory universal al-
gebra in varying contextsHere a “context” can be a monoidal one (where variables
are not to be deleted, duplicated or swapped), a symmetnoidal one (where swap-
ping is allowed), a Cartesian one (where all three are alijwand so on. In fact such
a context can be thought of as algebraic structure itsetfcé¢he theory may be also
calleduniversal (algebra in algebra)The microcosm principle then offers a degenerate
example of such, where we have the same structure on the veis.le
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