
Generic Forward and Backward Simulations II:
Probabilistic Simulation⋆

Ichiro Hasuo

1 RIMS, Kyoto University, Japan
2 PRESTO Research Promotion Program, Japan Science and Technology Agency

Abstract. Jonsson and Larsen’s notion of probabilistic simulation is studied from
a coalgebraic perspective. The notion is compared with two generic coalgebraic
definitions of simulation: Hughes and Jacobs’ one, and the one introduced pre-
viously by the author. We show that the first almost coincides with the second,
and that the second is a special case of the last. We investigate implications ofthis
characterization; notably the Jonsson-Larsen simulation is shown to besound, i.e.
its existence implies trace inclusion.

1 Introduction

Use of probabilistic algorithms in distributed and concurrent applications is common
practice. Consequently, modeling and verification techniques for probabilistic systems
have been extensively developed. One fundamental branch therein is about probabilistic
(bi)simulation: it gives an answer when a probabilistic system is “equivalent” to another,
or when one “refines” another.

In this paper we focus on simulation notions for purely probabilistic systems.3 For
such systems it is standard to define a notion of simulation using weight functions. The
idea is first devised by Jonsson and Larsen [12]; it has inspired a large body of work
including [1]. Our aim in this paper is to shed fresh, mathematical light on the idea,
from the viewpoint ofcoalgebra.

Coalgebra is a mathematical/categorical presentation of state-based systems. Its ini-
tial success was brought about by a generic, coalgebraic characterization of bisimulation
that applies to a variety of systems, including probabilistic ones (see e.g. [11, 17, 19]).
The theory has since been extended to include various aspects of concurrency theory—
such as SOS and modal logic (see e.g. [13]). Simulation, as “one-sided bisimulation,”
is one of such aspects.

Two approaches have been presented towards a coalgebraic theory of simulation:
Hughes and Jacobs’ [10] and the current author’s [5]. Both approaches are generic,
applicable to non-deterministic systems like LTS as well asprobabilistic ones. In this
paper we restrict them to a purely probabilistic setting andconduct a comparative study.
The comparison is among theJonsson-Larsen simulation, theHughes-Jacobs simula-
tion, and the one in the author’s previous work [5] which we call theKleisli simulation.

⋆ This is an extended version of the paper [7] that is to appear in Proc. CONCUR 2010. The
current version is supplied with additional proofs and examples.

3 Unlike e.g. Segala’s probabilistic automata [18], they do not feature non-determinism.

2

Among the three, the notion of Kleisli simulation is the mostdistinguishable: it is
given not as a relation but as a functionX → DY , whereX andY are the state spaces
of the involved systems. Therefore it is not suitable as a candidate of arefinement rela-
tion, the original motivation for the Jonsson-Larsen one. The Kleisli simulation rather
follows the spirit of Lynch and Vaandrager [16]: it is a powerful tool for showingtrace
inclusion. While a direct proof of trace inclusion involves transitions within arbitrary
many steps, finding a simulation is a stepwise matter. Indeedthe notion of Kleisli sim-
ulation is precisely a coalgebraic generalization of the one in [16]; the former comes
with theforward andbackwardvariations just like the latter. The theory in [5] has been
successfully applied to verification of probabilistic anonymity in [9].

Our findings are as follows. The standard Jonsson-Larsen simulation, defined in§3
concretely for a specific kind of probabilistic systems (we describe them in§2), is
identified with a slightly restricted variant of the Hughes-Jacobs simulation (§4). This
allows us to remove the unnecessary restriction that was hidden in the original con-
crete definition (§4.4), as well as provides a guideline in transferring the definition to
other kinds of probabilistic systems (§4.5). On another link in the triangle, we identify
the Hughes-Jacobs simulation as a special case of the Kleisli simulation (§5). From
the genericsoundness theorem[5]—existence of a Kleisli simulation implies (finite)
trace inclusion—we thus conclude soundness of the Hughes-Jacobs notion, hence of
the Jonsson-Larsen one. In§6 we present some example systems for further compari-
son of different simulations. They suggest the potential use of Kleisli simulation, whose
definition we shall state also in concrete terms.

Our expedition will be in a leisurely pace. In particular, nocategorical or coalgebraic
prerequisites are assumed; they are introduced on our way, on a call-by-need basis.

Notations A square in a diagram which is not filled means that itcommutes, that is, the
equality symbol= is implicit in it.

A probability (sub)distributionγ over a setX is often denoted like a table:[x 7→
γ(x)]x∈X . When an entryx ∈ X is missing in the table, the probability0 is assigned.
Hence for example, whenx0 ∈ X is a fixed element,[x0 7→ 1] means the distribution
γ such thatγ(x0) = 1 andγ(x) = 0 for x 6= x0.

2 Probabilistic System

We will be mainly interested in two kinds of purely probabilistic systems—GPAs and
DTMCs—which we now define formally.

Definition 2.1 (Generative probabilistic automaton, GPA) LetAc be a fixed nonempty
alphabet; we refer to its element as anaction. A generative probabilistic automaton
(GPA)overAc is a tripleX = (X,x0, c) where

– X is a nonempty set ofstates;
– x0 ∈ X is a chosen state which is called theinitial one; and

3

– c : X → D({X} + Ac × X) is a transition function. Here{X} is a singleton;+
denotes the disjoint union; andD is thesubdistributionoperation. For a setY

DY = {γ : Y → [0, 1] |
∑

y∈Y

γ(y) ≤ 1} . (1)

Suchd ∈ DY is called asub-distribution since its values add up to not more than
1, instead of precisely1.

The subdistributionc(x) tells the probabilistic behavior of a statex. The valuec(x)(a, x′)
with a ∈ Ac andx′ ∈ X is the probability with whichx makes the actiona and moves
to x′; that is,c(x)(a, x′) = Pr[x

a
→ x′]. We interpret the symbolX assuccessful termi-

nation; thus with the probabilityc(x)(X) = Pr[x → X] the statex is led to successful
termination. The remaining probability1 − c(x)(X) −

∑

a,x′ c(x)(a, x′)—which may
be more than0 sincec(x) is a subdistribution—is understood as the probability with
whichx gets intodeadlock.

GPAs are said to begenerative, in contrast toreactivesystems whose transition
function is given as, say,c : Ac×X → D({X}+ X). They differ in whether an action
is chosen by the system or by the environment; see [4].

GPAs can be thought of as a probabilistic variant of labeled transition systems
(LTSs). DTMCs, which we introduce shortly, are then probabilistic Kripke frames. The
notion is standard, see e.g. [1, 14]. The definitions in the literature vary in details; the
following one is adapted to fit the current context.

Definition 2.2 (Discrete-Time Markov Chain, DTMC) LetAP be a fixed set ofatomic
propositions. A discrete-time Markov chain (DTMC)over AP is a quadrupleX =
(X,x0, l, p) where

– X is a nonempty set ofstates, among whichx0 ∈ X is aninitial state;
– l : X → P(AP) is a labeling functionwhereP denotes the powerset. This assigns

to a statex ∈ X the setl(x) of atomic propositions that hold atx;
– p : X → DX is a transition function, whereD is the subdistribution operation

in (1).

A DTMC has labels on its states, while a GPA has labels on its transitions.

3 Jonsson-Larsen Simulation

For DTMC and its variants, a standard definition of simulation [12] usesweight func-
tions. Here we present the definition for DTMC taken from [1]. This family of simula-
tion notions—based on weight functions—will be calledJonsson-Larsen simulation.

Definition 3.1 (JL-simulation for DTMC) LetX = (X,x0, l, p) andY = (Y, y0,m, q)
be DTMCs. AJonsson-Larsen simulation (JL-simulation)from X to Y is a relation
R ⊆ X × Y which satisfies the following.

