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Abstract
A general framework of Memoryful Geometry of Interaction (mGoI)
is introduced recently by the authors. It provides a sound translation
of lambda-terms (on the high-level) to their realizations by stream
transducers (on the low-level), where the internal states of the latter
(called memories) are exploited for accommodating algebraic ef-
fects of Plotkin and Power. The translation is compositional, hence
“denotational,” where transducers are inductively composed using
an adaptation of Barbosa’s coalgebraic component calculus.

In the current paper we extend the mGoI framework and pro-
vide a systematic treatment of recursion—an essential feature of
programming languages that was however missing in our previous
work. Specifically, we introduce two new fixed-point operators in
the coalgebraic component calculus. The two follow the previous
work on recursion in GoI and are called Girard style and Mackie
style: the former obviously exhibits some nice domain-theoretic
properties, while the latter allows simpler construction. Their equiv-
alence is established on the categorical (or, traced monoidal) level
of abstraction, and is therefore generic with respect to the choice
of algebraic effects. Our main result is an adequacy theorem of our
mGoI translation, against Plotkin and Power’s operational semantics
for algebraic effects.

Categories and Subject Descriptors D.3 [Formal Definitions and
Theory]: Semantics; F.3 [Semantics of Programming Languages]:
Algebraic approaches to semantics

General Terms Theory

Keywords Geometry of Interaction, monad, algebraic effect, ade-
quacy

1. Introduction
Geometry of interaction (GoI) introduced by Girard is a semantics
of linear logic [11]. The aim of GoI project is to mathematically
understand dynamical process of cut-elimination. In other words, via
Curry-Howard correspondence, GoI project aims to mathematically
understand dynamical process of program execution. This is like
game semantics that interprets programs by dialogue between two
players [1, 17].

This paper is a second step towards our prospect of develop-
ing GoI-based compilation technique for effectful programming lan-
guages. Our prospect is motivated by Ghica’s Geometry of Synthesis
[7] where Ghica applied the idea of GoI and game semantics to give
a semantics-directed compiler. In our first step [16], we introduced
GoI semantics called memoryful GoI (mGoI) for Moggi’s compu-
tational lambda calculus equipped with algebraic effects. Our goal
in this paper is to show that mGoI introduced in our previous work
can accommodate recursion. Main contributions of this paper are as
follows.

• We give two mGoI interpretation of recursion.

One is Girard style interpretation. Interpretation of recursion
is given as limits of approximating chains as given in [12].
This modeling style is much like the one in domain theory
and is easy to mathematically deal with.

The other is Mackie style interpretation. Interpretation of re-
cursion is given by feedback loops as given in [22]. Mackie
style is much simpler than Girard style and is easy to imple-
ment.

• We show that these two interpretations of recursion are the same.
Coincidence of these styles enables us to enjoy advantages of
each of them. In this paper, we give interpretation of recursion in
Mackie style because of its simplicity, and we use Girard style
to show adequacy of mGoI interpretation.
• We prove adequacy of mGoI interpretation with respect to the

operational semantics given by Plotkin and Power [25].

Our framework is applicable to a wide class of computational ef-
fects. For example, mGoI can model nondeterministic choice, prob-
abilistic choice, global states, interactive I/O, exceptions and their
combinations. The generality of mGoI is achieved by a categori-
cal framework of GoI called GoI situation introduced by Abramsky,
Haghverdi and Scott in [2].

Construction of mGoI semantics for the computational lambda
calculus is as follows:

A monad T : Set→ Set

The Kleisli category SetT

T -transducers

mGoI semantics for the computational λ-calculus
GoI situation

Our starting point is a monad on the category Set of sets and
functions. Given a monad T : Set → Set, we construct a category
of sets and T -transducers. Roughly speaking, T -transducers are “T -
branching” Mealy machines: when T is the powerset monad P , a
P-transducer is a nondeterministic Mealy machine; when T is the



subdistribution monad D, a D-transducer is a probabilistic Mealy
machine; when T is an exception monad E , a E-transducer is a
Mealy machine that may raise errors.

By constructing a GoI situation on the category of sets and T -
transducers, we obtain GoI semantics for the lambda calculus. What
we clarified in our previous work is that the monad T induces inter-
pretation of computational effects. For example, we interpret nonde-
terministic choice 0t 1 by a P-transducer, which is a nondetermin-
istic Mealy machine, whose transition diagram is given by

slq/0 :: s0
q/0oo �� q/1 // sr q/1dd .

We explain how this P-transducer behaves by using mGoI inter-
pretation of (λx. x + x) (0 t 1). Interpretation of this term is given
by the following interactive communication between λx. x + x and
0 t 1:

1. λx. x + x requires output of the left argument x.

2. 0 t 1 nondeterministically answers 0 or 1 and stores its choice.

3. λx. x + x requires output of the right argument x.

4. 0 t 1 answers its first choice.

5. λx. x + x outputs the sum of the first answer and the second
answer from 0 t 1.

As a result, λx. x + x nondeterministically outputs 0 or 2. This is
exactly the call-by-value evaluation result of (λx. x + x) (0 t 1).
The important point in this dialogue is that 0 t 1 memorizes its
first choice by using states. Use of this memorization mechanism is
essential. Without memorization, (λx. x + x) (0 t 1) may output 1
because 0t 1 may answer 0 to the first question and 1 to the second
question from λx. x + x. We note that we have similar problems for
call-by-name situation.

1.1 Related Works
Recursion in GoI There already exist some works on interpreting
recursion in GoI. The earliest one is Girard’s GoI II [12]. Girard’s
idea is similar to the one in domain theory, i.e., fixed points are
given as limits of approximating ω-chains. In this paper, we call
this interpretation of recursion Girard style. Results in GoI II are
generalized in terms of unique decomposition category in [13].
We can find another style of interpreting recursion in [22] where
Mackie employed feedback loops to interpret recursion. We call this
interpretation of recursion Mackie style. We can also find Mackie
style fixed point operator in [15, 19]. In this paper, we show that
these two styles are the same in mGoI semantics.

GoI as Mathematical Framework for Implementation While the
original motivation of GoI stems from mathematical investigation in
proof theory, the dynamical aspect of GoI provides practical appli-
cations. In GoI semantics, we model programs by means of inter-
active dialogue, and we can understand GoI semantics as translation
of high-level languages into low-level languages. Danos and Regnier
presented this basic idea of applying GoI to implementation of func-
tional programming languages in [4]. Developing their idea, Mackie
gave an implementation of PCF [22] where implementation of PCF
is given by simulating interactive dialogue by means of an assem-
bly language. GoI-based implementation inherits some features of
GoI: simple run-time systems and compositional interpretation of
programs. Furthermore, soundness of GoI semantics assures correct-
ness of GoI-based implementation by construction. Recently, in the
series of works [7–10], Ghica applied the idea of GoI and game se-
mantics to give a semantics-directed compiler for programming lan-
guages based on Reynolds’ Syntactic Control of Interference. Ghica
also pointed simplicity of compilation results of programs: circuits
generated by compilation consist of a few basic circuits connected

through wirings. Dal Lago and Schöpp applied GoI to design a func-
tional programming language for computation with sublinear space
[3]. Their design is based on an observation that space-efficient com-
putation can naturally be organized into interactive dialogue.

Call-by-value and Computational Effects GoI semantics is call-
by-name in nature: arguments are evaluated only if they are called
in interactive dialogue. Therefore, in order to model call-by-value
computation, we need to suitably adapt GoI interpretation. There are
several approaches to call-by-value GoI. An early approach given in
[6] is to employ jumping mechanism to enforce call-by-value eval-
uation. In [29], Schöpp employed cps-translation with some refine-
ment to achieve efficient implementation of call-by-value compu-
tation. Later, this approach is reformulated in terms of typed clo-
sure conversion [30]. In this paper, we employ cps-translation, and
therefore, our approach is close to Schöpp’s approach (without re-
finement for efficiency). Recently, another approach to call-by-value
GoI is proposed in [19].

