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Abstract. Jonsson and Larsen’s notion of probabilistic simulation is studied from
a coalgebraic perspective. The notion is compared with two genericetmalg
definitions of simulation: Hughes and Jacobs’ one, and the one intrdcgaree
viously by the author. We show that the first almost coincides with the secon
and that the second is a special case of the last. We investigate implicattbiss of
characterization; notably the Jonsson-Larsen simulation is showrstouoe i.e.

its existence implies trace inclusion.

1 Introduction

Use of probabilistic algorithms in distributed and coneuntrapplications is common
practice. Consequently, modeling and verification teaedgfor probabilistic systems
have been extensively developed. One fundamental braacéithis about probabilistic
(bi)simulation it gives an answer when a probabilistic system is “equivdi® another,
or when one “refines” another.

In this paper we focus on simulation notions for purely ptulistic systems’. For
such systems it is standard to define a notion of simulatiorgwseight functionsThe
idea is first devised by Jonsson and Larsen [12]; it has iedpirlarge body of work
including [1]. Our aim in this paper is to shed fresh, matheraalight on the idea,
from the viewpoint oftoalgebra

Coalgebra is a mathematical/categorical presentatiomtd-based systems. Its ini-
tial success was brought about by a generic, coalgebraiactiesization of bisimulation
that applies to a variety of systems, including probalidietes (see e.g. [11,17,19]).
The theory has since been extended to include various asplexdncurrency theory—
such as SOS and modal logic (see e.g. [13]). Simulation, as-5ided bisimulation,”
is one of such aspects.

Two approaches have been presented towards a coalgelwaiy tbf simulation:
Hughes and Jacobs’ [10] and the current author’s [5]. Bofir@gches are generic,
applicable to non-deterministic systems like LTS as welpaxbabilistic ones. In this
paper we restrict them to a purely probabilistic setting @mmtuct a comparative study.
The comparison is among tlensson-Larsen simulatipthe Hughes-Jacobs simula-
tion, and the one in the author’s previous work [5] which we cadltfeisli simulation

* This is an extended version of the paper [7] that is to appear in Proc.GLBR\2010. The
current version is supplied with additional proofs and examples.
8 Unlike e.g. Segala’s probabilistic automata [18], they do not featuredieoerminism.



Among the three, the notion of Kleisli simulation is the mdgttinguishable: it is
given not as a relation but as a functidn— DY, whereX andY are the state spaces
of the involved systems. Therefore it is not suitable as aickate of arefinement rela-
tion, the original motivation for the Jonsson-Larsen one. Theidfil simulation rather
follows the spirit of Lynch and Vaandrager [16]: it is a poftool for showingtrace
inclusion While a direct proof of trace inclusion involves transisowithin arbitrary
many steps, finding a simulation is a stepwise matter. Intteedotion of Kleisli sim-
ulation is precisely a coalgebraic generalization of the tn[16]; the former comes
with theforward andbackwardvariations just like the latter. The theory in [5] has been
successfully applied to verification of probabilistic agonity in [9].

Our findings are as follows. The standard Jonsson-Larsemaiion, defined ir§3
concretely for a specific kind of probabilistic systems (wesatibe them irg2), is
identified with a slightly restricted variant of the Hugh#seobs simulatior§é). This
allows us to remove the unnecessary restriction that wasehidh the original con-
crete definition §4.4), as well as provides a guideline in transferring thenitén to
other kinds of probabilistic system&4(5). On another link in the triangle, we identify
the Hughes-Jacobs simulation as a special case of the ikdgigllation §5). From
the genericsoundness theorefb]—existence of a Kleisli simulation implies (finite)
trace inclusion—we thus conclude soundness of the Huglmdbdanotion, hence of
the Jonsson-Larsen one. 46 we present some example systems for further compari-
son of different simulations. They suggest the potentialafKleisli simulation, whose
definition we shall state also in concrete terms.

Our expedition will be in a leisurely pace. In particular,gadegorical or coalgebraic
prerequisites are assumed; they are introduced on our waycall-by-need basis.

Notations A square in a diagram which is not filled means thabinmutesthat is, the
equality symbok= is implicit in it.

A probability (sub)distributiony over a setX is often denoted like a tabl¢x —
~v(x) Jzex.- When an entry: € X is missing in the table, the probabilifyis assigned.
Hence for example, whery € X is a fixed element,z; — 1] means the distribution
v such thaty(x) = 1 andv(z) = 0 for z # xo.

2 Probabilistic System

We will be mainly interested in two kinds of purely probasilc systems—GPAs and
DTMCs—which we now define formally.

Definition 2.1 (Generative probabilistic automaton, GPA) Let Ac be a fixed nonempty
alphabet; we refer to its element as action A generative probabilistic automaton
(GPA)overAcis a tripleX = (X, zg, ¢) where

— X is a nonempty set cftates
— x¢ € X is a chosen state which is called ihéial one; and



—c¢: X - D({v}+ Ac x X) is atransition function Here{v'} is a singleton:4
denotes the disjoint union; arfdis thesubdistributionoperation. For a sét

DY = {v:Y = [0,1]| > ~(y) <1} . 1)
yey

Suchd € DY is called asubdistribution since its values add up to not more than
1, instead of precisely.

The subdistributior(x) tells the probabilistic behavior of a stateThe value:(x) (a, 2")
with a € Acandz’ € X is the probability with which: makes the action and moves

to 2’; thatis,c(x)(a, ') = Pr[z % 2']. We interpret the symbat” assuccessful termi-
natiory thus with the probability:(x)(v') = Pr[z — v'] the stater is led to successful
termination. The remaining probability— c(z)(v') — >, .. ¢(z)(a, 2’)—which may
be more thard sincec(z) is a subdistribution—is understood as the probability with
which z gets intodeadlock

GPAs are said to bgenerative in contrast toreactive systems whose transition
function is given as, say,: Ac x X — D({v'} + X). They differ in whether an action
is chosen by the system or by the environment; see [4].

GPAs can be thought of as a probabilistic variant of labetadsition systems
(LTSs). DTMCs, which we introduce shortly, are then probstic Kripke frames. The
notion is standard, see e.g. [1, 14]. The definitions in tteediure vary in details; the
following one is adapted to fit the current context.