1. The initial states are related, that is,x0Ry0.

4

2. Related states satisfy the same set of atomic propositions: xRy implies l(x) =
m(y).

3. For eachx ∈ X andy ∈ Y such thatxRy, there exists aweight function

∆x,y :
(

{⊥} + X
)

×
(

{⊥} + Y
)

−→ [0, 1]

such that
(a) ∆x,y(u, v) > 0 implies either

– u = ⊥, or
– u = x′ ∈ X, v = y′ ∈ Y andx′Ry′;

(b) ∆x,y(⊥,⊥) +
∑

y′∈Y ∆x,y(⊥, y′) = 1 −
∑

x′∈X p(x)(x′) ;

(c) for eachx′ ∈ X: ∆x,y(x′,⊥) +
∑

y′∈Y ∆x,y(x′, y′) = p(x)(x′) ;

(d) ∆x,y(⊥,⊥) +
∑

x′∈X ∆x,y(x′,⊥) = 1 −
∑

y′∈Y q(y)(y′) ;

(e) for eachy′ ∈ Y : ∆x,y(⊥, y′) +
∑

x′∈X ∆x,y(x′, y′) = q(y)(y′) .

Note that the condition (a) simplifies (c) and (d) into the following:
(c’) for eachx′ ∈ X:

∑

y′∈Y ∆x,y(x′, y′) = p(x)(x′) ;

(d’) ∆x,y(⊥,⊥) = 1 −
∑

y′∈Y q(y)(y′) .

Although illustration of the previous definition is found e.g. in [1, Ex. 14], the definition
hardly seems as “canonical” or “intuitive” as other notionssuch as (bi)simulation for
ordinary LTS. For example, the only asymmetry betweenX andY is found in Cond.
3.(a) whereu, notv, is allowed to be⊥. One might wonder if it is possible to weaken
this condition. Weakening= into ⊆ in Cond. 2 looks like another possibility. It is not
clear either how to adapt this definition to GPA. Even less clear is whether the adapted
notion satisfies soundness—existence of a simulation implies trace inclusion—which is
a natural property to expect.

What we do in the rest of the paper is to put the above definition in a coalgebraic
context. First it will be identified with a restriction of Hughes and Jacobs’ simulation
(HJ-simulation)[10]. From this we immediately obtain natural generalizations of the
original definition, which are hinted above. The generic theory in [10] can be used to
conduct some “sanity checks” for the generalized definitions. Adaptation to GPA comes
for free, too. After that we will identify HJ-simulation with a certain subclass ofKleisli
simulation from [5]. Soundness of JL-simulation for GPA is its corollary.

4 Hughes-Jacobs Simulation

4.1 Coalgebraic Modeling

BX

X

c

In the Hughes-Jacobs theory of coalgebraic simulation, a system is modeled as
aB-coalgebra, which is a functionc of the type on the right. The setX (which
is arbitrary) is the system’sstate space; the operationB specifies the kind of
transitional behavior exhibited by the system; and the function c determines the
system’s dynamic behavior. We now elaborate on the operation B, which takes a setX
and returns another setBX.

5

Roughly speaking, it is the operationB which determines what kind of systems we
are talking about. One choice ofB makes aB-coalgebra an LTS; another choice ofB

is for a deterministic automaton (DA); and so on. Specifically,

B P(Ac ×) 2 × ()Ac (Acout ×)Acin D
(

{X} + Ac ×
)

P(AP) ×D()
B-coalg. LTS DA Mealy mach. GPA DTMC

When B is D
(

{X} + Ac ×
)

, a B-coalgebra is a functionc : X → D
(

{X} +

Ac × X
)

; this is precisely a GPA (Def. 2.1) without an explicit initial state. ForB =
P(AP)×D(), aB-coalgebra is a functionc : X → P(AP)×DX, which is identified
with a DTMC (without an initial state) via the following bijective projection-tupling
correspondence.

X −→ P(AP) ×DX

X −→ P(AP) X −→ DX

c
∼=

(π1 ◦ c, π2 ◦ c)

〈l, p〉 := λx. (l(x), p(x))

(l, p)

∼=

Hereπi denotes thei-th projection;〈l, p〉 denotes thetuplingof l andp.
To develop a “theory of systems” on top of this modeling, an operationB needs to

be afunctor. Leaving its detailed treatment to literature like [11], what it means is that
the operationB not only applies to sets (i.e.X 7→ BX) but also to functions. That is,

B : (X
f

−→ Y) 7−→ (BX
Bf
−→ BY) .

Note the domain and the codomain of the resulting functionBf .
The previous examples ofB have natural action on functions. For example, given a

functionf : X → Y ,

P(Ac × X)
P(Ac×f)
−→ P(Ac × Y) , u 7−→

{

(a, f(x))
∣

∣ (a, x) ∈ u
}

;

D
(

{X} + Ac × X
) D({X}+Ac×f)

−→ D
(

{X} + Ac × Y
)

,

γ 7−→

[

X 7→ γ(X)
(a, y) 7→

∑

x∈f−1({y}) γ(a, x)

]

;

P(AP) ×DX
P(AP)×Df

−→ P(AP) ×DY , (u, γ) 7−→
(

u,
[

y 7→
∑

x∈f−1({y}) γ(x)
])

.

Lying under the latter two isD’s action on functions:

DX
Df
−→ DY , γ 7−→

[

y 7→
∑

x∈f−1({y}) γ(x)
]

. (2)

To be precise, suchB is a functor of the typeSets → Sets, from the category
Sets of sets and functions to itself. We make a formal definition for the record.

Definition 4.1 (Functor, coalgebra) A functorB : Sets → Sets consists of its action

on setsX 7−→ BX and on functions(X
f
→ Y) 7−→ (BX

Bf
→ BY), for eachX andf .

This is subject to the following conditions:

B(X
idX→ X) = (BX

idBX→ BX) ; B(X
f
→ Y

g
→ U) = (BX

Bf
→ BY

Bg
→ BU) .

6

A B-coalgebrais a pair(X, c : X → BX) of a set and a function; we shall simply
denote it byX

c
→ BX.

The functoriality of B is crucial in the following definition of coalgebraic bisimulation
(notice use ofBπi). The definition subsumes many known notions of bisimulation.

Definition 4.2 Let B : Sets → Sets be a functor andc :
X → BX andd : Y → BY beB-coalgebras. Acoalgebraic
bisimulationis a relationR ⊆ X × Y such that: there exists
a functionr : R → BR that makes the diagram on the right
commute. Hereπ1 andπ2 are obvious projections.

BX BR
Bπ1 Bπ2

BY

X
c

R
r

π1 π2
Y

d

(3)
WhenB represents purely probabilistic systems such as DTMCs, theabove coalge-

braic bisimulation instantiates to the one that uses a weight function. It coincides with
the more common formulation via equivalence classes [15]. The coincidence proof is
implicit in [12, Thm. 4.6] and is much more systematically conducted in [19].

4.2 Hughes-Jacobs Simulation

Roughly speaking, simulation is “one-sided” bisimulation. WhenR is a simulation and
xRy, we requirey to exhibit “at least as much” behavior asx does, that is,

(x’s behavior) ⊑ (y’s behavior) (4)

in terms of a suitable preorder⊑ of “behavior inclusion.” Hughes and Jacobs [10] used
this intuition and defined generic simulation as a variant ofDef. 4.2. In order to do so,
a functorB : Sets → Sets needs to come with a “behavior-inclusion” preorder⊑.