Schöpp also studied combination of GoI and effects in [28],
where he introduced GoI semantics for a functional programming
language INTML[WEC]. We can embed a restriction of the en-
riched effect calculus, which is introduced by Egger, Møgelberg and
Simpson [5], into INTML[WEC], which can accommodate compu-
tational effects through this embedding. Our basic idea in this pa-
per is similar to Schöpp’s approach: modeling computational effects
by means of computational effects in interactive dialogue. Differ-
ences between our work and Schöpp’s work are: while the compu-
tational lambda calculus allows to use effects at any type, it is not
clear how to use computational effects at any type in INTML[WEC];
while control operators and locally scoped states can be modeled
in Schöpp’s approach, we restrict our attention to algebraic effects.
Precise comparison is future work.

1.2 Organization of the Paper
First in Section 2 we describe our target language LΣ and its op-
erational semantics. They are slight adaptations of those introduced
in [25]. In Section 3 we give algebraic operations on monads, that
model algebraic effects in a uniform way. We also state the require-
ment of our framework on monads in this section. In Section 4 we
recall the component calculus used in the mGoI framework. It is
extended in Section 5 by two styles of fixed point operators. Their
properties are investigated in this section as well. Finally we give
a translation of the language LΣ to transducers, as well as its ade-
quacy, in Section 6; and illustrate the translation and execution of
the resulting transducer in Section 7 using an example.

2. Target Language and Operational Semantics
This section is devoted to our target language LΣ and its operational
semantics. They are slight adaptations of those given by Plotkin &
Power [25]; differences are introduction of coproduct types τ + τ
and replacement of the base type bool by a coproduct type 1 + 1.

2.1 The Target Language LΣ

The languageLΣ extends the call-by-value computational λ-calculus
[23] with algebraic operations, product/coproduct types and arith-
metic primitives. It is parametrized by an algebraic signature Σ
whose element is an operation op that comes with its arity ar(op). In
this paper we assume all arities are finite.1 For an operation op ∈ Σ
we often write op0 if its arity is zero and op+ if positive.

Example 2.1. Here are examples of algebraic signatures taken from
[26].

1 Readers are referred to [26] for accommodation of countable arities.



• The signature Σexcept = {raisee | e ∈ E} is for excep-
tions: the set E specifies exceptions and each nullary operation
raisee() raises an exception e.
• The signature Σndet = {t} is for nondeterminism, where the

binary operation t represents nondeterministic choice.
• The signature Σprob = {tp | p ∈ [0, 1]} is for probabilistic

choice: in M tp N, M is chosen with probability p; and N is with
probability 1− p.
• The signature Σglstate = {lookupl | l ∈ Loc} ∪ {updatel,v |
l ∈ Loc, v ∈ Val} is for actions on global states, where
Loc is a set of locations and Val is a finite set of values. In
lookupl(Mv1 , . . . , Mv|Val|), one of the arguments is chosen ac-
cording to a value stored by a global state of location l. In
updatel,v(M), M is executed after updating a global state of lo-
cation l with a value v.

The types τ , terms M and values V of LΣ are defined by the
following BNF’s:

τ ::= unit | nat | τ → τ | τ × τ | τ + τ

M ::= x ∈ Var | λx : σ. M | M M | rec(f : σ → τ, x : σ). M

| op+(M1, . . . , Mar(op)) | op0() | ∗ | fst(M) | snd(M) | 〈M, M〉
| inlτ,σ(M) | inrτ,σ(M) | case(M, x. M, y. M) | n ∈ N | M + M

V ::= x ∈ Var | λx : σ. M | ∗ | 〈V, V〉 | inlτ,σ(V) | inrτ,σ(V)

| n ∈ N

where Var is a (countable) set of variables, N is the set of natural
numbers and op ∈ Σ is an operation. Substitution M[N/x] is defined
as usual and a term is called closed if it has no free variables.

A type judgment Γ ` M : τ , where Γ = x1 : τ1, . . . , xm : τm,
is inductively defined by the typing rules shown in Figure 1. They
are standard except those for operations in Σ; note that nullary
operations op0() can be arbitrarily typed. In the paper we assume
any term M is well-typed, i.e. there exists a derivable type judgment
Γ ` M : τ .

Γ ` xi : τi

Γ, x : σ ` M : τ

Γ ` λx : σ. M : σ → τ
Γ ` M : σ → τ Γ ` N : σ

Γ ` M N : τ

Γ, f : σ → τ, x : σ ` M : τ

Γ ` rec(f : σ → τ, x : σ). M : σ → τ

Γ ` Mi : τ (i = 1, . . . , ar(op))

Γ ` op+(M1, . . . , Mar(op)) : τ Γ ` op0() : τ Γ ` ∗ : unit

Γ ` M : τ × σ
Γ ` fst(M) : τ

Γ ` M : τ × σ
Γ ` snd(M) : σ

Γ ` M : τ Γ ` N : σ
Γ ` 〈M, N〉 : τ × σ

Γ ` M : τ
Γ ` inlτ,σ(M) : τ + σ

Γ ` M : σ
Γ ` inrτ,σ(M) : τ + σ

Γ ` M : τ + τ ′ Γ, x : τ ` N : σ Γ, x′ : τ ′ ` N′ : σ

Γ ` case(M, x. N, x′. N′) : σ

Γ ` n : nat
Γ ` M : nat Γ ` N : nat

Γ ` M + N : nat

Figure 1: Typing Rules of LΣ

2.2 Operational Semantics
For LΣ we define two kinds of operational semantics: the small step
one and the medium step one. They are specified via decomposition
of terms into evaluation contexts E and redexes R, defined by the
following BNF’s.

E ::= [−] | E M | V E | fst(E) | snd(E) | 〈E, M〉 | 〈V, E〉
| inlτ,σ(E) | inrτ,σ(E) | case(E, x. M, y. M) | E + M | V + E

R ::= (λx : σ. M) V | rec(f : σ → τ, x : σ). M

| op+(M1, . . . , Mar(op)) | fst(〈V, V〉) | snd(〈V, V〉)
| case(inlτ,σ(V), x. M, y. M) | case(inrτ,σ(V), x. M, y. M)

| V + V

If a closed term M is not a value, it is decomposed into either the form
E[R] or E[op0()], where E, R and/or op0 are uniquely determined.

For closed redexes, transition relations are defined as in Figure 2.
The unlabeled “pure” transition relation→ corresponds to the ordi-
nal β-reduction; and a labeled “effectful” transition relation

opi→ rep-
resents reduction of a term op+(M1, . . . , Mar(op)) to one argument
Mi, according to an effect generated by op+. Additionally for a term
op0(), a labeled “effectful termination” predicate ↓op is defined by
op0() ↓op.

(λx : σ. M) V→ M[V/x]

rec(f : σ → τ, x : σ). M→ (λx : σ. M)[rec(f : σ → τ, x : σ). M/f]

fst(〈V1, V2〉)→ V1 snd(〈V1, V2〉)→ V2

case(inlτ,σ(V), x. N, x′. N′)→ N[V/x]

case(inrτ,σ(V), x. N, x′. N′)→ N
′[V/y′] n+m→ n+m

op
+(M1, . . . , Mar(op))

opi→ Mi (i = 1, . . . , ar(op))

Figure 2: Transition Relations for Closed Redexes

Using the transition relations and predicates, we define the small
step operational semantics for a closed term, that is not a value, by

R→ M

E[R]→ E[M]

R
opi→ M

E[R]
opi→ E[M]

op0() ↓op
E[op0()] ↓op

and define the medium step operational semantics for a closed term
M by

M⇒ V
def.⇐⇒ M→∗ V

M
opi⇒ N

def.⇐⇒ ∃L. M→∗ L
opi→ N

M ⇓op
def.⇐⇒ ∃L. M→∗ L ↓op

M ⇑ def.⇐⇒ ∃ infinite sequence M→ M
′ → · · · .