Definition 2.2 (Discrete-Time Markov Chain, DTMC) LetAP be afixed set citomic
propositions A discrete-time Markov chain (DTMQ)ver AP is a quadrupleY =
(X, zo,!,p) where

— X is a nonempty set aftates among whichzy € X is aninitial state;

— 1 : X — P(AP) is alabeling functionwhereP denotes the powerset. This assigns
to a stater € X the set/(x) of atomic propositions that hold at

—p: X — DX is atransition function whereD is the subdistribution operation
in (1).

A DTMC has labels on its states, while a GPA has labels onatssitions.

3 Jonsson-Larsen Simulation

For DTMC and its variants, a standard definition of simulafi®2] usesweight func-
tions Here we present the definition for DTMC taken from [1]. Thasifily of simula-
tion notions—based on weight functions—will be callEmhsson-Larsen simulation

Definition 3.1 (JL-simulation for DTMC) LetX = (X, xo,l,p) andy = (Y, yo, m,q)
be DTMCs. AJonsson-Larsen simulation (JL-simulaticinpm X' to ) is a relation
R C X x Y which satisfies the following.

1. The initial states are related, thatig,Ryq.



2. Related states satisfy the same set of atomic propositidRy implies i(z) =

m(y)-
3. Foreachr € X andy € Y such thatr Ry, there exists aveight function

Ay + ({LI+X) x ({L}+Y) — [0.1]

such that
(a) Az y(u,v) > 0implies either
—u=.1,o0r

—u=2€X,v=y €Y andz' Ry
(b) Az,y(J—7 J—) + Zy/ey Az,y(Lay/) =1- ZI/GX p(x)(xl) )
(c) foreach’ € X1 A, (', L) + 37, cy Auy(a’,y') = p(z)(2') ;
(d) Aa:,y(Lv 1)+ Zx’GX Aa:,y(-r/v 1)=1- Zy’EY Q(y)(y/) 5
(e) foreachy € Y: A, (L,y) + > ex Quy(@,y) = q)(y) -
Note that the condition (a) simplifies (c) and (d) into thddwaling:
(c) foreacha’ € X: Y- oy Ay y(2y) = p(a)(2') ;
(@) Aey(L, 1) =1-% ey a)(y) -

Although illustration of the previous definition is foundjein [1, Ex. 14], the definition
hardly seems as “canonical” or “intuitive” as other notimugh as (bi)simulation for
ordinary LTS. For example, the only asymmetry betwé&éand) is found in Cond.
3.(a) whereu, notw, is allowed to bel.. One might wonder if it is possible to weaken
this condition. Weakening- into C in Cond. 2 looks like another possibility. It is not
clear either how to adapt this definition to GPA. Even lesarde whether the adapted
notion satisfies soundness—existence of a simulation isypkee inclusion—which is
a natural property to expect.

What we do in the rest of the paper is to put the above definiticm ¢oalgebraic
context. First it will be identified with a restriction of Hhgs and Jacobs’ simulation
(HJ-simulation)[10]. From this we immediately obtain natural generaliaasi of the
original definition, which are hinted above. The generimtlgan [10] can be used to
conduct some “sanity checks” for the generalized definitiddaptation to GPA comes
for free, too. After that we will identify HJ-simulation wita certain subclass #feisli
simulation from [5]. Soundness of JL-simulation for GPAtsdgorollary.

4 Hughes-Jacobs Simulation

4.1 Coalgebraic Modeling

In the Hughes-Jacobs theory of coalgebraic simulationsteayis modeled aspy
a B-coalgebra which is a functiorr of the type on the right. The séf (which

is arbitrary) is the system'state spacethe operationB specifies the kind of x
transitional behavior exhibited by the system; and thetione: determines the
system’s dynamic behavior. We now elaborate on the oper&tjavhich takes a seX
and returns another s&tX .



Roughly speaking, it is the operatidhwhich determines what kind of systems we
are talking about. One choice & makes aB-coalgebra an LTS; another choice Bf
is for a deterministic automaton (DA); and so on. Specifjcall

B [[P(Acx _)[2 x (L)"|(Acou x )| D({v'} +Acx _)|P(AP) x D(_)
B-coalg] LTS | DA | Mealy mach. | GPA | DTMC

When B is D({v'} + Ac x _), a B-coalgebra is a function : X — D({v} +
Ac x X); this is precisely a GPA (Def. 2.1) without an explicit initistate. ForB =
P(AP) x D(_), aB-coalgebrais afunction: X — P(AP) x DX, which is identified
with a DTMC (without an initial state) via the following bijéive projection-tupling
correspondence.

X — P(AP) x DX . (I,p) = Aw-éi(x), p(z))
X — P(AP) X — DX (m oc¢, mo0c) (l,p_)

Herer,; denotes the-th projection;(l, p) denotes théupling of [ andp.

To develop a “theory of systems” on top of this modeling, aaragion B needs to
be afunctor. Leaving its detailed treatment to literature like [11],atlit means is that
the operationB not only applies to sets (i.&X — BX) but also to functions. That is,

B: xLvy — BxZBY).

Note the domain and the codomain of the resulting funcigh
The previous examples @ have natural action on functions. For example, given a
functionf : X — Y,

P (Acx )

P(Ac x X) PAcxY) , ur— {(a f(2)|(a,z) €u} ;

D{v}+Acx X) PVIECD pe L Acx Y |
v =)

L (a,y) — Ea;effl({y}) v(a, z)

P(AP)x D
P(AP) x DX TP p(AP) x DY | (u,7) — (us [y Saesor i 1@)]) -

Lying under the latter two i®'s action on functions:

D
px 2L py y Y [y'—> Zmeffl({y})’)/(‘r)] . 2

To be precise, sucl is a functor of the typé&Sets — Sets, from the category
Sets of sets and functions to itself. We make a formal definitiontfe record.

Definition 4.1 (Functor, coalgebra) A functor B : Sets — Sets consists of its action

on setsX —— BX and on functiong X EN Y)— (BX 5 BY), for eachX andf.
This is subject to the following conditions:

B(X ig X):(BX idgx BX) : B(XLYE)U):(BXB—]:BYB—%]BU) .



A B-coalgebrais a pair(X,c : X — BX) of a set and a function; we shall simply
denote it byX = BX.