Definition 4.3 (Functor with preorder) A functor with preorderconsists of a functor
B : Sets → Sets and a class of preorders{⊑BX}X for each setX, where⊑BX is
on the setBX. Further, given a functionf : X → Y , its actionBf : BX → BY is
required to be a monotone function. We often suppress the subscript in⊑BX .

Example 4.4 Let B = P(Ac ×), for which B-coalgebras are LTSs. It is a functor
with preorder, with a natural choice of⊑BX being the inclusion order.

Let B = D
(

{X} + Ac ×
)

; aB-coalgebra is a GPA. Forγ, δ ∈ BX we define

γ ⊑BX δ
def.
⇐⇒ γ(X) ≤ δ(X) and γ(a, x) ≤ δ(a, x) for eacha andx.

Note that⊑BX need not be reduced to the equality, sinceγ andδ aresubdistributions.
Let B = P(AP) × D(); a B-coalgebra is then a DTMC. There are a few natural

candidates for the preorder⊑BX . One is:

(u, γ) ⊑=
BX (v, δ)

def.
⇐⇒ u = v and γ(x) ≤ δ(x) for eachx.

We denote this order by⊑=. Noting thatu andv are subsets ofAP, we could replace
the conditionu = v by u ⊆ v, for example. The resulting order will be denoted by⊑⊆.

7

Definition 4.5 (HJ-simulation) Let (B,⊑) be a functor

with preorder, andX
c
→ BX,Y

d
→ BY be B-coalgebras.

A Hughes-Jacobs simulation (HJ-simulation)from c to d is
a relationR ⊆ X × Y such that: there exists a function
r : R → BR which makes the inequalities on the right hold.

BX BR
Bπ1 Bπ2

BY

X
c

R
r

π1 π2

⊑ ⊑

Y
d

(5)

That is to be precise: for each(x, y) ∈ R

(c ◦ π1)(x, y) ⊑BX (Bπ1 ◦ r)(x, y) and (Bπ2 ◦ r)(x, y) ⊑BY (d ◦ π2)(x, y) .

Noting e.g.π1(x, y) = x, this means: for eachx andy such thatxRy,

c(x) ⊑BX (Bπ1 ◦ r)(x, y) and (Bπ2 ◦ r)(x, y) ⊑BY d(y) .

The formulation is different from the original one [10] where a lax relation lifting is
used. The equivalence is proved in Appendix A.1.

4.3 Jonsson-Larsen Simulation as Hughes-Jacobs Simulation

Here is the first main observation in this paper: JL is HJ. The order⊑= is from Ex. 4.4.

Theorem 4.6 Let X = (X,x0, l, p) andY = (Y, y0,m, q) be DTMCs, and letR be
a JL-simulation fromX to Y. ThenR is a HJ-simulation from the coalgebra〈l, p〉 to
〈m, q〉: there existsr that makes the following (in)equalities hold.

P(AP) ×DX P(AP) ×DR
P(AP)×Dπ1 P(AP)×Dπ2

P(AP) ×DY

X
〈l,p〉

R
r

π1 π2

= ⊑=

Y
〈m,q〉 (6)

Proof. We need to findr = 〈r1, r2〉 with r1 : R → P(AP) andr2 : R → DR. We set
r1(x, y) := l(x), which is equal tom(y) by Cond. 2 of Def. 3.1. A weight function∆
is used to definer2; specifically

r2(x, y) := λ(x′, y′) ∈ R. ∆x,y(x′, y′) .

We verify the equality (left) and the inequality (right) in (6). They obviously hold with
respect to the first component, i.e. equalities between functionsR → P(AP). We focus
on the second component, i.e. (in)equalities between functions R ⇉ DX andR ⇉
DY .

(Dπ1 ◦ r2)(x, y)(x′)
=

∑

{(x′′,y′′)∈R|π1(x′′,y′′)=x′} r2(x, y)(x′′, y′′) by def. ofDπ1 (2)
=

∑

{y′′|x′Ry′′} ∆x,y(x′, y′′) by def. ofr2

=
∑

y′′∈Y ∆x,y(x′, y′′) by Cond. 3.(a) of Def. 3.1
= p(x)(x′) by Cond. 3.(c’) of Def. 3.1.

8

This proves the equality on the left. Regarding the inequality on the right,

(Dπ2 ◦ r2)(x, y)(y′)
=

∑

x′′∈X ∆x,y(x′′, y′) much like the above
= q(y)(y′) − ∆x,y(⊥, y′) by Cond. 3.(e) of Def. 3.1
≤ q(y)(y′) . ⊓⊔

We include initial states (Cond. 1, Def. 3.1) and obtain the following characterization.

Theorem 4.7 (JL is HJ) LetX andY be DTMCs in Thm. 4.6. A relationR ⊆ X × Y

is a JL-simulation if and only if there exist functionsr andr0 that make the following
(in)equalities hold. The set{∗} is a singleton.

P(AP) ×DX P(AP) ×DR
P(AP)×Dπ1 P(AP)×Dπ2

P(AP) ×DY

X
〈l,p〉

R
r

π1 π2

= ⊑=

Y
〈m,q〉

{∗}
x0

r0
y0

= =

(7)

Note that a functionx0 : {∗} → X can be identified with an elementx0 ∈ X.

Proof. The bottom equalities forcer0 to be(x0, y0). Hence the ‘only if’ part is a direct
consequence of Thm. 4.6.

For the ‘if’ part, Cond. 1 follows from the bottom equalities. Cond. 2 follows from
the upper (in)equalities’ first components. Note that this relies our the choice of⊑=

instead of, say,⊑⊆. Regarding Cond. 3, for(x, y) ∈ R we define a weight function
∆x,y by

(x′, y′) 7→

{

r2(x, y)(x′, y′) if (x′, y′) ∈ R

0 otherwise
, (x′,⊥) 7→ 0 ,

(⊥, y′) 7→ q(y)(y′) −
∑

{x′|x′Ry′}

r2(x, y)(x′, y′) , (⊥,⊥) 7→ 1 −
∑

y′∈Y

q(y)(y′) ,

wherer2 := π2 ◦ r. Then Cond. 3.(a) of Def. 3.1 is obvious. On Cond. 3.(b),

∆x,y(⊥,⊥) +
∑

y′∈Y

∆x,y(⊥, y′)

= 1 −
∑

y′∈Y

q(y)(y′) +
∑

y′∈Y

q(y)(y′) −
∑

{x′|x′Ry′}

r2(x, y)(x′, y′)

= 1 −
∑

x′∈X

∑

{y′|x′Ry′}

r2(x, y)(x′, y′)

= 1 −
∑

x′∈X

(Dπ1 ◦ r2)(x, y)(x′) by def. ofDπ1

= 1 −
∑

x′∈X p(x)(x′) by the top-left equality in (7).

9

Cond. 3.(c’) and 3.(e) are verified as follows. Cond. 3.(d’) is obvious.

∑

y′∈Y ∆x,y(x′, y′)

=
∑

{y′|x′Ry′} r2(x, y)(x′, y′)

= (Dπ1 ◦ r2)(x, y)(x′) by def. ofDπ1

= p(x)(x′) by the top-left equality in (7),

∆x,y(⊥, y′) +
∑

x′∈X ∆x,y(x′, y′)
= q(y)(y′) −

∑

{x′|x′Ry′} r2(x, y)(x′, y′) +
∑

{x′|x′Ry′} r2(x, y)(x′, y′)

= q(y)(y′) . ⊓⊔

4.4 Generalized Jonsson-Larsen Simulation

Thm. 4.7 shows that JL-simulation does not reach the full generality of HJ-simulation:
the top-left square is an equality in (7), which is not necessary. Translating HJ-simulation
into the Jonsson-Larsen style concrete terms, we are led to the following definition.