Both small and medium step operational semantics are uniquely
determined for each closed term.

Lemma 2.2. (I) Any closed term M of type τ satisfies just one of the
following:

• M ≡ V for a (unique closed) value V;
• M→ N for a unique closed term N of type τ ;
• M opi→ Ni for a unique operation op+ and a unique family
{Ni}ar(op)

i=1 of closed terms of type τ ; and
• M ↓op for a unique operation op0.

(II) Any closed term M of type τ satisfies just one of the following:

• M⇒ V for unique (closed) value V of type τ ;
• M opi⇒ Ni for a unique operation op+ and a unique family
{Ni}ar(op)

i=1 of closed terms of type τ ;
• M ⇓op for a unique operation op0; and
• M ⇑.

Additionally the notion of effect values is introduced with the
intention of defining a big step operational semantics. The notion is
formalized using continuous Σ-algebras. A continuous Σ-algebra
A is an ω-cppo (i.e. ω-cpo with the least element Ω), with each
operation op ∈ Σ identified as a continuous function from the



ar(op)-fold product of A to A. Especially for a set X , there exists
the free continuous Σ-algebra CTΣ(X) over it.

Let Valτ be the set of values of type τ . For a closed term M of
type τ , its effect value |M| is defined as a limit of its “finite approxi-
mations” in the free continuous Σ-algebra CTΣ(Valτ ) over Valτ .
We refer readers to [25] for the precise definition, but intuitively an
effect value |M| ∈ CTΣ(Valτ ) can be understood as a Σ-branching
(possibly infinite) tree over the set Valτ ∪ {Ω} that is equal to:

V if M⇒ V

op+

|N1| · · · |Nar(op)|
if M

opi⇒ Ni for each i ∈ 1, . . . , ar(op)

op0 if M ⇓op
Ω if M ⇑
|N| if M→ N .

3. Algebraic Operations on Monads
Our framework, as well as the mGoI framework [16], accommodates
algebraic effects in a uniform way: it exploits their categorical ab-
straction by monads and algebraic operations [23, 25]. Namely our
framework is parametrized by a monad T on Set, where Set is the
category of sets and functions.

3.1 Monads
A monad T on Set induces the Kleisli category SetT equipped
with: the finite coproduct structure (+, ∅), the countable coproduct
structure inherited from Set (see e.g. [21]), and the premonoidal
structure [27]. In order to accommodate recursion, our framework
requires these structures to satisfy some domain-theoretic properties
stated in Requirement 3.1 below.

Requirement 3.1. Throughout the paper a monad T on Set is
required to satisfy the followings.

• The Kleisli category SetT is Cppo-enriched, i.e.
every homset SetT (X,Y ) is an ω-cppo with the least ele-
ment ⊥; and
compositions ◦T of SetT are continuous.

• Compositions ◦T are additionally strict in the restricted form:
for any SetT -arrow f : X →T Y and Set-arrow g : Y → Z it
holds that f ◦T ⊥ = ⊥ and⊥◦T g∗ = ⊥. Here (−)∗, the Kleisli
inclusion from Set to SetT , assigns a SetT -arrow A→T B to
each Set-arrow A→ B by post-composing the unit of T .
• The finite coproduct structure (+, ∅) of SetT is Cppo-enriched,

i.e. cotuplings [−,−]T are continuous.
• The premonoidal structure ⊗ of SetT is continuous and strict:

namely, for any set X , the maps X ⊗ (−) and (−) ⊗ X on
homsets of SetT are continuous and strict.

The first three conditions of this requirement are precisely what
are given in [16, Lemma 4.3] as a sufficient condition for monads
that can be used in the mGoI framework. It is also shown in [16,
Lemma 4.3] that these conditions ensures the existence of a trace
operator tr of the monoidal category (SetT , 0,+): the operator
tr is defined exploiting the Cppo-enrichment of SetT . Here we
additionally require the last condition in order to accommodate
recursion. Requirement 3.1 not only supports the development of
a component calculus but also ensures its desired domain-theoretic
properties.

A monad T , as a parameter of our framework, models computa-
tional effects in a uniform way as proposed in [23]; we can instanti-
ate it to model various effects.

Example 3.2. Here are our leading examples of monads that sat-
isfy Requirement 3.1. Note that all the monads T given below are
equipped with partiality: it is often obtained by adding 1 = {∗}
and induces an ω-cppo structure of each set TX . Hence a Cppo-
enrichment of the category SetT is given in the pointwise manner.

• The exception monad EX = 1 + E +X for a set E.
• The powerset monad PX = {A ⊆ X}.
• The subdistribution monad
DX = {d : X → [0, 1] |

∑
x∈X d(x) ≤ 1}.

• A global state monad SX = (1 +X × S)S for a set S.
• A writer monad TX = 1 +M ×X for a monoid M .
• An I/O monad TA = µX. (1 + O × X + XI + A) for sets
I and O. By regarding sets I and O as ω-cpo’s with discrete
orders, for any ω-cppo X , FAX := (1 + O × X + XI + A)
becomes an ω-cppo with the least element ∗ ∈ 1. Hence FA is an
endofunctor on Cppo. The monad sends a set A to the carrier
of a final FA-coalgebra in Cppo.

3.2 Algebraic Operations
Following [25, 26] operations in Σ are modeled by algebraic opera-
tions on a monad T that serve as interfaces of algebraic effects. We
use one equivalent definition of algebraic operations investigated in
[26], with finite arities; here Xn denotes a n-fold product of a set
X , for n ∈ N.

Definition 3.3 (algebraic operations on T [26]). Let (×, 1,⇒) be
the cartesian closed structure of Set and n ∈ N be a natural
number. For a monad T on Set, a family {αA,B : (A ⇒ TB)n →
(A ⇒ TB)}A∈Setop,B∈SetT of Set-arrows is an n-ary algebraic
operation on T if it is natural in A ∈ Setop and B ∈ SetT .

The following examples are algebraic operations on some of the
monads listed in Example 3.2. They are used in our framework to
model operations shown in Example 2.1.

Example 3.4. Here are algebraic operations on some of the monads
listed in Example 3.2.

• For a set E and each element e ∈ E, a 0-ary algebraic operation
raisee on the exception monad E is equivalently given by the
family {A→ 1+E+A}A∈Set of constant functions that always
returns e.
• A 2-ary algebraic operation ⊕ on the powerset monad P per-

forms nondeterministic choice. For two functions f, g : A →
PB it takes pointwise unions: (f ⊕ g)(a) = f(a) ∪ g(a).
• For any p ∈ [0, 1], a 2-ary algebraic operation⊕p on the subdis-

tribution monad D performs probabilistic choice. For two func-
tions f, g : A → DB it superposes distributions in a pointwise
manner: (f ⊕p g)(a)(b) = p× f(a)(b) + (1− p)× g(a)(b).
• Let Val be a finite set and Loc be a set. For their elements
v ∈ Val and l ∈ Loc, a |Val |-ary algebraic operation lookupl
and a 1-ary algebraic operation updatel,v on the global state

monad SX = (1+X×ValLoc)ValLoc perform actions on global
states.

4. Component Calculus in the mGoI Framework
In this section we recall the component calculus over transducers
that is given in the mGoI framework [16].

Transducers, to which our framework translates terms, are pre-
cisely called T -transducers: they are “effectful” extension of (se-
quential) transducers or Mealy machines.