Thefunctoriality of B is crucial in the following definition of coalgebraic bisitation
(notice use ofBrr;). The definition subsumes many known notions of bisimufatio

Definition 4.2 Let B : Sets — Sets be a functor and :

X — BX andd : Y — BY be B-coalgebras. Aoalgebraic X Bm BR Bre BY

bisimulationis a relation®R C X x Y such that: there exists -4 i +d
a functionr : R — BR that makes the diagram on the rightX < — R ——Y
commute. Herer; andm, are obvious projections. (3)

When B represents purely probabilistic systems such as DTMCslibee coalge-
braic bisimulation instantiates to the one that uses a wéigiction. It coincides with
the more common formulation via equivalence classes [118¢ doincidence proof is
implicitin [12, Thm. 4.6] and is much more systematicallyndacted in [19].

4.2 Hughes-Jacobs Simulation

Roughly speaking, simulation is “one-sided” bisimulatigvhenR is a simulation and
xRy, we requirey to exhibit “at least as much” behavior agloes, that is,

(z’s behavior) C (y's behavior) 4

in terms of a suitable preorder of “behavior inclusion.” Hughes and Jacobs [10] used
this intuition and defined generic simulation as a variaridef. 4.2. In order to do so,
a functorB : Sets — Sets needs to come with a “behavior-inclusion” preorder

Definition 4.3 (Functor with preorder) A functor with preorderconsists of a functor
B : Sets — Sets and a class of preordef$_ s x } x for each setX, whereCpx is
on the setBX. Further, given a functiorf : X — Y, its actionBf : BX — BY is
required to be a monotone function. We often suppress thecapbinC ;5 x.

Example 4.4 Let B = P(Ac x _), for which B-coalgebras are LTSs. It is a functor
with preorder, with a natural choice ofg x being the inclusion order.
Let B=D({v} + Ac x _); aB-coalgebra is a GPA. For,§ € BX we define

vCpx 0 &L (V) <46(v) and ~(a,z) <é(a,z) foreacha andz.

Note thatC g x need not be reduced to the equality, sina@ndé aresuldistributions.
Let B = P(AP) x D(_); a B-coalgebra is then a DTMC. There are a few natural
candidates for the preorderg x. One is:

(u,7) Cgx (0,0) €5 w=v and ~(z) <d(z) foreach.

We denote this order biz=. Noting thatu andv are subsets oAP, we could replace
the conditionu = v by u C v, for example. The resulting order will be denoteddy.



Definition 4.5 (HJ-simulation) Let (B,C) be a functor

with preorder, andy % BX,Y % BY be B-coalgebras. BX 2™ BrER By
A Hughes-Jacobs simulation (HJ-simulatid"dm ctodis ¢+ CT 1+ C 14
a relationR C X x Y such that: there exists a functionX <5, R —,~ Y
r : R — BR which makes the inequalities on the right hold. (5)

That is to be precise: for each, y) € R
(com)(z,y) Cpx (Bm or)(x,y) and (Bmsor)(z,y) Cry (dom)(x,y) .
Noting e.g.m (z,y) = «, this means: for each andy such that: Ry,
c(x) Epx (Bmor)(x,y) and (Bmor)(z,y) Epy d(y) .
The formulation is different from the original one [10] wieea lax relation lifting is
used. The equivalence is proved in Appendix A.1.
4.3 Jonsson-Larsen Simulation as Hughes-Jacobs Simulatio

Here is the first main observation in this paper: JL is HJ. Tiged—= is from Ex. 4.4.

Theorem 4.6 Let X = (X, z0,l,p) and) = (Y, yo, m,q) be DTMCs, and leR be
a JL-simulation fromY to ). ThenR is a HJ-simulation from the coalgebrd, p) to
(m, q): there exists- that makes the following (in)equalities hold.

P(AP) x DX 2P pAp) x DR AP pAP) x DY
Loyt - rt . T om0
X R Y

Proof. We need to find- = (ry,r2) with r; : R — P(AP) andrs : R — DR. We set
r1(x,y) := I(x), which is equal tan(y) by Cond. 2 of Def. 3.1. A weight functiogl
is used to define,; specifically

ra(z,y) = AN2'y) € R A, (2. y) .

We verify the equality (left) and the inequality (right) i6)( They obviously hold with
respect to the first component, i.e. equalities betweertivmeR — P(AP). We focus
on the second component, i.e. (in)equalities between ifumcR = DX andR =
DY.

(Dmy o ro)(z,y)(2)

=D (e eR|m (2 )=y T2(@ Y) (@ Y") by def. of D7y (2)
=2 (v Ry} Qe (@ Y7) by def. ofry

= ey Quy(@,y") by Cond. 3.(a) of Def. 3.1

= p(z)(z) by Cond. 3.(c’) of Def. 3.1.



This proves the equality on the left. Regarding the inegyal the right,

) much like the above
L,y by Cond. 3.(e) of Def. 3.1

=q
<qy) (') - O

We include initial states (Cond. 1, Def. 3.1) and obtain tikWing characterization.

Theorem 4.7 (JL is HJ) LetX and) be DTMCs in Thm. 4.6. ArelatioR C X x Y
is a JL-simulation if and only if there exist functiongndry that make the following
(in)equalities hold. The sdt«} is a singleton.

P(AP)XDWl ’P(AP)XDTK‘Q

P(AP) x DX P(AP) x DR P(AP) x DY
€)1 = T c= +{m,q)
X — R — Y (7)
= ro ™ =
/k xo {*} Yo j

Note that a function;, : {*} — X can be identified with an elemerg € X.

Proof. The bottom equalities force) to be(zo, yo). Hence the ‘only if’ part is a direct
consequence of Thm. 4.6.

