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Preface

Notice: The current lecture notes were originally meant for the use in
the course Information Logic at Department of Information Science,
Faculty of Science, the University of Tokyo. The author was in
charge of the course from 2011 to 2016. There are a few examples
and references in Japanese, but they do not play essential roles for
the lecture notes.

Logic and theory of computability are so much fundamental topics in com-
puter science that we are never short of good textbooks (see below for some
pointers). The reason I am writing the current lecture notes nevertheless is the
limited number of lectures given to these topics in our curriculum. In particular,
theory of computability taught in a course can either:

– lack intuitions, especially when conciseness is a priority and the presenta-
tion is mathematically oriented; or

– take too much time, when all the details are provided so that you get the
feeling of a (computing) “machine” working.

In the current lecture notes I try to pick the best of the two approaches and make
the most of the limited number of lectures available for theory of computability.

Another goal of the current notes is to familiarize you with theoretical liter-
ature. “Theoretical” here means “mathematical”; and mathematics books and
papers require the reader to follow certain rules. These rules are something you
must learn through training; but once you acquire them, you have much easier
access to the contents of the vast body of mathematical knowledge. Well, in
short: I’d like you to learn how to learn mathematics by yourself.

References

Some are listed in the main text.
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Overall I strongly recommend reading [17], before, in the middle of, or after
reading this textbook. It is an informal introduction to logic, theory of com-
putation and foundation of mathematics, with a lot of intuitions and histrical
remarks, presented in an inspiring and intuitive manner. At times when math-
ematical details in this textbook overwhelm you, the book [17] can save you.

Logic

– The current notes are loosely based on [15], which I can certainly recom-
mend.

– If you are an aspiring student: [6] is a classic textbook that is used often
for reading groups at logic-oriented research groups.

Studying this book and doing the exercises made me a logician.
(L. van den Dries, U. Illinois)

– The one [20] by Hagiya-sensei and Nishizaki-sensei is like a dictionary,
covering many related (and advanced) topics. It might take time to read
it from cover to cover; recommended as a reference.

– Other recent references include [10, 18, 9].

Computability

– The current notes are somewhere in-between [11] and [13]. The former is
concise but dry—it might be hard for you to get intuitions; the latter is
detailed, with a lot of examples and informal arguments supporting the
technical results.

– [2] is a modern comprehensive introduction in English.

– [20] includes a standard treatment of computability using Turing machines
as a basic infrastructure (which we will not do in this course).

– On Gödel’s incompleteness theorem (Chap. 9), [12] provides a modern,
accessible, yet comprehensive overview.

Acknowledgment

Kentaro Honda has helped (and have been helping) me a great deal as a teaching
assistant and as a critical proof reader. The use of equational logic as a show-
case was suggested by Yde Venema, which I am grateful for. Kenshi Miyabe
suggested the proof of Prop. 8.4.6.

Most of the current lecture notes were written during the author’s employ-
ment at Department of Computer Science, the University of Tokyo, for the
course Information Logic. After my departure from the department, the lecture
notes were used by Masami Hagiya and Hitomi Yanaka in the same course.
Their feedbacks, together with the feedbacks from the brilliant, motivated, and
critical students there, are gratefully acknowledged.
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Chapter 1

Set Theory Primer

The material covered here is what is called naive set theory—as opposed to
axiomatic set theory that is built upon formal logic (which is what we will learn
in this course).

How to use this chapter This chapter is mostly for fixing notations; it is
far from complete, detailed or reader-friendly. It assumes that you have learned
about the material somewhere before. Your first reading can be a quick glance;
come back later when necessary. In particular: different names can be given to
the same notion; you need not remember all these names!

References For more detailed exposition, in fact Wikipedia (in English) will
do most of the time; but [16] is a classic textbook (maybe there are more modern
ones that are good too). If you are interested in posets, [1] is recommended as
an introduction.