Definition 4.8 (JL’-simulation for DTMC) A JL’-simulationis the same as a JL-simulation
(Def. 3.1) except for the following.

– A weight function is of the type∆x,y :
(

{⊥} + X
)

×
(

{⊥} + Y
)

−→ [−1, 1].
– Cond. 3.(a) is weakened: the value of∆x,y(u, v) must lie in the following range,

according tou andv:
• whenu = x′ ∈ X andv = y′ ∈ Y , if x′Ry′

then ∆x,y(x′, y′) ≥ 0; if (x′, y′) 6∈ R then
∆x,y(x′, y′) = 0;

• ∆x,y(⊥, y′) ≥ 0 for eachy′ ∈ Y ;
• ∆x,y(x′,⊥) ≤ 0 for eachx′ ∈ X;
• ∆x,y(⊥,⊥) can be positive, zero or negative.

u\
v ⊥ · · · y′ · · ·

⊥ ⋚ 0 ≥ 0
.
.
.

x′

.

.

.

≤ 0

{

≥ 0 (x′Ry′)

0 (o.w.)

– Cond. 3.(b) and 3.(d) are dropped.

Now a weight function can take negative values. Cond. 3.(b) and 3.(d) played no role
in Thm. 4.6, hence are dropped. Similarly to JL-simulation,finding a weight function
is filling in the matrix above on the right, in such a way that its rows and columns add
up to the right values likep(x)(x′) or q(y)(y′). The task is easier with JL’-simulation
because each entry can be picked from a broadened domain.

One can further generalize the previous definition by replacing⊑= by⊑⊆ (Ex. 4.4):
in this case the systemX to be simulated satisfies no more atomic propositions thanY
does. This generalization is useful e.g. when we are interested in safety properties, and
atomic propositions represent systems’ actions.

Definition 4.9 (JL”-simulation for DTMC) A JL”-simulation is the same as a JL’-
simulation (Def. 4.8), except that Cond. 2 is replaced by

2. xRy impliesl(x) ⊆ m(y).

Proposition 4.10 LetX andY be DTMCs as in Thm. 4.6, andR ⊆ X × Y .

10

1. The relationR is a JL’-simulation if and only if there existr andr0 that validate
the (in)equalities in (7), with the top-left equality replaced by⊑=.

2. The relationR is a JL”-simulation if and only if there existr andr0 that validate
the diagram (7), with the top two squares filled with⊑⊆. ⊓⊔

Let us do some sanity checks. The following holds for JL” instead of JL’ too; also
for the conventional notion of JL simulation (see [1]).

Proposition 4.11 LetX = (X,x0, l, p) andY = (Y, y0,m, q) be DTMCs.

1. If R ⊆ X × Y is a bisimulation, thenR andRop are both JL’-simulations.
2. The family of JL’-simulations fromX toY is closed under arbitrary unions. There-

fore there is the largest JL’-simulation.JL′ , calledJL’-similarity.
3. JL’-simulations are closed under composition. Hence.JL′ is transitive.

Proof. The claim follows from Lem. 4.2 and Prop. 5.4 of [10]. To applythe latter we
need to show that the orders⊑= and⊑⊆ P(AP)×D() arestable, a technical condition
from [10]. We prove that for⊑=; it is similar for⊑⊆. By the inequality (1) in [10] it
suffices to show: for any functionf : Y → X we have

{ (

(u, γ), (v, δ)
) ∣

∣ (u, γ) ⊑= (P(AP) ×Df)(v, δ)
}

⊆
{ (

(P(AP) ×Df)(u′, δ′), (v′, δ′′)
) ∣

∣ (u′, δ′) ⊑= (v′, δ′′)
}

.

Hereγ ∈ DX andδ, δ′, δ′′ ∈ DY . This is immediately reduced to:

Sublemma 1 Assumeγ(x) ≤
∑

y∈f−1({x}) δ(y) for eachx ∈ X. Then there exists
δ′ ∈ DY such that

δ′(y) ≤ δ(y) for eachy, and γ(x) =
∑

y∈f−1({x})

δ′(y) for eachx.

We construct suchδ′ by “discounting”δ. Concretely, we set

δ′(y) :=
γ(f(y))
∑

y′∈f−1({f(y)})

δ(y′)
· δ(y)

if the denominator is non-zero; otherwiseδ′(y) := 0. The first condition is obvious
from the assumption. For the second one,

∑

y∈f−1({x})

δ′(y) =
∑

y∈f−1({x})

γ(f(y))
∑

y′∈f−1({f(y)})

δ(y′)
· δ(y) by def. ofδ′

=
∑

y∈f−1({x})

γ(x)
∑

y′∈f−1({x})

δ(y′)
· δ(y) by f(y) = x

=

∑

y∈f−1({x})

γ(x) · δ(y)

∑

y′∈f−1({x})

δ(y′)
= γ(x) ,

11

for eachx such that
∑

y∈f−1({x}) δ(y) > 0. Otherwise we haveγ(x) =
∑

y∈f−1({x}) δ′(y) =
0. This proves the sublemma, hence the proposition. ⊓⊔

4.5 Jonsson-Larsen Simulation for GPA

Another implication of Thm. 4.7 is adaptation of JL-simulation for other kinds of prob-
abilistic systems, via HJ-simulation which is general by definition.

Definition 4.12 (JL-simulation for GPA) Let X = (X,x0, c) andY = (Y, y0, d) be
GPAs. AJL-simulationfromX toY is a relationR ⊆ X × Y such that:

1. The initial states are related, that is,x0Ry0.
2. For each pair(x, y) ∈ R, there exists a weight function

∆x,y :
(

{⊥}+{X}+Ac×X
)

×
(

{⊥}+{X}+Ac×Y
)

−→ [−1, 1] such that

(a) ∆x,y(u, v) lies in the range
on the right. In particular,
∆x,y((a, x′), (a′, y′)) > 0
only if a = a′ andx′Ry′;

u\
v ⊥ X · · · (a1, y′

1
) · · · · · · (a2, y′

2
) · · ·

⊥ ⋚ 0 ≥ 0 ≥ 0 ≥ 0

X ≤ 0 ≥ 0 0 0

.

.

.
(a1, x′

1
)

.

.

.

≤ 0 0

(

≥ 0 (x′

1
Ry′

1
)

0 (o.w.)
0

.

.

.
(a2, x′

2
)

.

.

.

≤ 0 0 0

(

≥ 0 (x′

2
Ry′

2
)

0 (o.w.)

(b) c(x)(X) = ∆x,y(X,⊥) + ∆x,y(X,X) ;

(c) c(x)(a, x′) = ∆x,y((a, x′),⊥) +
∑

y′ ∆x,y((a, x′), (a, y′)) for eacha andx′;
(d) d(x)(X) = ∆x,y(⊥,X) + ∆x,y(X,X) ;

(e) d(y)(a, y′) = ∆x,y(⊥, (a, y′)) +
∑

x′ ∆x,y((a, x′), (a, y′)) for eacha andy′.

The definition seems to appear for the first time. It coincideswith HJ-simulation for
B = D({X}+Ac×()), with B equipped with the order in Ex. 4.4 (the proof is easy).
Properties like in Prop. 4.11 hold as well. Remaining is the issue ofsoundness; it is not
obvious at all from the above complicated definition. One of our main contributions is
the soundness proof later in§5.7, which uses the generic theory in [5].

5 Kleisli Forward and Backward Simulation

We now describe the third kind of simulation from [5]. We shall refer to this family as
Kleisli simulation, for the reason that is explained shortly. Kleisli simulation consists of
four subclasses:forward, backward, and twohybridones, like in [16]. The most notable
difference from JL- and HJ-notions is that a Kleisli simulation is afunctionX → DY

or Y → DX that satisfies certain conditions.