For the ‘if’ part, Cond. 1 follows from the bottom equaliti€Sond. 2 follows from
the upper (in)equalities’ first components. Note that teites our the choice of-=
instead of, say—. Regarding Cond. 3, fofz,y) € R we define a weight function
Ay by

TQ(xay)('r/ay/) If (x/7y/) € R
0 otherwise

(Ly) = aw)) = Y rzyEy), (LL)=1-3 ayy) ,

{a'[2'Ry'} yey

(@, y') — (', 1) >0 ,

wherers := w3 o r. Then Cond. 3.(a) of Def. 3.1 is obvious. On Cond. 3.(b),

Apy (L, 1)+ Y Ay (L,y)
y' ey

=1-> W)+ >, (q(y)(y’) - > 7‘2(96731)(33’73/))

y' ey y'ey {2'|z' Ry’}
=1-3 > nEnEy)

z'eX {yllI/Ryl}
=1- Z (Dmy o ro)(w,y)(z') by def. of Dmy

z'eX
=1-3_cxp(x)(a’) by the top-left equality in (7).



Cond. 3.(c") and 3.(e) are verified as follows. Cond. 3.(8'pbvious.

Z@/EY Af,y(x/’ y/)

= Z{y’\a:'Ry’} T2 ((L‘, y) (:C/, y/)

= (Dmy org)(z,y)(z’) by def. of Dmy
=p(x)(z") by the top-left equality in (7),

Am»y(ia y') + Zz’GX Am,y($/7 y')
=qW)W') = X parwrryy 2@ )@ Y) + D myry T2 (@ 9) (2 )
=qy)(y) -

O

4.4 Generalized Jonsson-Larsen Simulation

Thm. 4.7 shows that JL-simulation does not reach the fulegdity of HJ-simulation:
the top-left square is an equality in (7), which is not neagsd ranslating HJ-simulation
into the Jonsson-Larsen style concrete terms, we are lée timllowing definition.

Definition 4.8 (JL-simulation for DTMC) A JL’-simulationis the same as a JL-simulation
(Def. 3.1) except for the following.

— A weight function is of the typed, , : ({L}+X) x ({L}+Y) — [-1,1].
— Cond. 3.(a) is weakened: the valueAf , (u, v) must lie in the following range,
according tou andv:

e Wwhenu = 2/ € X andv =y €Y, if 2’Ry N L] ey
then A, ,(2',y") > 0; if (2/,y') ¢ R then INED) >0
Agyl@y) = 0; . =

o A, (L,y')>0foreachy’ €Y, : >0 (2'Ry)

o Ay (2, L) <0foreachs’ € X, 3;’ <0 {0 (0.w)

o A, (L, L) can be positive, zero or negative.

— Cond. 3.(b) and 3.(d) are dropped.

Now a weight function can take negative values. Cond. 3.d) &(d) played no role
in Thm. 4.6, hence are dropped. Similarly to JL-simulatiiimding a weight function
is filling in the matrix above on the right, in such a way thatribws and columns add
up to the right values like(x)(z") or q(y)(y’). The task is easier with JL-simulation
because each entry can be picked from a broadened domain.

One can further generalize the previous definition by réptpic = by C< (Ex. 4.4):
in this case the systed to be simulated satisfies no more atomic propositions han
does. This generalization is useful e.g. when we are intexlés safety properties, and
atomic propositions represent systems’ actions.

Definition 4.9 (JL"-simulation for DTMC) A JL’-simulation is the same as a JL-
simulation (Def. 4.8), except that Cond. 2 is replaced by

2. xRy impliesi(z) C m(y).

Proposition 4.10 Let X and) be DTMCs as in Thm. 4.6, amd C X x Y.
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1. The relationR is a JL'-simulation if and only if there existandr, that validate
the (in)equalities in (7), with the top-left equality repkd byC=.
2. The relationR is a JL"-simulation if and only if there exist and r, that validate
the diagram (7), with the top two squares filled witf . O
Let us do some sanity checks. The following holds for JL"éast of JL' too; also
for the conventional notion of JL simulation (see [1]).

Proposition 4.11 Let X = (X, z,1,p) andY = (Y, yo, m, q¢) be DTMCs.

1. If R C X x Y is a bisimulation, therR and R°P are both JL'-simulations.

2. The family of JL'-simulations frofv' to ) is closed under arbitrary unions. There-
fore there is the largest JL-simulatiofi ;- called JL'-similarity.

3. JL’-simulations are closed under composition. Hefigg, is transitive.

Proof. The claim follows from Lem. 4.2 and Prop. 5.4 of [10]. To apfig latter we
need to show that the ordefs- andC< P(AP) x D(_ ) arestable a technical condition
from [10]. We prove that fo==; it is similar for °<. By the inequality (1) in [10] it
suffices to show: for any functiofi: Y — X we have
{ ((w,7), (v,0)) | (u,v) &= (P(AP) x Df)(v,6) }
C {((PAP) x Df)(u',8"), (v,6")) | (W', 8") &= (v',6") } .
Herey € DX andd, §’, " € DY. This is immediately reduced to:

Sublemma 1 Assumey(z) < 3, -1 (4} 0(y) for eachz € X. Then there exists
¢’ € DY such that

§'(y) <d(y) foreachy, and ~(x)= >  &'(y) foreachs.

yef~1({z})
We construct such’ by “discounting”d. Concretely, we set
5(y) = (/) 5(y)

> W)
vl U

if the denominator is non-zero; otherwig&y) := 0. The first condition is obvious
from the assumption. For the second one,

Yodw= Y %(:f () 5(y) by def. o’

ves () ves({a})
v eI WY
xr
=Y AWy by =
e ey DL W)

yei({a})
> @)y

_ vel e
> W)

yef~'({=})
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foreachwsuchthab® . . () d(y) > 0. Otherwise we have(z) = >, -1 (1, ' (¥) =
0. This proves the sublemma, hence the proposition. ad

4.5 Jonsson-Larsen Simulation for GPA

Another implication of Thm. 4.7 is adaptation of JL-simigatfor other kinds of prob-
abilistic systems, via HJ-simulation which is general bfirdgon.

Definition 4.12 (JL-simulation for GPA) Let X = (X, zg,c) and) = (Y, yo,d) be
GPAs. AJL-simulationfrom X to ) is a relationk C X x Y such that:

1. The initial states are related, thatig,Ryq.
2. For each paifz, y) € R, there exists a weight function

Apy + ({LIH{VI+Acx X ) x ({L}+{v}+AcxY ) — [-1,1] such that

o W\ LV (ayy) o | (an,p) -
(a) Az y(u,v) lies in the range L [[Eo[>0 >0 >0
on the right. In particular, v |I0[>0 0 0
Agy((a, "), (d,y) > 0 >0 (o Ryl
T, \ ) ) ) -y = (w Ry )
only if « = o’ andx’'Ry/; (a1, 27)||< 0] 0 {0 (o.bv.)yl 0
(az,fac/z) <o| o 0 {5 0 E;”?W}jy?)