1.1 Basic Constructions on Sets

1.1.1 Definition. Two sets X,Y are equal (we write X = Y ) if they contain
exactly the same elements.

They are isomorphic (X ∼= Y ; it is also said: in a bijective correspondence;

or to have the same cardinality) if there is a bijective function f : X
∼=→ Y , that

is,

f is injective, i.e. f(x) = f(x′) =⇒ x = x′ ; and

f is surjective, i.e. for any y ∈ Y there exists x ∈ X such that f(x) = y.

Note: usually in a definition, ‘if and only if’ is written as ‘if’; thus the ‘if’s
in the above in fact mean ‘if and only if.’

1.1.2 Example.

{apple, apple, orange} = {apple, orange} 6= {dog, cat}

Here all the sets are isomorphic (their cardinality is 2).

7



8 1 Set Theory Primer

1.1.3 Definition. The emptyset is the set that contains no elements (i.e. {}).
It is denoted by ∅.

Note that two emptysets are necessarily the same, thus we say the emptyset.
Also note: in LATEX, ∅ is \emptyset and not \phi.

1.1.4 Definition.

The join of two sets: X ∪ Y = {z | z ∈ X or z ∈ Y }
The meet of two sets: X ∩ Y = {z | z ∈ X and z ∈ Y }

More generally, given a family of sets (Xi)i∈I indexed by an index set I,⋃
i∈I

Xi = {z | z ∈ Xi for some i ∈ I} ;
⋂
i∈I

Xi = {z | z ∈ Xi for all i ∈ I}

where for the definition of
⋂

i∈I Xi, the index set I must be nonempty.

Note that (Xi)i∈I is (subtly) different from the set of sets {Xi}i∈I (what if
Xi = Xj for i 6= j ∈ I?).

1.1.5 Definition (Cartesian productX×Y ,
∏

i∈I Xi). The (Cartesian) product
of two sets X and Y is the collection of ordered pairs

X × Y = {(x, y) | x ∈ X, y ∈ Y } .

Similarly defined:

X1 × · · · ×Xn = {(x1, . . . , xn) | xi ∈ Xi} ;

Xn = {(x1, . . . , xn) | xi ∈ X} ;

More generally, given a family of sets (Xi)i∈I indexed by an index set I,∏
i∈I

Xi = {(xi)i∈I | xi ∈ Xi}

where (xi)i∈I is a choice of an element xi ∈ Xi for each i ∈ I.

1.1.6 Remark. The 0-ary product X0 contains exactly one element (), that is,
X0 = {()}. (Why? Consider |Xn| = |X|n) Therefore ∅0 is not empty.

1.1.7 Definition (Disjoint union X q Y ,
∐

i∈I Xi). The disjoint union (also
called direct sum or coproduct) of two sets is

X q Y = ({0} ×X) ∪ ({1} × Y ) .

Notice that {0} × X is isomorphic to X; 0 and 1 here are “markers” that
distinguish elements of X and those of Y (which may overlap). The set X q Y
is also denoted by X + Y .

Similarly defined:

X1 q · · · qXn = ({1} ×X1) ∪ · · · ∪ ({n} ×Xn) .

More generally, given a family of sets (Xi)i∈I indexed by an index set I,∐
i∈I

Xi =
⋃
i∈I

(
{i} ×Xi

)
.
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1.1.8 Remark. The sets
∏

i∈I Xi and
∐

i∈I Xi are defined for any index set I,
however big I is (it can be uncountable).

1.1.9 Definition (Subset X ⊆ Y , powerset P(X)). A set X is said to be a
subset of a set Y if

x ∈ X =⇒ x ∈ Y .

We denote this fact by X ⊆ Y .
The powerset P(X) of a set X is the collection of all subsets of X, that is,

P(X) = {S | S ⊆ X} .

Note that P(X) always contains ∅, and X itself.