Definition 4.1 (T -transducers [16, Definition 4.1]). For sets A and
B, a T -transducer (X, c, x) from A to B consists of a set X , a
function c : X ×A→ T (X ×B) and an element x ∈ X .



c

A

B

Figure 3: A
T -transducer
(X, c, x) :
A _ B

We write (X, c, x) : A _ B when a T -
transducer (X, c, x) is from A to B. A T -
transducer (X, c, x) : A _ B can be understood
as an “effectful” transition function c with input
A, output B, a state space X and an initial state
x ∈ X . On this intuition we depict it as in Fig-
ure 3.

The component calculus over T -transducers
provides some primitive T -transducers and a set
of operators on T -transducers.

4.1 Primitive T -transducers
Each SetT -arrow f : A →T B (i.e. function f : A → TB) can be
lifted to a T -transducer J(f) := (1, f, ∗) : A _ B, where 1 = {∗}
is the terminal object of Set and isomorphisms 1 × A ∼=→ A and
1 × B ∼=→ B are omitted. The resulting T -transducer Jf performs
the same computation as the function f without changing its internal
state.

Primitive T -transducers used in our framework are all either in
the form J(f) : A _ B for some SetT -arrow f : A →T B or
in the form J(g∗) : A _ B for some Set-arrow g : A → B.
Here (−)∗ is the Kleisli inclusion from Set to SetT . For notational
simplicity, in depictions of a primitive T -transducer J(f) we simply
write its underlying function, e.g. we write f for J(f) and g for
J(g∗) (see e.g. Figure 5). We here give the underlying functions of
our primitive T -transducers.

One class of underlying functions consists of retractions in Set
and SetT , that are pairs of arrows f : X C Y : g such that g ◦ f =
idX holds. Namely we use: two chosen bijections in Set

u : FN ∼= N : v φ : N + N ∼= N : ψ (1)

and four retractions

ẽA : AC FA : ẽ′A (dereliction)

d̃A : FFA ∼= FA : d̃′A (digging)

c̃A : FA+ FA ∼= FA : c̃′A (contraction)

w̃A : ∅C FA : w̃′A (weakening)

(2)

where a set FX is defined by N×X for each set X . The first three
are in Set (and hence in SetT ) and the last one is in SetT . Let
A

inl−→ A + B
inr←−− B and A

inji−−→
∐
iAi be injections in Set and

!A : ∅ → A be the unique Set-arrow from the initial object ∅ to A.
The retractions in (2) are defined as below.

ẽA := inj0 ẽ′A := [idA]i∈N

d̃A := u×A d̃′A := v ×A
c̃A := φ×A c̃′A := ψ ×A
w̃A := !N×A w̃′A := trFAFA,∅([idFA, idFA]∗)

We also use their adaptation as listed below: we take N as A and
compress N × N to N via the bijection u : N × N ∼= N : v in order
to fit the retractions to our use in the translation.

e : NC N : e′ (dereliction)

d : N× N ∼= N : d′ (digging)

c : N + NC N : c′ (contraction)

w : ∅C N : w′ (weakening)

Their definition can be concretely expressed as below. We write g
for φ ◦ inlN,N, d for φ ◦ inrN,N and 〈−,−〉 for u(−,−).2

e(n) = 〈0, n〉 c(inl〈i, n〉) = 〈gi, n〉

2 g is for left and d is for right, in French. See e.g. [20, 24].

e′〈i, n〉 = n c(inr〈i, n〉) = 〈di, n〉
d(i, 〈j, n〉) = 〈〈i, j〉, n〉 c′〈gi, n〉 = inl〈i, n〉
d′〈〈i, j〉, n〉 = (i, 〈j, n〉) c′〈di, n〉 = inr〈i, n〉

w = !∗N w′ = trNN,∅([idN, idN]∗)

Another class of underlying functions includes the following
functions:

kn : N→ N sum: N + N + N→ N + N + N
h := (φ+ N) ◦ (N + σ) ◦ (ψ + N) ◦ σ

◦ (φ+ N) ◦ (N + σ) ◦ (ψ + N)

: N + N→ N + N

where σ : N + N ∼=→ N + N is a swapping isomorphism. In the
translation, kn is used for the constant term n; sum is for the
arithmetic operation +; and h serves as a CPS-like construct that
“forces” call-by-value evaluation. They concretely act on natural
numbers as below.

sum(inj0(n)) = inj2(n) h(inl(gn)) = inl(dgn)

sum(inj2〈i, n〉) = inj1〈〈i, n〉, n〉 h(inl(dgn)) = inl(gn)

sum(inj1〈〈i, n〉,m〉) = inj0〈i, n+m〉 h(inl(ddn)) = inr(n)

kn〈i,m〉 = 〈i, n〉 h(inr(n)) = inl(ddn)

4.2 Operators on T -transducers
The mGoI framework gives the following operators on T -transducers:
(a) sequential composition ◦; (b) binary parallel composition �; (c)
the countable copy operator F ; (d) the trace (or feedback) operator
Tr; (e) binary application •; and (f) the operator α for each algebraic
operation α on T .

Figure 4 shows depictions of how these operators act on T -
transducers. Here we only give intuitive descriptions, for the lack
of space; the reader is referred to [16, Section 4.2] for their precise
definitions.
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Figure 4: Operators on T -transducers

Sequential Composition ◦ Sequential composition (Y, d, y) ◦
(X, c, x) : A _ C of two T -transducers (X, c, x) : A _ B and
(Y, d, y) : B _ C has a state space X × Y and an initial state
〈x, y〉. It runs first (X, c, x) and then (Y, d, y) by passing output of
the former to input of the latter.

Binary Parallel Composition � Binary parallel composition
(X, c, x) � (Y, d, y) : A + C _ B + D of two T -transducers
(X, c, x) : A _ B and (Y, d, y) : C _ D has also a state space
X×Y and an initial state 〈x, y〉. It runs either (X, c, x) or (Y, d, y)
according to input: namely it runs (X, c, x) if input is in A and
(Y, d, y) if in C.



Countable Copy Operator F A T -transducer F (X, c, x) : N ×
A _ N × B can be understood as countably many copies of a T -
transducer (X, c, x) : A _ B. Given input 〈i, a〉 ∈ N × A, it runs
the i-th copy of (X, c, x) with input a; and it outputs 〈i, b〉 ∈ N×B
if the i-th copy of (X, c, x) outputs b.

Trace Operator Tr Trace TrCA,B(X, c, x) : A → B of a T -
transducer (X, c, x) : A+C _ B+C has the same state space and
initial state as (X, c, x). Given input in A, it runs (X, c, x) repeat-
edly until output in B is generated, by passing output in C to input.
Its “effectful” transition function is defined using the trace operator
tr of the category SetT .

Binary Application • Using these four operators above, binary
application (X, c, x) • (Y, d, y) : A _ B of two T -transducers
(X, c, x) : A + N × C _ B + N × C and (Y, d, y) : C _ C
is defined to be

TrN×CA,B ((J(id∗B)� F (Y, d, y)) ◦ (X, c, x)) .

Binary application • is an adaptation of the operator • defined in
[16]. It is used to translate function application.

Lifted Algebraic Operations α Finally for an n-ary algebraic op-
eration α on T and a family {(Xi, ci, xi) : A _ B}i∈n of T -
transducers, a T -transducer α{(Xi, ci, xi)}i∈n : A _ B has a state
space 1 +X1 + · · ·+Xn and an initial state ∗ ∈ 1. Here the set n
is the n-fold coproduct of 1.

The operator α introduces a fresh initial state ∗ ∈ 1 and effectful
transitions from the state ∗ to each states in {xi}i∈n that are initial
states of T -transducers {(Xi, ci, xi)}i∈n, respectively. After mak-
ing an effectful transition from its initial state ∗ to a state xi, the
T -transducer α{(Xi, ci, xi)}i∈n sticks to its choice and behaves in
the same way as (Xi, ci, xi). In other words a T -transducer exploits
its internal states to memorize the result of its effectful transitions.