(V) = gy (v, L) + Apy (V) 5
( 515/ = Az,y((av il'/), J—) + Zy/ Az,y((av 1'/)7 (aa y/)) for eacha andx/;

d) d(z)(v) = Qg y(L, V) + Az y(V,V) 5

y') = Asy(L, (a,y)) + >, Az y((a,2), (a,y’)) for eacha andy’.
The definition seems to appear for the first time. It coincidéh HJ-simulation for

B =D{v }+Acx(_)), with B equipped with the order in Ex. 4.4 (the proof is easy).
Properties like in Prop. 4.11 hold as well. Remaining is f#saié osoundnesst is not
obvious at all from the above complicated definition. Onewf main contributions is
the soundness proof later §B.7, which uses the generic theory in [5].

5 Kleisli Forward and Backward Simulation

We now describe the third kind of simulation from [5]. We dhafer to this family as
Kleisli simulation for the reason that is explained shortly. Kleisli simwatconsists of
four subclassedorward, backward and twohybrid ones, like in [16]. The most notable
difference from JL- and HJ-notions is that a Kleisli simidatis afunctionX — DY
orY — DX that satisfies certain conditions.
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5.1 Kleisli Arrow

First we fix our domain of discoursekieisli arrows. They are arrows in a Kleisli cat-
egory, a standard categorical construct. Our descripsitioivever in concrete terms.

Definition 5.1 (Kleisli arrow) Let X andY be arbitrary sets. Kleisli arrow from X
toY, denoted byf : X + Y, is a functionf : X — DY. A few typical Kleisli arrows:

— The Kleisli arrownx : X + X, for eachX, is the functionx : X — DX that
carriesz € X to [z — 1].

. . - f ¢
— Given consecutive Kleisli arrows + ¥ andY U,wehaveg® f: X+ U by

gof : X —=DU , zr—du 3oy 9(y)(u) - f(z)(y) -

— For each (ordinary) functiorf : X — Y, we haveJf : X + Y defined byX EN
Y I DY . Thatis,(Jf)(z) = [f(x) — 1]. This generalizegx by:nx = J(idx).

The following are straightforward; they say that Kleisli@xs form a category.

Proposition 5.2 1. Composition of Kleisli arrows is associative: for threensecu-
. . f h
tive Kleisli arrowsX - Y & U V,wehaveh ® (g © f) = (h©g) ® f.
. . . f
2. nis the unit of composition: foX + Y we haveny © f = f = f ©® nx. O

One can think of a Kleisli arrowf : X + Y as a “function fromX to Y, with im-

plicit probabilistic branching”; or as a “probabilistic iwputation of input typeX and

output typeY'.” The operatoro realizes natural composition of such probabilistic com-

putations. The embeddingf of an ordinary function endowg with trivial branching.

By moving from functions to Kleisli arrows, therefore, wevieathrown probabilistic

branching under the rug; this abstraction is useful in thesequent development.
There is a natural order between parallel Kleisli arrows.

Definition 5.3 Between a parallel pair of Kleisli arrow§ g : X +— Y, we define an
orderf C gif: f(x)(y) < g(z)(y) for eachr € X andy € Y.

5.2 Probabilistic Systems as Kleisli Coalgebras

AGPA X = (X, z, c) (Def. 2.1) can be presented by two Kleisli arrows:

() X (V) Acx X ®)

This is a prototype of the kind of systems on which we definagtilsimulation. First
we parametrize the{v'} 4+ Ac x (_)’ partin the above.

Definition 5.4 (Polynomial functor) A polynomial functoris a functorF' : Sets —
Sets which is constructed
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— from the identity functol__) and the constant functar for each set’,
— using finite products and arbitrary disjoint union (i.e. muguct).

In the BNF notationF" =:= (_) | C | Fy x Fa | [[,; Fi.

The functor{v'} + Ac x (_) is polynomial; sois e.gAc+ _)* =[], (Ac+ _)™.

n<w

Lemma 5.5 A polynomial functorF” has canonical action on Kleisli arrows, carrying
f Fr
X+YtoFX -+ FY.

Proof. A general categorical proof is found in [&.2]; one can also define such action
concretely by induction on the constructionof a

In most case$™s action on Kleisli arrows is obvious. Fdf = {v'} + Acx (_) andf :
X+ Y, theKleisliarrowF f : F X+ FY is given by the functioqv'} + Ac x X —
D({v'} + Ac x Y), defined by

V= Ve ], (ar) — [(ay) = f(@)(1) ey

Definition 5.6 (Probabilistic F'-system) Let F' be a polynomial functor. Arobabilis-
tic F-systemor simply F-systemis a tripleX = (X, s, ¢), whereX is an arbitrary set
and{x} — X —— FX are two Kleisli arrows. Recall that probabilistic brandhin
is implicit in Kleisli arrows.

Example 5.7 A GPA induces arF-system, withF' = {v'} + Ac x (_); see (8).F-
system is more general than GPA since the former allows aisuibdtion on initial
states (i.es € DX) rather than a single initial state. This additional geligras how-
ever not important.

A DTMC cannot be seen as dftsystem as it is: its dynamics is given by a function

x L P(AP) x DX which cannot be understood as a Kleisli arrow. We can fix it by
moving “state labels” into “transition labels.” Let us defia functionc; ,, by

ap: X —D(PAP)x X) . a— [(U(z),2") = p(x)(@)],cx ;

Jx Cl,p
then theF-system{x} xS P(AP) x X represents a DTMCX, zo, [, p).

The notion of (probabilisticy’-system is essentially Kleisli £'-coalgebraX -

F X equipped with an explicit initial stat{ak}—.i X. In coalgebraic studies it is usually
unnecessary to speak about explicit initial states; we kieweeed that in this paper for
formulating the soundness result (Thm. 5.20). Seé&€3&.4].