12

5.1 Kleisli Arrow

First we fix our domain of discourse—Kleisli arrows. They are arrows in a Kleisli cat-
egory, a standard categorical construct. Our description is however in concrete terms.

Definition 5.1 (Kleisli arrow) Let X andY be arbitrary sets. AKleisli arrow from X

to Y , denoted byf : X −p→ Y , is a functionf : X → DY . A few typical Kleisli arrows:

– The Kleisli arrowηX : X −p→ X, for eachX, is the functionηX : X → DX that
carriesx ∈ X to [x 7→ 1].

– Given consecutive Kleisli arrowsX
f

−p→ Y andY
g

−p→ U , we haveg ⊙ f : X −p→ U by

g ⊙ f : X −→ DU , x 7−→ λu.
∑

y∈Y g(y)(u) · f(x)(y) .

– For each (ordinary) functionf : X → Y , we haveJf : X −p→ Y defined byX
f
→

Y
ηY
→ DY . That is,(Jf)(x) = [f(x) 7→ 1]. This generalizesηX by: ηX = J(idX).

The following are straightforward; they say that Kleisli arrows form a category.

Proposition 5.2 1. Composition of Kleisli arrows is associative: for three consecu-

tive Kleisli arrowsX
f

−p→ Y
g

−p→ U
h
−p→ V , we haveh ⊙ (g ⊙ f) = (h ⊙ g) ⊙ f .

2. η is the unit of composition: forX
f

−p→ Y we haveηY ⊙ f = f = f ⊙ ηX . ⊓⊔

One can think of a Kleisli arrowf : X −p→ Y as a “function fromX to Y , with im-
plicit probabilistic branching”; or as a “probabilistic computation of input typeX and
output typeY .” The operator⊙ realizes natural composition of such probabilistic com-
putations. The embeddingJf of an ordinary function endowsf with trivial branching.
By moving from functions to Kleisli arrows, therefore, we have thrown probabilistic
branching under the rug; this abstraction is useful in the subsequent development.

There is a natural order between parallel Kleisli arrows.

Definition 5.3 Between a parallel pair of Kleisli arrowsf, g : X −p→ Y , we define an
orderf ⊑ g if: f(x)(y) ≤ g(x)(y) for eachx ∈ X andy ∈ Y .

5.2 Probabilistic Systems as Kleisli Coalgebras

A GPAX = (X,x0, c) (Def. 2.1) can be presented by two Kleisli arrows:

{∗}
Jx0

−p−→ X
c

−p−→ {X} + Ac × X . (8)

This is a prototype of the kind of systems on which we define Kleisli simulation. First
we parametrize the ‘{X} + Ac × ()’ part in the above.

Definition 5.4 (Polynomial functor) A polynomial functoris a functorF : Sets →
Sets which is constructed

13

– from the identity functor() and the constant functorC for each setC,
– using finite products and arbitrary disjoint union (i.e. coproduct).

In the BNF notation:F ::= () | C | F1 × F2 |
∐

i∈I Fi.

The functor{X}+ Ac× () is polynomial; so is e.g.(Ac +)∗ =
∐

n<ω(Ac +)n.

Lemma 5.5 A polynomial functorF has canonical action on Kleisli arrows, carrying

X
f

−p→ Y to FX
Ff

−p→ FY .

Proof. A general categorical proof is found in [8,§2.2]; one can also define such action
concretely by induction on the construction ofF . ⊓⊔

In most casesF ’s action on Kleisli arrows is obvious. ForF = {X}+Ac× () andf :
X−p→ Y , the Kleisli arrowFf : FX−p→ FY is given by the function{X} + Ac × X −→
D({X} + Ac × Y), defined by

X 7−→ [X 7→ 1] , (a, x) 7−→ [(a, y) 7→ f(x)(y)]y∈Y .

Definition 5.6 (Probabilistic F -system) Let F be a polynomial functor. Aprobabilis-
tic F -system(or simplyF -system) is a tripleX = (X, s, c), whereX is an arbitrary set

and{∗}
s

−p−→ X
c

−p−→ FX are two Kleisli arrows. Recall that probabilistic branching
is implicit in Kleisli arrows.

Example 5.7 A GPA induces anF -system, withF = {X} + Ac × (); see (8).F -
system is more general than GPA since the former allows a subdistribution on initial
states (i.e.s ∈ DX) rather than a single initial state. This additional generality is how-
ever not important.

A DTMC cannot be seen as anF -system as it is: its dynamics is given by a function

X
〈l,p〉
→ P(AP) × DX which cannot be understood as a Kleisli arrow. We can fix it by

moving “state labels” into “transition labels.” Let us define a functioncl,p by

cl,p : X −→ D
(

P(AP) × X
)

, x 7−→
[

(l(x), x′) 7→ p(x)(x′)
]

x′∈X
;

then theF -system{∗}
Jx0

−p→ X
cl,p

−p→ P(AP) × X represents a DTMC(X,x0, l, p).

The notion of (probabilistic)F -system is essentially aKleisli F -coalgebraX
c
−p→

FX equipped with an explicit initial state{∗}
s
−p→ X. In coalgebraic studies it is usually

unnecessary to speak about explicit initial states; we however need that in this paper for
formulating the soundness result (Thm. 5.20). See [6,§3.2.4].

Let us compare the currentKleisli coalgebraic modelingof GPAs (Ex. 5.7) with
the modeling in§4.1. They are the same in that the dynamics of a GPA is represented
by a functionX → D({X} + Ac × X). In the Kleisli modeling, the functorB =
D({X} + Ac × ()) is divided intoD (branchingpart) andF = {X} + Ac × ()
(transition/actionpart); the former is then “buried in the ground” using Kleisli arrows.

14

5.3 Kleisli Simulation

Definition 5.8 (Kleisli simulation) Let F be a polynomial functor andX = (X, s, c)
andY = (Y, t, d) beF -systems. Aforward Kleisli simulationfrom X to Y is a Kleisli
arrowf : Y −p→ X such thatc⊙ f ⊑ (Ff)⊙ d ands ⊑ f ⊙ t (see below left). Note the
direction off . It is also called simply aforward simulation.

FX
Ff

fwd. FY

X
c f⊑

Y
d

{∗}
s t

⊑

FX
Fbbwd. FY

X
c

b
⊑

Y
d

{∗}
s t

⊑

A backward (Kleisli) simulationis a Kleisli arrowb : X−p→ Y such that(Fb)⊙c ⊑ d⊙b

andb ⊙ s ⊑ t (see above right). Here the order⊑ refers to the one in Def. 5.3.

In fact, the last definition is an instance ofgeneric forward and backward simulation
in [5,6]. The general definition has an extra parameterT that specifies abranching type.
It is fixed toT = D in this paper, representing probabilistic branching. Another main
example isT = P, the powerset operation, fornon-deterministicbranching.

This extra parameterT is used in the definition of Kleisli arrow. Namely,f : X −p→
Y is defined to be a functionf : X → TY . WhenT = P, a Kleisli arrowf :
X −p→ Y is hence identified with abinary relationRf ⊆ X × Y , such thatxRfy if
and only ify ∈ f(x). In this case, if moreoverF = Ac × () for which F -systems
are ordinary LTSs, Kleisli simulation (Def. 5.8) coincideswith the standard notions of
forward and backward simulation for LTS (see e.g. [16]). This coincidence is illustrated
in [6, §3.2.3]. To summarize: probabilistic Kleisli simulation (Def. 5.8) is a natural
generalization of non-deterministic simulation in [16].

The directions of Kleisli arrows and inequalities in Def. 5.8 need some care. Notice
that asimulatedsystem always occurs on the smaller side of⊑. The directions off and
b are best illustrated in a non-deterministic setting; see [6, §3.2.3].