4.3 The “Category” of Transducers
We have introduced the component calculus over T -transducers that
is used in the original mGoI framework; one natural question is
what axioms it satisfies. An answer given in [16], following the
previous observations in [? ], is a categorical one via the behavioral
equivalence.

Definition 4.2 (homomorphism between T -transducers [16, Defini-
tion 5.1]). For two T -transducers (X, c, x), (Y, d, y) : A _ B, a
function h : X → Y is a homomorphism from (X, c, x) to (Y, d, y)
if (h∗ ⊗ B) ◦T c = d ◦T (h∗ ⊗ A) holds in SetT (equivalently
T (h×B) ◦ c = d ◦ (h×A) holds in Set) and h(x) = y holds.

Definition 4.3 (behavioral equivalence [16, Definition 5.2]). Two
T -transducers (X, c, x), (Y, d, y) : A _ B are behavioral equiv-
alent if there exists a T -transducer (Z, e, z) : A _ B and two
homomorphisms, from (X, c, x) to (Z, e, z) and from (Y, d, y) to
(Z, e, z).

The behavioral equivalence enables us to abstract away from
state spaces of T -transducers. For example two T -transducers
(X, c, x) : A _ B and J(id∗B) ◦ (X, c, x) : A _ B have different
state spaces (namelyX andX×1) but their transition functions are
identified after composing an obvious isomorphism X ∼= X × 1.
By choosing the isomorphism as a homomorphism between the two
T -transducers we can identify them via the behavioral equivalence.

All the operators ◦, �, Tr and F as well as α respect the
behavioral equivalence. The axioms satisfied by these operators can
be described categorically; what follows is a summary of the facts
shown in [16].

• The category Res(T ), defined by

objects: sets

arrows: resumptions, that are equivalence classes of T -
transducers modulo the behavioral equivalence, with iden-
tities given by J(id∗) and compositions by ◦

is indeed a category and has a traced symmetric monoidal struc-
ture (�, ∅,Tr).
• The operator F , defined for sets by FX := N ×X , is a traced

symmetric monoidal functor on Res(T ). This fact enables us to
identify a T -transducer F (X, c, x) : F (A + C) _ F (B + D)
with F (X, c, x) : FA + FC _ FB + FD, as done e.g. in
Figure 5 & 7.
• Moreover the data (Res(T ), F,N), together with primitive T -

transducers lifted from the retractions in (1) and (2), induces a
GoI situation [2]. This means the primitive T -transducers lifted
from the left-hand side functions of retractions in (2) satisfies
monoidal naturality.
• [16, Theorem 5.3] Operators α are natural and Tr distributes

over them up to the behavioral equivalence.

Figures in this section can be therefore seen as string diagrams in
Res(T ).

It is also possible to think of a “category” Trans(T ) of T -
transducers (without quotienting modulo the behavioral equiva-
lence); however this is more like a bicategory since axioms like
associativity of ◦ are satisfied only up to isomorphisms.

5. Extending the Component Calculus
In the previous section we have recalled the component calculus
over T -transducers from the mGoI framework; now in this section it
is extended so that our framework can accommodate recursion.

In the mGoI framework, binary application • of T -transducers is
used in translating function application to T -transducers. Our goal
here is to introduce a new operator that can be used in translating re-
cursion as infinitely many self-applications of some function. Hence
the new operator is designed to give infinitely many “self-binary-
applications” of a given T -transducer.

We extend the component calculus in three steps by introducing
first countable parallel composition �n∈N, second the Girard style
fixed point operator FixG and finally the Mackie style fixed point
operator FixM . Figure 5 shows depictions of how these new opera-
tors act on T -transducers.
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Figure 5: New Operators on T -transducers

5.1 Countable Parallel Composition �n∈N
As a first step we extend binary parallel composition� to the count-
able one �n∈N; this is straightforward, and possible because Set
has countable coproducts and SetT inherits them. Countable par-
allel composition �n∈N{(Xn, cn, xn)} :

∐
n∈NAn _

∐
n∈NBn



of a family {(Xn, cn, xn) : An _ Bn}n∈N of T -transducers has a
state space

∏
n∈NXn, whose element is an infinite list 〈y1, y2, . . .〉,

and has an initial state 〈x1, x2, . . .〉.
Countable parallel composition �n∈N can be seen as a gener-

alization of the countable copy operator F . Namely for any T -
transducer (X, c, x) : A _ B, a T -transducer F (X, c, x) can be
identified with a T -transducer �n∈N{(X, c, x)}. Here the former’s
input/output N × C is identified with a N-fold countable coproduct
of C and the former’s state space XN is with a N-fold countable
product of X .

5.2 Girard Style Fixed Point Operator FixG

On top of the component calculus, i.e. operators on T -transducers
described so far, we define the Girard style fixed point operator FixG
on T -transducers.

Definition 5.1 (Girard style fixed point operator FixG). For a T -
transducer (X, c, x) : A + N × A _ A + N × A, a T -transducer
FixG(X, c, x) : A _ A is defined by

FixG(X, c, x) := TrNA,A(�n∈N{Fn(X, c, x)}n∈N ◦ J(swap∗))

where N is the set defined to be

(N×A+ N×A) + (N× N×A+ N× N×A)

+ (N× N× N×A+ N× N× N×A)

+ · · ·

and swap is the function defined to be idA +
∐
n∈N σ : N → N

using swapping isomorphisms {σ : R + S
∼=→ S + R}R,S∈Set in

Set.

The following proposition shows that the operator FixG indeed
gives what serves as infinitely many “self-binary-applications” of a
transducer, as we intended. Namely the operator FixG gives a fixed
point with respect to binary application •: that is why we call FixG
a “fixed point” operator.

Proposition 5.2. For any T -transducer (X, c, x) : A + N × A _
A + N × A, a T -transducer FixG(X, c, x) : A _ A satisfies the
behavioral equivalence

(X, c, x) • FixG(X, c, x) ' FixG(X, c, x) .

Proof. The behavioral equivalence follows from the equational
properties (up to behavioral equivalence) listed in Section 4.3, of
the component calculus. Especially we take advantage of trace ax-
ioms [14, 18] satisfied by the trace operator Tr.

5.3 Induced ω-cpo Structure on Transducers
The operator FixG gives not only a fixed point with respect to
binary application • but also a least fixed point with respect to an
ω-cpo structure on T -transducers, that is induced by the Cppo-
enrichment of the category SetT .

As guaranteed by Requirement 3.1, each homset of SetT has
an ω-cppo structure (SetT (A,B),v,⊥). This structure induces an
ω-cpo structure (Trans(T )(A,B),E) in the following way, where
Trans(T )(A,B) denotes a set of T -transducers from A to B.

• A relation E on T -transducers, defined by

(X, c, x) E (Y, d, y)
def.⇐⇒ X = Y ∧ x = y ∧ c v d

for two T -transducers (X, c, x), (Y, d, y) : A _ B, is a partial
order.
• For an ω-chain (X, c1, x) E (X, c2, x) E · · · of T -transducers

from A to B, its supremum supi∈ω(X, ci, x) : A _ B is given
by (X, supi∈ω ci, x).

• Additionally a T -transducer (X,⊥, x) : A _ B for each least
element ⊥ ∈ SetT (X ×A,X ×B) gives a minimal element.

This partial order E is quite “raw”: two T -transducers can be or-
dered only if they have the same state spaces and the same initial
states. The order E forces us to remain aware of state spaces, while
the behavioral equivalence ' (see Definition 4.3) enables us to ab-
stract away state spaces and to perform equational reasoning up to
behavioral equivalence. To our knowledge there seems no way to
relate E to the behavioral equivalence '. In spite of this inconve-
nience, the order E has enough power to support the proof of ade-
quacy.

The conditions stated in Requirement 3.1 imply the following
domain-theoretic properties of our component calculus with respect
to the order E.