Let us compare the curreideisli coalgebraic modelingf GPAs (Ex. 5.7) with
the modeling ing4.1. They are the same in that the dynamics of a GPA is repexsen
by a functionX — D({v'} + Ac x X). In the Kleisli modeling, the functoB =
D({v'} + Ac x (_)) is divided intoD (branchingpart) andF = {v'} + Ac x (_)
(transition/actionpart); the former is then “buried in the ground” using Kleairows.
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5.3 Kleisli Simulation

Definition 5.8 (Kleisli simulation) Let F' be a polynomial functor and = (X, s, ¢)
and) = (Y,t,d) be F-systems. Aorward Kleisli simulationfrom X to Y is a Kleisli
arrowf : Y- X suchthat @ f C (Ff) ©dands C f ©t (see below left). Note the
direction of f. It is also called simply éorward simulation

fwd. FX—F—py bwd FX— PV
c4 C f +d c4 b C +d

Lﬁ{%}aj &Q{E}Lj

A backward (Kleisli) simulatioris a Kleisli arrowb : X—+ Y suchtha{ Fb) ©c C d®b
andb © s C ¢ (see above right). Here the orderefers to the one in Def. 5.3.

In fact, the last definition is an instance géneric forward and backward simulation
in [5,6]. The general definition has an extra paramétérat specifies dranching type
Itis fixed toT = D in this paper, representing probabilistic branching. Aleotmain
example is" = P, the powerset operation, faon-deterministidranching.

This extra parametér is used in the definition of Kleisli arrow. Namely,: X +
Y is defined to be a functioff : X — TY. WhenT = P, a Kleisli arrow f :
X -+ Y is hence identified with &inary relation By C X x Y, such thatzR;y if
and only ify € f(z). In this case, if moreoveF = Ac x (_) for which F-systems
are ordinary LTSs, Kleisli simulation (Def. 5.8) coincide&h the standard notions of
forward and backward simulation for LTS (see e.g. [16]).sldvincidence is illustrated
in [6, §3.2.3]. To summarize: probabilistic Kleisli simulation €D 5.8) is a natural
generalization of non-deterministic simulation in [16].

The directions of Kleisli arrows and inequalities in Def8 Bieed some care. Notice
that asimulatedsystem always occurs on the smaller sideofrhe directions off and
b are best illustrated in a non-deterministic setting; se&362.3].

5.4 Kileisli Simulation for GPA

We further instantiate the definition to GPA, iB.= {v'} + Ac x (_). It demonstrates
Kleisli simulation’s affinity to the conventional simulati notions for LTS.

Notation 5.9 A forward simulation is a functiorf : Y — DX ; we writePr[y --» z]
for the valuef (y) (). We letPr[z — v'] andPr[z % 2’] have their obvious meanings.
We also compose events; for example

Pry —-» 2 % '] := Prly - o] -Prle % o] = f(y)(2) - c(2)(a, ') .

For a backward simulation, we writex[z --» y] for b(z)(y).
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Definition 5.10 (Forward simulation for GPA) LetX = (X, z,c) and) = (Y, yo, d)
be GPAs. Aforward (Kleisli) simulationfrom X’ to ) is a functionf : Y — DX which
satisfies the following (in)equalities.

Prlyg --» 20 =1 (INIT)

Yowex Prly -2 — V] <Prly — V] foreachy € Y (TERM)
ZweX PI‘[y --> X 4, ;17/] < Zy’EY Pr[y N y’ -3 xl]

foreachy € Y,a € Acandz’ € X (AcT)

The condition (AT) is illuminating. It can be depicted as the below left, whigtars a
clear affinity to the standard non-deterministic conditstiown on the right.

y a, Y y—3
Pr[v . } < Pr{y '} ( . ) implies ( .>
o — 4/ ¥ o — o/ oy

Definition 5.11 (Backward simulation for GPA) LetX = (X, zg,c) andy = (Y, yo, d)
be GPAs. Abackward (Kleisli) simulatiorfrom X’ to ) is a functionb : X — DY
which satisfies the following inequalities.

Prlzg --+ yo] <1 (INn1T)
Prlz — v] <Y oy Prlz -—»y—v] foreachr € X (TERM)

wex Prlz = - Y] < Zer Pr[z --»y A J']
foreachr € X,a € Acandy’ € Y (AcT)

5.5 Hughes-Jacobs Simulation as Hybrid Kleisli Simulation

We follow [16] and introducédaybrid simulations which combine fwd. and bwd. ones.

Definition 5.12 (Hybrid simulation) Let X = (X,s,c) and) = (Y,t,d) be F-
systems. Aorward-backward (Kleisli) simulatiors a triple (U, f, b) where

— U = (U, u,e) is anF-system called thintermediate system
— fis a forward simulation fronit’ to ¢/, and
— bis a backward simulation fro1 to ). See below on the left.

fwd-bwd. FX 4 pu sy bwdewd. Fx -5 FU <A FY

e Cp Fe ,C Ad e C, Fe ;L Ad
X 1 U 1 Y X 1 U 1 Y
C  #u C C  $u C
N S s} —+ J N S s} —+ J

Similarly, abackward-forward (Kleisli) simulatiois a triple (i, b, f) of an intermedi-
ate systeni{, a backward simulatioh from X to ¢/, and a forward simulatiorf from
U to Y. See above on the right.
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Proposition 5.13 Let X', ) be F-systems. If there is a non-hybrid simulation frdin
to Y, then there are both fwd.-bwd. and bwd.-fwd. ones fAdno ).

Proof. A forward simulationf from X’ to )’ induces a backward-forward simulation
(X, J(id), f); it hasX itself as an intermediate system. The other cases are simila

The significance of bwd.-fwd. simulation is in its compledes; see [5, Thm. 6.2].
Fwd.-bwd. simulation is also important: it subsumes HJesattion, hence also JL-
simulation. This is our second main observation.

Lemma 5.14 Let F' be a polynomial functor. Then the functBr¥' has the following
natural order. This makeSDF, Cp ) a functor with preorder (Def. 4.3).

VCppx 6 S5 y(u) < () forallue FX. 0

WhenF = {v'} + Ac x (_) and B = DF, both B-coalgebras and probabilistic-
systems represent GPAs. In this case, the ordé? omthe previous definition coincides
with the one in Ex. 4.4.