5.4 Kleisli Simulation for GPA

We further instantiate the definition to GPA, i.e.F = {X}+ Ac× (). It demonstrates
Kleisli simulation’s affinity to the conventional simulation notions for LTS.

Notation 5.9 A forward simulation is a functionf : Y → DX; we writePr[y 99K x]

for the valuef(y)(x). We letPr[x → X] andPr[x
a
→ x′] have their obvious meanings.

We also compose events; for example

Pr[y 99K x
a
→ x′] := Pr[y 99K x] · Pr[x

a
→ x′] = f(y)(x) · c(x)(a, x′) .

For a backward simulation, we writePr[x 99K y] for b(x)(y).

15

Definition 5.10 (Forward simulation for GPA) LetX = (X,x0, c) andY = (Y, y0, d)
be GPAs. Aforward (Kleisli) simulationfromX toY is a functionf : Y → DX which
satisfies the following (in)equalities.

Pr[y0 99K x0] = 1 (INIT)
∑

x∈X Pr[y 99K x → X] ≤ Pr[y → X] for eachy ∈ Y (TERM)
∑

x∈X Pr[y 99K x
a
→ x′] ≤

∑

y′∈Y Pr[y
a
→ y′ 99K x′]

for eachy ∈ Y , a ∈ Ac andx′ ∈ X (ACT)

The condition (ACT) is illuminating. It can be depicted as the below left, whichbears a
clear affinity to the standard non-deterministic conditionshown on the right.

Pr

[y

•
a

x′

]

≤ Pr

[

y
a

•

x′

] (y

•
a

x′

)

implies

(

y
a

∃•

x′

)

Definition 5.11 (Backward simulation for GPA) LetX = (X,x0, c) andY = (Y, y0, d)
be GPAs. Abackward (Kleisli) simulationfrom X to Y is a functionb : X → DY

which satisfies the following inequalities.

Pr[x0 99K y0] ≤ 1 (INIT)

Pr[x → X] ≤
∑

y∈X Pr[x 99K y → X] for eachx ∈ X (TERM)
∑

x′∈X Pr[x
a
→ x′ 99K y′] ≤

∑

y∈Y Pr[x 99K y
a
→ y′]

for eachx ∈ X, a ∈ Ac andy′ ∈ Y (ACT)

5.5 Hughes-Jacobs Simulation as Hybrid Kleisli Simulation

We follow [16] and introducehybrid simulations which combine fwd. and bwd. ones.

Definition 5.12 (Hybrid simulation) Let X = (X, s, c) and Y = (Y, t, d) be F -
systems. Aforward-backward (Kleisli) simulationis a triple(U , f, b) where

– U = (U, u, e) is anF -system called theintermediate system;
– f is a forward simulation fromX to U , and
– b is a backward simulation fromU toY. See below on the left.

FXfwd.-bwd. FU
Ff Fb

FY

X
c

U
e

f b
⊑ ⊑

⊑⊑
Y

d

{∗}
u

s t

FXbwd.-fwd. FU
Fb Ff

FY

X
c

U
e

b f
⊑ ⊑

⊑⊑
Y

d

{∗}
u

s t

Similarly, abackward-forward (Kleisli) simulationis a triple(U , b, f) of an intermedi-
ate systemU , a backward simulationb from X to U , and a forward simulationf from
U toY. See above on the right.

16

Proposition 5.13 Let X ,Y beF -systems. If there is a non-hybrid simulation fromX
toY, then there are both fwd.-bwd. and bwd.-fwd. ones fromX toY.

Proof. A forward simulationf from X to Y induces a backward-forward simulation
(X , J(id), f); it hasX itself as an intermediate system. The other cases are similar. ⊓⊔

The significance of bwd.-fwd. simulation is in its completeness; see [5, Thm. 6.2].
Fwd.-bwd. simulation is also important: it subsumes HJ-simulation, hence also JL-
simulation. This is our second main observation.

Lemma 5.14 Let F be a polynomial functor. Then the functorDF has the following
natural order. This makes(DF,⊑DF) a functor with preorder (Def. 4.3).

γ ⊑DFX δ
def.
⇐⇒ γ(u) ≤ δ(u) for all u ∈ FX. ⊓⊔

WhenF = {X} + Ac × () andB = DF , bothB-coalgebras and probabilisticF -
systems represent GPAs. In this case, the order onB in the previous definition coincides
with the one in Ex. 4.4.

Theorem 5.15 (HJ is Kleisli) Let X
c
→ DFX and Y

d
→ DFY beDF -coalgebras,

x0 ∈ X andy0 ∈ Y be chosen (initial) states, andR ⊆ X × Y be a relation. Assume
that there exists a functionr that validates the inequalities in the diagram on the left,
that is, thatR is a HJ-simulation fromc to d such thatx0Ry0.

DFX DFR
DFπ1 DFπ2

DFY

X

c

R

r

π1 π2

⊑DF ⊑DF

Y
d

{∗}
〈x0,y0〉

x0 y0

=⇒

FX FR
F (Jπ1) F (Jπ2)

FY

X

c

R

r

Jπ1 Jπ2

⊑ ⊑

Y
d

{∗}
J〈x0,y0〉

Jx0 Jy0

(9)

Then we have a fwd.-bwd. simulation from theF -system(X,Jx0, c) to (Y, Jy0, d),
shown above on the right. Note the order⊑ therein refers to the one in Def. 5.3.

In short: a HJ-simulation betweenDF -coalgebras induces a fwd.-bwd. simulation be-
tween the correspondingF -systems.

Proof. The orders⊑DF and⊑ coincide by definition. Therefore we are done if we
show that all the corresponding pairs of composites of arrows in (9) denote the same
functions. That is,

c ◦ π1 = c ⊙ (Jπ1) as functionsR → DFX,

(DFπ1) ◦ r = F (Jπ1) ⊙ r as functionsR → DFX,

and similar equalities regardingπ2 andd. The first one is immediate from the definition
of Jπ1 and⊙ (Def. 5.1). The second one relies on the definition ofF ’s action on a
Kleisli arrow Jπ1 (Lem. 5.5). One can give a concrete proof again by induction on

17

construction ofF ; we shall instead resort to categorical arguments. The prerequisites
can be found in [8].

F (Jπ1) ⊙ r = µD
FX ◦ (DFJπ1) ◦ r by def. of⊙, using monad structure

= µD
FX ◦ (DJFπ1) ◦ r FJ = JF , [8, Diagram (2.3)]

= µD
FX ◦ (D(ηD

FX ◦ Fπ1)) ◦ r by def. ofJ
= µD

FX ◦ (DηD
FX) ◦ (DFπ1) ◦ r by functoriality ofD

= (DFπ1) ◦ r by the unit law for the monadD. ⊓⊔

The notion of fwd.-bwd. simulation instantiates to GPA, like in §5.4. Thm. 4.7 yields:

Corollary 5.16 (JL is Kleisli) LetX andY be GPAs. A JL-simulationR fromX to Y
induces a fwd.-bwd. (Kleisli) simulation fromX toY. ⊓⊔

5.6 Generic Trace Semantics

Like in [16], the principal aim of Kleisli simulation is to show trace inclusion—a re-
finement relation with respect to (linear time)trace semanticswhich is the coarsest in
the spectrum of [3]. Our use of the generic notion of Kleisli coalgebra calls for a generic
definition of trace semantics too. We employ the theory in [8]; here is its quick recap.

A polynomial functorF always has aninitial algebra α : FA
∼=→ A. The intuition

is: F represents a set of datatype constructors; andA is the induced inductive datatype.
The algebraic structureα always becomes an invertible function.