Lemma 5.3. Operators of the component calculus satisfy the fol-
lowing, up to (not behavioral equivalence but) the exact equality =.

continuity strictness
sequential composition ◦ X X?1

binary parallel composition � X X?2
countable copy operator F X X

trace operator Tr X X
binary application • X X?3

lifted algebraic operation α X ×
countable parallel composition �n∈N X X?2
Girard style fixed point operator FixG X X

?1 In the restricted form: (Y, d, y)◦(X,⊥, x) = (X×Y,⊥, 〈x, y〉)
and (X,⊥, x) ◦ (Z, e∗, z) = (Z × X,⊥, 〈z, x〉), for any T -
transducers (X, c, x) and (Y, d, y), and for any T -transducer
(Z, e∗, z) whose transition function is lifted from a Set-arrow
e.

?2 If all arguments have ⊥ as transition functions.
?3 In the restricted form: (X,⊥, x) • (Y, d, y) = (Z,⊥, z) for any

T -transducer (Y, d, y) and any T -transducer (X,⊥, x) whose
transition function is ⊥, where Z and z is respectively the state
space and the initial state of (X,⊥, x) • (Y, d, y).

Proof. The properties shown in the table are consequences of the
conditions stated in Requirement 3.1. Note that the conditions imply
the facts in the category SetT listed below. Once we observe them
the properties of the component calculus can be easily confirmed by
definitions of operators.

• Continuity of countable cotuplings [{−}n∈N]T is inherited by
that of (finite) cotuplings [−,−]T .
• Both finite and countable cotuplings are strict in the sense of

[⊥,⊥]T = ⊥ and [{⊥}n∈N]T = ⊥. It is because of the
restricted strictness of composition ◦T .
• The trace operator tr is continuous and strict by its definition

that takes advantage of Cppo-enrichment of SetT .
• Continuity of algebraic operations on T follows from continuity

of composition ◦T and cotuplings [−,−]T .

The last fact can be confirmed using the bijective correspon-
dence of an n-ary algebraic operation α on T and a SetT -arrow
(called generic effects) β : 1 →T n, studied in [26]. Namely
for a family {fi : A →T B}i∈n of SetT -arrows, a SetT -arrow
α{fi}i∈N : A→T B can be equivalently given by

A
β⊗A−−−→T n×A ∼=→T A+ · · ·+A

[{fi}i∈n]T−−−−−−−→T B

using the corresponding generic effect β.

Based on these properties the operator FixG is characterized as
a supremum (or a least fixed point) of its finite approximants.
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Figure 6: The ω-chain of Finite Approximants Fix
(i)
G (X, c, x)

Definition 5.4 (finite approximant Fix
(i)
G ). For a T -transducer

(X, c, x) : A + N × A _ A + N × A and i ∈ ω, a T -transducer
Fix

(i)
G (X, c, x) : A _ A is defined by

Fix
(i)
G (X, c, x) := TrNA,A(�n∈N{Fn(c(i)

n )}n∈N ◦ J(swap∗))

where N and swap are defined as in Definition 5.1; and c
(i)
n : A +

N × A _ A + N × A is the T -transducer defined by (X, c, x) if
n < i and (X,⊥, x) otherwise, for each i ∈ ω and n ∈ N.

Proposition 5.5. For any T -transducer (X, c, x) : A + N × A _
A+N×A, a family {Fix

(i)
G (X, c, x) : A _ A}i∈ω of T -transducers

forms an ω-chain

Fix
(0)
G (X, c, x) E Fix

(1)
G (X, c, x) E · · ·

as depicted in Figure 6. Moreover a T -transducer FixG(X, c, x) : A _
A satisfies the behavioral equivalence

FixG(X, c, x) ' sup
i∈ω

(Fix
(i)
G (X, c, x)) .

5.4 Mackie Style Fixed Point Operator FixM

So far, in this section, the Girard style fixed point operator FixG has
been introduced with the intention of using it in translating recur-
sion. As shown in Proposition 5.2 & 5.5, the operator FixG enjoys
properties that are essential in the proof of adequacy; especially it
is characterized as a supremum of its finite approximants. Therefore
by the operator FixG recursion can be translated as a supremum of
finite approximants. This approach to interpret recursion in GoI is
much like the one by Girard [12]; that is why we call FixG “Girard
style” fixed point operator.

On the other hand there exists another approach to interpret
recursion in GoI: that is the one by Mackie [22] where recursion
is interpreted by a loop and a single “box” in a proof net. In our
setting this approach corresponds to interpreting recursion using an
operator that is defined by the single use of the trace operator Tr and
the single use of countable copy operator F , in particular without
any use of countable parallel composition �n∈N. The last operator
FixM on T -transducers, introduced in our framework, is defined in
such a way: therefore we call the operator “Mackie style” fixed point
operator. See Figure 5 for its depiction.

Definition 5.6 (Mackie style fixed point operator FixM ). For a T -
transducer (X, c, x) : A + N × A _ A + N × A, a T -transducer
FixM (X, c, x) : A _ A is defined by

FixM (X, c, x) :=

TrA+A
A,A ((J(ẽ′

∗
)� J(id∗A+A)) ◦ (J(c̃′

∗
)� J(d̃∗)) ◦ F (X, c, x)

◦ (J(c̃∗)� J(d̃′
∗
)) ◦ (J(ẽ∗)� J(σ∗)))

where σ is a swapping isomorphism A+A
∼=→ A+A in Set.

The next theorem shows that the Girard and Mackie style fixed
point operators actually coincide.

Theorem 5.7 (coincidence of two styles of fixed point operator).
The following behavioral equivalence

FixG(X, c, x) ' FixM (X, c, x)

holds for any T -transducer (X, c, x) : A+ N×A _ A+ N×A.

Proof. The proof exploits: 1) naturality of the trace operator Tr; and
2) monoidal naturality (in A) of the retractions/isomorphisms

ẽA : AC FA : ẽ′A, d̃A : FFA ∼= FA : d̃′A and
c̃A : FA+ FA ∼= FA : c̃′A.

The latter is exploited e.g. in deriving the following behavioral
equivalences of transducers.
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We use the above behavioral equivalences for the purpose of
translating a bunch of (X, c, x)’s in FixG(X, c, x) into a single
F (X, c, x) in FixM (X, c, x).

6. Translation to Transducers and Its Adequacy
Finally in this section, on top of our extended component calculus,
we define a translation of terms of LΣ to transducers. To achieve
adequacy of the translation we exploit the properties of primitives
and operators of our component calculus.

6.1 Translation to Transducers
In order to translate a term of our target language LΣ, the first step
is to choose an appropriate monad T that satisfies Requirement 3.1
and supports the algebraic signature Σ.

Definition 6.1. We say a monad T on Set supports an algebraic
signature Σ if, for each operation op ∈ Σ, it has an ar(op)-ary
algebraic operation op on it.

For the algebraic signatures listed in Example 2.1, we use the mon-
ads listed in Example 3.2. Operations in these algebraic signatures
can be modeled by algebraic operations listed in Example 3.4.

Example 6.2. Here we show how the algebraic signatures listed in
Example 2.1 are supported by the monads listed in Example 3.2.

• For a set E, the exception monad E = 1 + E + (−) supports
Σexcept = {raisee | e ∈ E}. For each operation raisee ∈
Σexcept we can take a 0-ary algebraic operation raisee on E .
• The powerset monad P supports Σndet where the operation t is

modeled by the 2-ary algebraic operation ⊕ on P .
• Similarly the subdistribution monad D supports Σprob where

each operation tp is modeled by the 2-ary algebraic operation
⊕p on D.



• For a set Loc and a finite set Val , the state monad SX = (1 +

(−)×ValLoc)ValLoc supports Σglstate. Each operation lookupl
is modeled by the |Val |-ary algebraic operation lookupl and
each operation updatel,v is by the 1-ary algebraic operation
updatel,v on S.