Theorem 5.15 (HJ is Kleisli) Let X % DFX andY L DFY be DF-coalgebras,
xo € X andyy € Y be chosen (initial) states, anl C X x Y be a relation. Assume
that there exists a functionthat validates the inequalities in the diagram on the left,
that is, thatR is a HJ-simulation frome to d such thatzg Ryy.

DFTI’l 'DFT{'Q F(-]ﬂ'l) F(J7T2)
DFX DFR DFY FX<++—FR—+—FY
¢l Cor r Cpor Td c  C rf C %$d
X — R P Y == X J7}1'1 R J;_? Y (9)
R (z0,y0) T j J(zo,yo) T j
Zo {*} 7 Jro 1} T

Then we have a fwd.-bwd. simulation from tResystem(X, Jxzo, c) to (Y, Jyo, d),
shown above on the right. Note the ordetherein refers to the one in Def. 5.3.

In short: a HJ-simulation betwednF'-coalgebras induces a fwd.-bwd. simulation be-
tween the corresponding-systems.

Proof. The ordersCpr and C coincide by definition. Therefore we are done if we
show that all the corresponding pairs of composites of asrimw(9) denote the same
functions. That is,

com =c® (Jm) as functionsR — DF X,
(DFm)or=F(Jm)Or as functions® — DFX,

and similar equalities regarding andd. The first one is immediate from the definition
of Jm; and® (Def. 5.1). The second one relies on the definitionFtd action on a
Kleisli arrow J7; (Lem. 5.5). One can give a concrete proof again by induction o
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construction ofF’; we shall instead resort to categorical arguments. Theequesites
can be found in [8].

F(Jm)or= p,FX o(DFJm)or by def. of®, using monad structure
= NFX o (DJFm) o FJ = JF,[8, Diagram (2.3)]
= pF o (D(nBy o F7rl)) or by def. of J
=puPy o (DnBy) o (DFm)or by functoriality of D
= (DFm)or by the unit law for the mona#. a

The notion of fwd.-bwd. simulation instantiates to GPAglik §5.4. Thm. 4.7 yields:

Corollary 5.16 (JL is Kleisli) LetX and) be GPAs. A JL-simulatio® from X’ to )
induces a fwd.-bwd. (Kleisli) simulation froAito ). ad

5.6 Generic Trace Semantics

Like in [16], the principal aim of Kleisli simulation is to sk trace inclusior—a re-
finement relation with respect to (linear timedce semanticsvhich is the coarsest in
the spectrum of [3]. Our use of the generic notion of Kleisklgebra calls for a generic
definition of trace semantics too. We employ the theory intji@}e is its quick recap.

A polynomial functorF always has aimitial algebrao : FA = A. The intuition
is: F' represents a set of datatype constructors;Aislthe induced inductive datatype.
The algebraic structure always becomes an invertible function.

Example 5.17 The functorF’ = {v'} + Ac x (_) is thought of as: a nullary constructor
v and a family of unary constructorg__), for eacha € Ac. The induced inductive
datatype is the seAc™ = {ajaz---a,v | n < w,a; € Ac} of (finite) lists over
Ac. This set indeed carries an initial algebra: there is a caabalgebraic structure
a:{V}+AcxAc* =, Ac*, namely

v — v (the empty sequence), (a,a;---ap,v')+— aay---apv .

The following is the main result in [8], adapted to the cutremntext.

Theorem 5.18 (Generic (finite) trace semantics) et

a: FA — A be an initial algebra. Given any'-system g x — 7(+( 2l S FA

X = (X, s,¢), there is a unique Kleisli arrowr(c) that C* r(c) J(a™hH#* 10
makes the diagram on the right commute. In part|cular - - -4 (0

the Kleisli coalgebraJ(a~1) is afinal coalgebra. \ ° fx }tw

We settr(X) := tr(c) @s. Itistr(X) : {x} — DA as afunction, hence is a subdistribu-
tion overA. Thistr(X') is referred to as thfinite) trace semantiasf X'. To summarize:
the action typeF' determines the set of linear-time behavior X’s trace semantics
tr(X) tells us which linear-time behavior is exhibited with how chuikelihood.



18

Example 5.19 (Trace semantics for GPA)Let F' = {v'}+Acx(_). The diagram (10)
translates into the following conditions, whereganges oveAc™.

tr(c)(x)(v') =Prlz — V] ,
tr(c)(z)(ao) = 3, cx Prlz 5 2'] - tr(c)(2')(0) ; and
tr(X)(o) = tr(c)(zo) (o) whens(x) = [zg — 1].

This is a reasonable definition of a “trace semantics” for GfeAulting is a subdistri-
butiontr(X') over lists onAc. For example, le&’ be the GPA below on the left; then its
trace semantics is as on the right.

all]

Note that our trace semantics only captufiaie behavior; infinite sequences like’
are not in its domairic*. With infinite behavior included we no longer have a clean
characterization like in Thm. 5.18.

Like the definition of Kleisli simulation, the generic trasemantics (Thm. 5.18)
also applies to other kinds of branching such as non-detésmi See [8].

5.7 Soundness Theorems

We recall the soundness result [5] for Kleisli simulatioia which soundness of JL- and
HJ-simulation immediately follows. Its short proof in [5]akes use of order-theoretic
properties of the diagram (10).

Theorem 5.20 (Soundness of KleisliLet X', Y be F-systems. Existence of a Kleisli
simulation fromX’ to ) implies trace inclusiontr(X') C tr()). Here a Kleisli simula-
tion can be any of forward, backward, or hybrid. ad

Using Thm. 5.15 and Cor. 5.16, we immediately obtain sousslred JL-simulation
(Def. 4.12). This is new to the best of the author’'s knowleddderefore the notion of
JL-simulation can also be used for proving trace inclusietwieen GPAs, a use that has
not been investigated much in the literature. The sameegpiJL- and JL'-simulation
for DTMCs; we postpone detailed treatment to another venue.

6 Examples

For GPAs we have found several simulation notions: JL whéctihé same as HJ; for-
ward; backward; backward-forward; and forward-backw&¥é. have proved that the
first is included in the last (Cor. 5.16); and that a non-hylidieisli simulation induces
a hybrid one (Prop. 5.13). In this section we present sommpbes that separate dif-
ferent simulation notions.
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Example 6.1 Sometimes there is a forward (or a backward) simulation btianJL-
simulation. This does not contradict Prop. 5.13: to be aifiuktion, a fwd.-bwd.
simulation must be of a particular shape—the simulatiorvesnmust beJr;.