1.2 Function

You know the notion of function f : X → Y—it is a correspondence which,
given x ∈ X, returns f(x) ∈ Y . We formulate this notion via binary relations.

1.2.1 Definition (Binary relation). A binary relation R between X and Y is
a subset R ⊆ X × Y . We write xRy when (x, y) ∈ R.

x1

x2

...
...

...
. . .

...

xn

y1 y2 · · · ym

· · ·

· · ·

· · ·

Figure 1.1: Binary relation (in case X,Y are finite)

1.2.2 Definition (Function). A function f : X → Y is a binary relation
f ⊆ X × Y such that: for each x ∈ X, there exists exactly one y ∈ Y such that
(x, y) ∈ f . We denote such a unique y by f(x); we also write this fact f : x 7→ y.

Distinguish two arrows (f : X → Y vs. f : x 7→ f(x)).
From this definition via relations, we see clearly how many functions there

are if

– the domain is ∅, or

– the range is ∅.

See Exercise 1.2.

1.2.3 Definition (Domain, range). For a function f : X → Y , the set X is
called the domain of f ; and Y is called the range (or codomain) of f .
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1.2.4 Definition (Function space Y X). The collection of all functions from X
to Y is called the function space and is denoted by Y X . That is,

Y X = {f : X → Y } .

It is also denoted by: X → Y or X ⇒ Y .

1.2.5 Definition (Finite set n). Let n be a natural number (note: in computer
science or logic, 0 is often considered as a natural number). We denote the
n-element set {0, 1, 2, . . . , n− 1} also by n. That is,

n = {0, 1, 2, . . . , n− 1} .

The following definitions have already appeared.

1.2.6 Definition (Injection, surjection, bijection). A function f : X → Y is

– injective (written f : X ↪→ Y or X ↣ Y ) if it maps different elements to
different elements, that is,

f(x) = f(x′) =⇒ x = x′ ;

– surjective (written f : X ↠ Y ) if it “covers its whole range,” that is,

for any y ∈ Y there exists x ∈ X such that f(x) = y;

– bijective (written f : X
∼=→ Y ) if it is both injective and surjective.

Recall two sets X,Y are said to be isomorphic if there is a bijection between
them; this means X and Y are “essentially the same.”

1.2.7 Definition (Composition g ◦ f ; identity idX). Given two successive
functions f : X → Y and g : Y → Z (notice the matching domain and range),
the function

g ◦ f : X −→ Z

is defined by

g ◦ f : x 7−→ g(f(x)) .

The identity function on a set X is the function

idX : X −→ X , x 7−→ x .

1.2.8 Lemma. A function f : X → Y is a bijection if and only if there exists
a function g : Y → X such that: g ◦ f = idX and f ◦ g = idY .

X

f
))idX ;; Y

g
ii idY

zz 2

A partial function is like a function but can be undefined in part of its
domain.
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1.2.9 Definition (Partial function X ⇀ Y ). A partial function f : X ⇀ Y is
a function f : S → Y from some subset S ⊆ X to Y .

X

S
f

//

OO⊆
O O

Y

1.2.10 Lemma. A partial function f : X ⇀ Y is the same thing as a function

f : X −→ Y q {⊥}

where ⊥ is a fresh symbol meaning “undefined.” More precisely: there is a
canonical bijection between

{partial functions f : X ⇀ Y } and the function space
(
Y q {⊥}

)X
. 2

1.2.11 Proposition. The sets N and N× N are isomorphic.

Proof.

0

0

1

1

2

2

3

3

· · ·

...

...

2
1.2.12 Proposition. The sets ZX×Y and (ZY )X are isomorphic. 2

The last result says: a function f : X × Y → Z is “the same thing” as a
function f∧ : X → (Y ⇒ Z), that is,

f : X × Y → Z

f∧ : X → (Y ⇒ Z)
.

This is the principle of currying in functional programming.