Let T be a monad that supports Σ. We now give a translation L−M
of terms of LΣ to T -transducers. It is given using depictions such as
Figure 3–5. Moreover it is an extension of the translation given by
the mGoI framework [16].

Definition 6.3 (translation L−M). For each type judgment Γ ` M : τ
where Γ = x1 : τ1, . . . xm : τm, we inductively define a T -
transducer

LΓ ` M : τM = LΓ ` M : τM
N

N

N

N

N

N. . .

. . .

m

m

:

m∐
i=0

N _
m∐
i=0

N

as in Figure 7, where labels of edges (either N or N×N) are omitted
for visibility.

In translation of recursion depicted in Figure 7 we implicitly use the
Mackie style fixed point operator FixM . Due to Theorem 5.7 we
can also use the Girard style fixed point operator FixG as depicted
in Figure 8.

The Categorical Model Much like the translation of the original
mGoI framework in [16], the translation L−M of our framework
is backed up by a categorical model (whose definition we do not
give here). Our translation L−M can be extracted by a categorical
interpretation on the model PerΦ′ that is the Kleisli category of
the strong monad Φ′ on the cartesian closed category Per. The
model is a modification of the one used in the mGoI framework: the
category Per is the same; and the monad Φ′ is modified to reflect
the ω-cpo structure of T -transducers. Its construction is done by
combination of categorical GoI [2] and realizability techniques, as in
[16]. Proposition 5.2 & 5.5 ensures that the Girard style fixed point
operator FixG indeed yields a (categorical) fixed point operator in
the model PerΦ′ .

6.2 Adequacy of Translation L−M
Let T be a monad that supports the algebraic signature Σ. The
statement of adequacy connects operational semantics reviewed in
Section 2.2 and the translation L−M extracted from denotational
semantics. In order to give the statement we start with “collecting”
the execution results of terms of LΣ via both T -transducers and
effect values. In this section we restrict ourselves to closed terms
of base type nat: we simply say a “term” to indicate such a term,
and write LMM for L` M : natM.

For a term M, we can observe that running the T -transducer
LMM : N _ N with input in the form dd〈i,m〉 yields output in the
form dd〈i, n〉, where i and m are arbitrary natural numbers and
n corresponds to an evaluation result of the term (see Section 4.1
for the notation). Therefore we take the set TN as the collection of
evaluation results, fixing a retraction enc : Valnat C N : dec such
that

enc(n) = dd〈0, n〉 dec(dd〈i, n〉) = n .

For a term M, let (X, c, x) : N _ N be a T -transducer LMM. We
collect execution results from the T -transducer by taking

LMM† := ((π′X,N)∗ ◦T c)(x, enc(m)) ∈ TN

where π′X,N : X ×N→ N is the second projection and m denotes a
fixed natural number. This procedure (−)† runs a T -transducer and
gathers its output. Additionally (−)† ignores the resulting internal
states that record the branching history of program execution, or
the history of effect occurrences during program execution. Indeed
we have the equality (X, c, x)† = (Y, d, y)† for two behavioral
equivalent T -transducers (X, c, x) ' (Y, d, y) : A _ B.

Next we define interpretation of effect values. Recall that effect
values for terms are formulated as elements of the free continuous
Σ-algebra CTΣ(Valnat) over the set Valnat. On the other hand,
for each operation op ∈ Σ, the monad T has an ar(op)-ary al-
gebraic operation op on it. This means that the set TN, which is
isomorphic to SetT (1,N), is a continuous Σ-algebra. Therefore we
can lift the function enc∗ : Valnat → TN to a unique morphism
J−K : CTΣ(Valnat)→ TN that is a strict continuous function pre-
serving the operations specified by Σ. When the monad T is equal
to the powerset monad P , this interpretation corresponds to forget-
ting branching structures of effect values (i.e. branching structures
of program execution): for example two effect values (1t2)t3 and
1 t (2 t 3) are identified as a set {enc(1), enc(2), enc(3)} ⊆ PN
where t ∈ Σndet is the nondeterministic choice operation.

Now we can state adequacy of the translation L−M.

Theorem 6.4 (adequacy). Any closed term M of base type nat
satisfies J|M|K = LMM†.

6.3 Proof of Adequacy
To prove Theorem 6.4 we introduce a language LΣ following [25].
In this language all occurrences of recursion are restricted to finite
depth. Namely LΣ is made from the target language LΣ, by replac-
ing the term constructor rec with rec(i) for each i ∈ N and by
adding a constant Ωτ for each type τ . In the definition of the small
step operational semantics, transitions

rec
(i+1)(f : σ → τ, x : σ). M

→ (λx : σ. M)[rec(i)(f : σ → τ, x : σ). M/f]

rec
(0)(f : σ → τ, x : σ). M→ λx : σ. Ωτ

replace the one for rec shown in Figure 2. This excludes any infinite
sequence M → M′ → · · · of pure transitions, hence M ⇑ no longer
appears in the medium step operational semantics. Effect values are
defined in the same way asLΣ, except that we define |E[Ωτ ]| to be Ω.
On the other hand the translation LΓ ` rec(i)(f : σ → τ, x : σ). MM
is given like Figure 8 where we use the i-th approximant Fix

(i)
G of

the Girard style fixed point operator instead of FixG.
Theorem 6.4 is a consequence of Lemma 6.5 below that states

adequacy of the translation L−M with respect to the language LΣ.
The proof goes as follows. For a term M of LΣ and i ∈ N, let M(i) be
a term of LΣ obtained from M by replacing all occurrences of rec
with rec(i). For effect values we can prove

J|M|K = sup
i∈ω

J|M(i)|K

in TN as in [25]. On the other hand Proposition 5.5 ensures the
behavioral equivalence

LMM ' sup
i∈ω

LM(i)M .

Therefore it holds that

J|M|K = sup
i∈ω

J|M(i)|K = sup
i∈ω

(LM(i)M†) = (sup
i∈ω

LM(i)M)† = LMM† .

The third equality is easily confirmed by the definition of (−)† and
continuity of composition ◦T of SetT .
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Figure 7: Inductive Definition of the Translation L−M
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Figure 8: Translation of Recursion by FixG

Lemma 6.5 (adequacy with respect to LΣ). For the language LΣ,
any closed term M of base type nat satisfies J|M|K = LMM†.

Proof. The proof utilizes a logical relation between T -transducers
and closed terms. Let Termτ be the set of closed terms of type
τ . For a binary relation R ⊆ Trans(T )(N,N) × Valτ , a binary
relation R ⊆ Trans(T )(N,N)×Termτ is defined to be the least
binary relation such that

• (d, M) ∈ R if (c, M) ∈ R and c ' d
• (J(h∗) •′ c, V) ∈ R for any (c, V) ∈ R, where h is from

Section 4.1
• (c, M) ∈ R if M→ N and (c, N) ∈ R
• (op{c1, . . . , car(op)}, M) ∈ R if M

opi→ Ni and (ci, Ni) ∈ R for
each i = 1, . . . , ar(op)
• (op{}, M) ∈ R if M ↓op

• (J(⊥), E[Ωτ ]) ∈ R for any type τ .

Note that a binary relationR is closed under behavioral equivalence.
The operator •′ in the above is linear binary application on T -
transducers defined by

(X, c, x) •′ (Y, d, y) := TrCA,B((J(id∗B)� (Y, d, y)) ◦ (X, c, x))

for two T -transducers (X, c, x) : A+C _ B+C and (Y, d, y) : C _
C. It is a “linear” version of binary application • (from Section 4.2)
where the countable copy operator F is excluded.