We have a forward simulatioff from X’ to X: f(x¢) = [z — 1] and f(x1) =
[z} — 2,25 — %]. But not a JL-simulation; assum@ is such. The only candidate
for a weight functionA,; ., is: ((a,z}), (a,21)) — 2 and((a, z5), (a,21)) — 3; this
forcesz| Rz andxf, Rz, . However there is no weight function that witnesses thedatt
hence a contradiction.

We have a backward simulatidrfrom X to X”': b(zg) = [z — 1] andb(z1) =
[z] — &, 24 — 2]. AssumeR is a JL-simulation. In the same way as aboveRz! is
forced, which is a contradiction.

Example 6.2 First let us consider the following pair.

In fact zy andy, are bisimilar; they are obviously so and finding suitableghefunc-
tions is straightforward. Assumgis a forward simulation from’ to ). By (INIT) in
Def. 5.10 we have (yo) = [zo — 1]. Applying (AcT) for yo, a andz;, we are forced
to havef(y1) = [x1 — 1]; similarly f(y2) = [z2 — 1]. Again applying (AT) for the
transitions on the second level, we have inequalities

L < L f(ys)(ws) + L () () 5 2 < Lf(ys)(wa) + L (ya) ()
3 Phlyn) (o) + L) @s) . 1< Drla)wa) + bf ) () . D)
From the top-right one, we have
5 < 5 H)@) + 3 ) £ 5(1- fm)a) + 5 (1~ fon)le) |

the latter inequality is becaugéys) and f (y4) are subdistributions. From this we have
3 (y3)(x3) + 5 f(ya)(x3) < 3, which yields3 f(y3)(x3) + 5f(ya)(23) = 3 when
combined with the top-left one in (11). In the same way we bae? f(y3)(z3) +

3 f(ya)(x3) = 2 from the bottom two in (11). There is no common solutiorf ¢fs) (:3)
and f(y4)(z3) for the last two equations; hence sutks impossible.
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Let us now consider the following pair.

A JL-(bi)simulation is again obvious; assuming we have &bacd simulationb, we
derive a contradiction.

By (TERM), using somey € [0, 1] we can writeb(z3) = [ys — p,ys — 1 — p)].
Applying (AcT) for the transitions on the second level, we have ineqealiti

be))() . 1—p < 3b(a1)(y) 5
b(@2)(y2) , 1—p< 3b(x2)(ya) - (12)

[SMISIE

INIA

p
p

From the top two we havé < b(x1)(y1), henceb(z1)(y1) = 1. Similarly from the
bottom two we havé(z2)(y2) = 1. Using these in the original inequalities we have
p< i 1-p<2p<2andl—p< i The former two impliep = %, while the
latter two sayp = % This is impossible.

A natural question is: does it happen that there is a JL-sitiwul, but neither for-
ward nor backward simulation exists? At this point this igop

7 Conclusions and Future Work

We have showed that JL-simulation is a special case of Hafation, which is further
a special case of Kleisli simulation. This allows to tramgfeneral results for a latter
notion to a former one, most notably soundness.

Finding a Kleisli simulation is reduced to solving a familflimear inequalities. Its
algorithmic aspect is to be investigated. We also aim toakptquired genericity and
apply our results to other kinds of systems. We are inteddatstochastic context-free
grammarswhich have their application in modeling the secondarycstne of RNA [2].
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A Appendix

A.1 Formulation of Hughes-Jacobs simulation

The original formulation [10] of HJ-simulation (stated ibfational terms) amounts to
the following condition, which is shown to be equivalent tefD4.5.

Proposition A.1 In Def. 4.5, the relatiorR is a HJ-simulation if and only if there exists
a functionr’ : R — Rel (B)(R) such that the following diagram commutes.

BX +——Relc(B)(R) —=— BY
T T Td (13)
X R Y

™1 T2

Here the relatiorRel- (B)(R) € BX x BY is the lax relation lifting from [10].

The proof is similar to its bisimulation counterpart, whishstandard in the theory of
coalgebra (see e.g. [19, Lem. 3.6.4]).

Proof. First we recall the definition of (lax) relation lifting. Giwn a relationR C X x
Y, itis lifted to therelation lifting Rel(B)(R) C BX x BY via the following image-
factorization (see e.g. [10]). We denote the surjective ipae.

Rel(B)(R)“—— BX x BY
ef Brr Bra) (14)
BR T

Then thelax relation lifting Rel- (B)(R) is defined to bé_o Rel(B)(R) oL, that is,
the relational composition of

CpxC BXxBX , Rel(B)(R)C BXxBY , and CpyC BYxBY . (15)

For the ‘if’ part of the statement, take arbitrarye X andy € Y such thatc Ry;
we shall define the value(z,y) for r in (5). The functionr’ in (13) is forced to be
r(z,y) = (¢(z),d(y)) by commutativity. Since the valu€(x, y) lies in the relation
Relc (B)(R), there existy € BX andé € BY such that

c(x) Ty, (v,0) €Rel(B)(R), and §LCd(y) (16)

by the definition of lax relation lifting. Then by (14) thergigts 5 € BR such that
e(B) = (v, 9), using the axiom of choice. Now defimén (5) by r(x, y) = 5. We have

(Bmior)(x,y) = (m 0 e)(f) =mi(y,0) =7 ;

similarly (Bme o r)(z,y) = J. By (16) this functionr makes the inequalities in (5)
hold.

For the ‘only if’ part, define a functiom’ : R — Relc(B)(R) by r'(z,y) =
(c¢(z),d(y)). That makes the diagram commute; we have to show(tHad, d(y)) €
Relc(B)(R). By the condition onr in Def. 4.5 we havec(z) T (Bm)(r(z,y))
and (Bmy)(r(z,y)) C d(y). Hence by the definition of a lax relation lifting, we are
done if we show( (Bm1)(r(z,y)), (Bm2)(r(z,y))) € Rel(B)(R), which is immedi-
ate from (14). ad