Example 5.17 The functorF = {X}+Ac×() is thought of as: a nullary constructor
X and a family of unary constructorsa(), for eacha ∈ Ac. The induced inductive
datatype is the setAc

∗ = {a1a2 · · · anX | n < ω, ai ∈ Ac} of (finite) lists over
Ac. This set indeed carries an initial algebra: there is a canonical algebraic structure

α : {X} + Ac × Ac
∗ ∼=
−→ Ac

∗, namely

X 7−→ X (the empty sequence), (a, a1 · · · anX) 7−→ aa1 · · · anX .

The following is the main result in [8], adapted to the current context.

Theorem 5.18 (Generic (finite) trace semantics)Let
α : FA → A be an initial algebra. Given anyF -system
X = (X, s, c), there is a unique Kleisli arrowtr(c) that
makes the diagram on the right commute. In particular,
the Kleisli coalgebraJ(α−1) is afinal coalgebra.

FX
F (tr(c))

FA

X
c

tr(c)
A

J(α−1)

{∗}
s

tr(c)⊙s

(10)

We settr(X) := tr(c)⊙s. It is tr(X) : {∗} → DA as a function, hence is a subdistribu-
tion overA. Thistr(X) is referred to as the(finite) trace semanticsof X . To summarize:
the action typeF determines the setA of linear-time behavior; X ’s trace semantics
tr(X) tells us which linear-time behavior is exhibited with how much likelihood.

18

Example 5.19 (Trace semantics for GPA)LetF = {X}+Ac×(). The diagram (10)
translates into the following conditions, whereσ ranges overAc

∗.

tr(c)(x)(X) = Pr[x → X] ,

tr(c)(x)(aσ) =
∑

x′∈X Pr[x
a
→ x′] · tr(c)(x′)(σ) ; and

tr(X)(σ) = tr(c)(x0)(σ) whens(∗) = [x0 7→ 1].

This is a reasonable definition of a “trace semantics” for GPA; resulting is a subdistri-
butiontr(X) over lists onAc. For example, letX be the GPA below on the left; then its
trace semantics is as on the right.

x0
a[1

3
]

a[1
3
]

1

3

x1
1

2

a[1
2
]

x2

a[1]

X
tr(X) =

[

X 7→ 1
3 , aX 7→ 1

3 · 1
2 , a2X 7→ 1

3 · 1
2 · 1

2 , · · ·

anX 7→ 1
3 ·

(

1
2

)n
, · · ·

]

Note that our trace semantics only capturesfinite behavior; infinite sequences likeaω

are not in its domainAc
∗. With infinite behavior included we no longer have a clean

characterization like in Thm. 5.18.

Like the definition of Kleisli simulation, the generic tracesemantics (Thm. 5.18)
also applies to other kinds of branching such as non-determinism. See [8].

5.7 Soundness Theorems

We recall the soundness result [5] for Kleisli simulation, via which soundness of JL- and
HJ-simulation immediately follows. Its short proof in [5] makes use of order-theoretic
properties of the diagram (10).

Theorem 5.20 (Soundness of Kleisli)Let X ,Y be F -systems. Existence of a Kleisli
simulation fromX to Y implies trace inclusion:tr(X) ⊑ tr(Y). Here a Kleisli simula-
tion can be any of forward, backward, or hybrid. ⊓⊔

Using Thm. 5.15 and Cor. 5.16, we immediately obtain soundness of JL-simulation
(Def. 4.12). This is new to the best of the author’s knowledge. Therefore the notion of
JL-simulation can also be used for proving trace inclusion between GPAs, a use that has
not been investigated much in the literature. The same applies to JL- and JL’-simulation
for DTMCs; we postpone detailed treatment to another venue.

6 Examples

For GPAs we have found several simulation notions: JL which is the same as HJ; for-
ward; backward; backward-forward; and forward-backward.We have proved that the
first is included in the last (Cor. 5.16); and that a non-hybrid Kleisli simulation induces
a hybrid one (Prop. 5.13). In this section we present some examples that separate dif-
ferent simulation notions.

19

Example 6.1 Sometimes there is a forward (or a backward) simulation but not a JL-
simulation. This does not contradict Prop. 5.13: to be a JL-simulation, a fwd.-bwd.
simulation must be of a particular shape—the simulation arrows must beJπi.

x′
0a[2

3
] a[1

3
]

X ′

x0

a[1]

X
x′′

0a[1
3
] a[2

3
]

X ′′

x′
1

[1
3
]

x′
2

[2
3
]

x1

[1
2
]

x′′
1

[1
3
]

x′′
2

[2
3
]

X X X X X

We have a forward simulationf from X ′ to X : f(x0) = [x′
0 7→ 1] and f(x1) =

[x′
1 7→ 2

3 , x′
2 7→ 1

3]. But not a JL-simulation; assumeR is such. The only candidate
for a weight function∆x′

0
,x0

is: ((a, x′
1), (a, x1)) 7→

2
3 and((a, x′

2), (a, x1)) 7→
1
3 ; this

forcesx′
1Rx1 andx′

2Rx1. However there is no weight function that witnesses the latter,
hence a contradiction.

We have a backward simulationb from X to X ′′: b(x0) = [x′′
0 7→ 1] andb(x1) =

[x′′
1 7→ 1

3 , x′′
2 7→ 2

3]. AssumeR is a JL-simulation. In the same way as above,x1Rx′′
1 is

forced, which is a contradiction.

Example 6.2 First let us consider the following pair.

x0a[1
2
] a′[1

2
]

X (1)

y0a[1
2
] a′[1

2
]

Y(1)

x1
a[1

3
]

a[2
3
] x2

a′[1
3
]

a′[2
3
]

y1
a[1

2
]

a[1
2
] y2

a′[1
2
]

a′[1
2
]x3

[1]

x4
[1]

y3

[1]

y4

[1]

X X X X

In factx0 andy0 are bisimilar; they are obviously so and finding suitable weight func-
tions is straightforward. Assumef is a forward simulation fromX to Y. By (INIT) in
Def. 5.10 we havef(y0) = [x0 7→ 1]. Applying (ACT) for y0, a andx1, we are forced
to havef(y1) = [x1 7→ 1]; similarly f(y2) = [x2 7→ 1]. Again applying (ACT) for the
transitions on the second level, we have inequalities

1
3 ≤ 1

2f(y3)(x3) + 1
2f(y4)(x3) , 2

3 ≤ 1
2f(y3)(x4) + 1

2f(y4)(x4) ;
2
3 ≤ 1

2f(y3)(x3) + 1
2f(y4)(x3) , 1

3 ≤ 1
2f(y3)(x4) + 1

2f(y4)(x4) .
(11)

From the top-right one, we have

2

3
≤

1

2
f(y3)(x4) +

1

2
f(y4)(x4) ≤

1

2

(

1 − f(y3)(x3)
)

+
1

2

(

1 − f(y4)(x3)
)

;

the latter inequality is becausef(y3) andf(y4) are subdistributions. From this we have
1
2f(y3)(x3) + 1

2f(y4)(x3) ≤ 1
3 , which yields 1

2f(y3)(x3) + 1
2f(y4)(x3) = 1

3 when
combined with the top-left one in (11). In the same way we conclude 1

2f(y3)(x3) +
1
2f(y4)(x3) = 2

3 from the bottom two in (11). There is no common solution off(y3)(x3)
andf(y4)(x3) for the last two equations; hence suchf is impossible.

20

Let us now consider the following pair.

x0a[1
2
] a′[1

2
]

X (2)

y0a[1
2
] a′[1

2
]

Y(2)

x1

a[1]

x2

a′[1]

y1
a[2

3
]

a[1
3
] y2

a′[2
3
]

a′[1
3
]x3

[1]

y3

[1]

y4

[1]

X X X

A JL-(bi)simulation is again obvious; assuming we have a backward simulationb, we
derive a contradiction.