For each type τ a binary relationRτ ⊆ Trans(T )(N,N)×Valτ
is inductively defined by

Runit = {(J(id∗N), ∗)}
Rnat = {(J(k∗n), n) | n ∈ N}

Rσ→τ = {(J(ψ∗) ◦ r ◦ J(φ∗), V)

| ∀(d, U) ∈ Rσ. (r • d, V U) ∈ Rτ}
Rτ×σ = {(J(φ∗) ◦ (c� d) ◦ J(ψ∗), 〈V, U〉)

| (c, V) ∈ Rτ , (d, U) ∈ Rσ}

Rτ+σ = {( c
w′

w
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φ
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φ

N

N

N

N

N

N

, inrτ,σ(N)) | (d, N) ∈ Rσ} .

For a type environment Γ = x1 : τ1, . . . , xm : τm, a binary relation
RΓ is defined by Rτ1 × · · · ×Rτm .

For a type judgment Γ ` M : τ and T -transducers c1, . . . , cm : N _
N, let LMM[~c] : N _ N be a T -transducer defined by

LMM[~c] := (· · · ((LMM •′ c1) •′ c2) · · · •′ cm) .

We prove by induction on M that it satisfies

(LMM[~c], M[~V/Γ]) ∈ Rτ (3)

for any (~c,~V) ∈ RΓ. We note that if (x, M) ∈ Rnat, then J|M|K = x†.
In fact, by the definition of Rnat, it is easy to see that the relation
Rnat is a subset of {(x, M) | J|M|K = x†}. The statement of
Lemma 6.5 is a consequence of (3). In the proof of (3), properties
of the component calculus summarized in Section 4.3 are exploited.
Here, we only give outline of a proof for the case when M is equal to
rec(i+1)(f : τ → σ, x : τ). N. We define a transducer di to be

Fix
(i)
G ((J(φ∗)� J(u∗)) ◦ LN[~c]M ◦ (J(ψ∗)� J(v∗))).

We first prove

((J(ψ∗) ◦ di+1 ◦ J(φ∗)) • c′,
(λx : τ. N[rec(i)(f : τ → σ, x : τ). N/f])[~V/Γ] U) ∈ Rσ (4)

for any (c′, U) ∈ Rτ . Since Rτ→σ is closed under behavioral
equivalence and reductions, it is enough to check

(LNM[~c,di, c′],

(N[rec(i)(f : τ → σ, x : τ). N/f])[~V, U/Γ, x]) ∈ Rτ
for any (c′, U) ∈ Rτ . We can prove this by induction on i. Now, by
the definition of Rτ→σ and (4), it follows that

(J(ψ∗) ◦ di+1 ◦ J(φ∗),

(λx : τ. N[rec(i)(f : τ → σ, x : τ). N/f])[~V/Γ])

is in Rτ→σ , and therefore,

(J(h∗) •′ (J(ψ∗) ◦ di+1 ◦ J(φ∗)),

(rec(i+1)(f : τ → σ, x : τ). N)[~V/Γ]) ∈ Rτ→σ.
Since the left component is behaviorally equivalent to LMM[~c],

(Lrec(i+1)(f : τ → σ, x : τ). MM[~c],

(rec(i+1)(f : τ → σ, x : τ). N)[~V/Γ])

is in Rτ→σ .

7. Executing Transducers
In this section we illustrate execution of transducers using the fol-
lowing example term

P ≡ (rec(flipLoop, x). Q) 0 : nat

where Q ≡ x t0.4 (flipLoop (x + 1)).

The term P is a closed term of the language LΣprob , where Σprob

is the algebraic signature for probabilistic choice and supported
by the subdistribution monad D (see Example 6.2). This term P
intuitively flips an unfair coin repeatedly until we observe head,
counting how many tails we observe. Indeed the effect value |P|



can be seen as the infinite binary tree shown in Figure 9 and its

t0.4

0 t0.4

1 t0.4

2 . . .

Figure 9: The Effect Value |P|
interpretation J|P|K ∈ DN is equal to the distribution over N such
that J|P|K(enc(n)) = 0.4× 0.6n for each n ∈ N.

As a consequence of Theorem 6.4 we can say that the D-
transducer LPM : N _ N, depicted in Figure 10, outputs enc(n)
with probability 0.4 × 0.6n for each n ∈ N. The execution of LPM

LPM = h LQM

ψ

φ

v

u

c

c′

d′

d

L0M

φ

ψ

φ

ψ

ψ

φ

e′

e

Enter

Exit

where LQM = LxM LflipLoop (x+ 1)Mt0.4

Figure 10: The D-transducer LPM : N _ N
can be visualized using a token that moves around the depiction
along edges, updating the data (a natural number) carried by the
token: it enters from the edge labeled with “Enter” carring the data
enc(m), wherem is a fixed natural number, and exits along the edge
labeled with “Exit” with data enc(n) and probability 0.4× 0.6n for
each n ∈ N.

The way in which the token travels around captures dynamics
of the evaluation of the term P in some sense. For example we
can observe that the token enters a copy of the “subtransducer”
LQM as many times as the coin is flipped (i.e. the recursive function
rec(flipLoop, x). Q is called). Note that the transducer LQM is
within the dashed box in Figure 10 and hence “copied” by the
operator F (see Section 4.2). Each copy has an index given by a
natural number and, in fact, the token enters a different copy of LQM
for each time: namely it inters the g0-th copy for the first time, the
d〈g0, g0〉-th copy for the second, the d〈d〈g0, g0〉, g0〉-th copy for
the third and so on. In this course, the token goes along the path
indicated by the bold red arrows in Figure 10 (colors are available in

an electronic edition), and enters a copy of LQM as many times as the
subterm flipLoop is recursively called (i.e. the coin results in tail).

Each copy of the transducer LQM has the state space that is iso-
morphic to the set {∗, L,R}; the transition diagram is given by

L1 ;; ∗0.4oo �� 0.6 // R 1dd

where labels denote probabilities. The copies of LQM indeed record
the history of probabilistic choices using their internal states: for
example if the coin results in tail twice and in head at the third time
(i.e. the term P is evaluated to 2), internal states of the copies result
in as below.

index internal state
g0 R

d〈g0, g0〉 R
d〈d〈g0, g0〉, g0〉 L

others ∗

Readers can see how exactly the token moves around using our
tool TtT3—short for “Terms to Transducers.” The tool automatically
translates a given term of the language LΣprob and visualize exe-
cution of the resulting transducer by showing how a token moves
around and updates its data.

8. Concluding Remark
In this paper we established a framework that gives GoI semantics
for effectful programming language. Our framework accommodates
various algebraic effects in a uniform way by employing categorical
formalization of GoI and algebraic effects. This generality is inher-
ited from the framework in our previous work; what is new in our
current work is to accommodate recursion. Notably we gave two
ways to interpret recursion—by Girard style and by Mackie style—
and they were proved to be coincide. Additionally adequacy of our
interpretation was proved. Our framework inherits another feature
from the mGoI framework: that is, GoI interpretation of programs
is given as transducers. In particular we gave the translation from
effectful terms to transducers by means of a component calculus,
even for recursion, with our prospect of developing a compilation
technique for effectful programs and implementing them directly to
hardware.

Let us give a remark on two styles of fixed point operator on
transducers. In extracting a compilation technique from our frame-
work and implementing it, one difficulty would arise from the use
of countable copy operator F and countable parallel composition
�n∈N of the component calculus. The reason is that they both can
inflate state spaces of transducers to infinite ones. From this point of
view we would like to say that the Mackie style fixed point opera-
tor is a little more acceptable than the Girard style one, because the
former includes only one occurrence of F while the latter includes
one occurrence of �n∈N and many occurrences of F . Therefore,
although the Girard style fixed point operator exhibits convenient
domain-theoretic properties, we would prefer the Mackie style fixed
point operator in implementing our framework. That is why we used
the Mackie style fixed point operator in the translation (Figure 7) of
recursion.
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