By (TERM), using somep ∈ [0, 1] we can writeb(x3) = [y3 7→ p, y4 7→ 1 − p].
Applying (ACT) for the transitions on the second level, we have inequalities

p ≤ 1
3b(x1)(y1) , 1 − p ≤ 2

3b(x1)(y1) ;
p ≤ 2

3b(x2)(y2) , 1 − p ≤ 1
3b(x2)(y2) .

(12)

From the top two we have1 ≤ b(x1)(y1), henceb(x1)(y1) = 1. Similarly from the
bottom two we haveb(x2)(y2) = 1. Using these in the original inequalities we have
p ≤ 1

3 , 1 − p ≤ 2
3 , p ≤ 2

3 and1 − p ≤ 1
3 . The former two impliesp = 1

3 , while the
latter two saysp = 2

3 . This is impossible.

A natural question is: does it happen that there is a JL-simulation, but neither for-
ward nor backward simulation exists? At this point this is open.

7 Conclusions and Future Work

We have showed that JL-simulation is a special case of HJ-simulation, which is further
a special case of Kleisli simulation. This allows to transfer general results for a latter
notion to a former one, most notably soundness.

Finding a Kleisli simulation is reduced to solving a family of linear inequalities. Its
algorithmic aspect is to be investigated. We also aim to exploit acquired genericity and
apply our results to other kinds of systems. We are interested in stochastic context-free
grammarswhich have their application in modeling the secondary structure of RNA [2].

References

1. C. Baier, J.P. Katoen, H. Hermanns and V. Wolf. Comparative branching-time semantics for
markov chains.Inf. & Comp., 200(2):149–214, 2005.

2. R. Durbin, S.R. Eddy, A. Krogh and G. Mitchison.Biological Sequence Analysis. Cambridge
Univ. Press, 1998.

3. R.J. van Glabbeek. The linear time–branching time spectrum I; the semantics of concrete,
sequential processes. In J.A. Bergstra, A. Ponse and S.A. Smolka, editors,Handbook of
Process Algebra, chap. 1, pp. 3–99. Elsevier, 2001.

4. R.J. van Glabbeek, S.A. Smolka and B. Steffen. Reactive, generative, and stratified models
of probabilistic processes.Inf. & Comp., 121:59–80, 1995.

21

5. I. Hasuo. Generic forward and backward simulations. In C. Baier and H. Hermanns, editors,
International Conference on Concurrency Theory (CONCUR 2006), vol. 4137 ofLect. Notes
Comp. Sci., pp. 406–420. Springer, Berlin, 2006.

6. I. Hasuo.Tracing Anonymity with Coalgebras. PhD thesis, Radboud Univ. Nijmegen, 2008.
7. I. Hasuo. Generic forward and backward simulations II: Probabilistic simulations. In

P. Gastin and F. Laroussinie, editors,International Conference on Concurrency Theory
(CONCUR 2010), Lect. Notes Comp. Sci. Springer, Berlin, 2010. To appear.

8. I. Hasuo, B. Jacobs and A. Sokolova. Generic trace semantics via coinduction. Logical
Methods in Comp. Sci., 3(4:11), 2007.

9. I. Hasuo, Y. Kawabe and H. Sakurada. Probabilistic anonymity via coalgebraic simulations.
Theor. Comp. Sci., 411(22–24):2239–2259, 2010.

10. J. Hughes and B. Jacobs. Simulations in coalgebra.Theor. Comp. Sci., 327(1-2):71–108,
2004.

11. B. Jacobs. Introduction to coalgebra. Towards mathematics of states and observations, 2005.
Draft of a book,www.cs.ru.nl/B.Jacobs/PAPERS.

12. B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic processes. In
LICS, pp. 266–277. IEEE Computer Society, 1991.

13. B. Klin. Bialgebraic methods and modal logic in structural operationalsemantics.Inf. &
Comp., 207(2):237–257, 2009.

14. V.G. Kulkarni.Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.
15. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing.Inf. & Comp., 94(1):1–

28, 1991.
16. N. Lynch and F. Vaandrager. Forward and backward simulations. I. Untimed systems.Inf. &

Comp., 121(2):214–233, 1995.
17. J.J.M.M. Rutten. Universal coalgebra: a theory of systems.Theor. Comp. Sci., 249:3–80,

2000.
18. R. Segala.Modeling and verification of randomized distributed real-time systems. PhD

thesis, MIT, 1995.
19. A. Sokolova.Coalgebraic Analysis of Probabilistic Systems. PhD thesis, Techn. Univ. Eind-

hoven, 2005.

22

A Appendix

A.1 Formulation of Hughes-Jacobs simulation

The original formulation [10] of HJ-simulation (stated in fibrational terms) amounts to
the following condition, which is shown to be equivalent to Def. 4.5.

Proposition A.1 In Def. 4.5, the relationR is a HJ-simulation if and only if there exists
a functionr′ : R → Rel⊑(B)(R) such that the following diagram commutes.

BX Rel⊑(B)(R)
π1 π2

BY

X

c

R

r′

π1 π2
Y

d (13)

Here the relationRel⊑(B)(R) ⊆ BX × BY is the lax relation lifting from [10].

The proof is similar to its bisimulation counterpart, whichis standard in the theory of
coalgebra (see e.g. [19, Lem. 3.6.4]).

Proof. First we recall the definition of (lax) relation lifting. Given a relationR ⊆ X ×
Y , it is lifted to therelation lifting Rel(B)(R) ⊆ BX × BY via the following image-
factorization (see e.g. [10]). We denote the surjective part by e.

Rel(B)(R) BX × BY

BR

e
〈Bπ1,Bπ2〉

(14)

Then thelax relation lifting Rel⊑(B)(R) is defined to be⊑◦ Rel(B)(R) ◦⊑, that is,
the relational composition of

⊑BX⊆ BX×BX , Rel(B)(R) ⊆ BX×BY , and ⊑BY ⊆ BY ×BY . (15)

For the ‘if’ part of the statement, take arbitraryx ∈ X andy ∈ Y such thatxRy;
we shall define the valuer(x, y) for r in (5). The functionr′ in (13) is forced to be
r′(x, y) = (c(x), d(y)) by commutativity. Since the valuer′(x, y) lies in the relation
Rel⊑(B)(R), there existγ ∈ BX andδ ∈ BY such that

c(x) ⊑ γ , (γ, δ) ∈ Rel(B)(R) , and δ ⊑ d(y) (16)

by the definition of lax relation lifting. Then by (14) there exists β ∈ BR such that
e(β) = (γ, δ), using the axiom of choice. Now definer in (5) byr(x, y) = β. We have

(Bπ1 ◦ r)(x, y) = (π1 ◦ e)(β) = π1(γ, δ) = γ ;

similarly (Bπ2 ◦ r)(x, y) = δ. By (16) this functionr makes the inequalities in (5)
hold.

For the ‘only if’ part, define a functionr′ : R → Rel⊑(B)(R) by r′(x, y) :=
(c(x), d(y)). That makes the diagram commute; we have to show that(c(x), d(y)) ∈
Rel⊑(B)(R). By the condition onr in Def. 4.5 we havec(x) ⊑ (Bπ1)(r(x, y))
and (Bπ2)(r(x, y)) ⊑ d(y). Hence by the definition of a lax relation lifting, we are
done if we show

(

(Bπ1)(r(x, y)), (Bπ2)(r(x, y))
)

∈ Rel(B)(R), which is immedi-
ate from (14). ⊓⊔