1.2.13 Definition (Characteristic function χS). Let S ⊆ X. The characteristic
function χS : X → 2 is defined by

χS : x 7−→

{
0 if x ∈ S

1 if x 6∈ S

Recall 2 = {0, 1} (Def. 1.2.5); here 0 means “true” and 1 means “false.”
Characteristic functions are used in:

1.2.14 Proposition. The sets P(X) and 2X are isomorphic. 2
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Moreover:

1.2.15 Proposition. The set {binary relations R ⊆ X × Y } is isomorphic to

the function space
(
P(Y )

)X
.

Proof.

X

Y

R

x

Also see Exercise 1.8. 2
1.2.16 Proposition. Assume Xi = X for each i ∈ N. Then the product∏

i∈N Xi is isomorphic to XN. 2

1.3 Binary Relation

1.3.1 Example. A directed graph can be thought of as a pair

(V,E)

of the set V of vertices and a binary relation E ⊆ V ×V that represents edges—
xEy if there is an edge from x to y.

a

b

c

d e

1.3.2 Definition (Relational composition S ◦ R). Let R ⊆ X × Y and S ⊆
Y × Z be two binary relations (with matching (co)domains). The (relational)
composition

S ◦ R ⊆ X × Z

is defined by

(x, z) ∈ S ◦ R
def⇐⇒ there exists y ∈ Y such that xRy and ySz.

Note that the order S ◦ R is the same as in g ◦ f (Def. 1.2.7).
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1.3.3 Definition (Rn, R0). Let R ⊆ X ×X be a binary relation. The relation
Rn is defined in the obvious way:

Rn := R ◦ R ◦ · · · ◦ R ,

for n ≥ 1. For n = 0, we define R0 to be the diagonal relation:

R0 := ∆X = {(x, x) | x ∈ X} . (1.1)

See Exercise 1.11 for the justification of the definition of R0.

1.3.4 Definition (∗-closure). Let R ⊆ X ×X be a binary relation (note that
R is between the same set X). The ∗-closure of R, denoted by R∗, is defined by

R∗ :=
⋃
n∈N

Rn .

That is,

xR∗y ⇐⇒ there are x0, x1, . . . , xn ∈ X such that

x = x0 Rx1 R . . . R xn = y .

As a “closure” operator (like U 7→ U in a topological space), the operator
( )∗ is required to satisfy the following properties.

1.3.5 Proposition. Let R,S ⊆ X ×X be two binary relations.

1. R ⊆ R∗.

2. R ⊆ S implies R∗ ⊆ S∗.

3. (R∗)∗ = R∗. 2
1.3.1 Equivalence Relation

1.3.6 Definition (Reflexivity; symmetry; transitivity). A binary relation R ⊆
X ×X is said to be

reflexive if: xRx for each x ∈ X;

symmetric if: for each x, y ∈ X, xRy implies yRx;

transitive if: for each x, y, z ∈ X, xRy and yRz implies xRz.

One can never underestimate the important roles of notations and for-
malisms in mathematics: proper understanding1 is so often brought about by
getting used to a proper formalism.

In this course (and elsewhere) we fancy rule-based presentation. In that style
of presentation, Def. 1.3.6 is written as follows.

xRx
(Refl.)

yRx

xRy
(Sym.)

xRy yRz

xRz
(Trans.)

1It is another important issue what is exactly to understand mathematics. In my opinion it
is not at all taking notes and memorizing them; it is rather the ability to use the mathematical
notions and reasoning principles.
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These “rules” written like fractions are read from top to bottom: if the “as-
sumptions” on the top all hold, then the “conclusion” on the bottom holds.
Two lines = means implication in both directions (if and only if): for example,
it is easy to see

yRx

xRy
(Sym.) .

x1

x2

...
...

...
. . .

...

xn

x1 x2 · · · xn

· · ·

· · ·
· · ·

reflexivity

x1

x2

...
...

...
. . .

...

xn

x1 x2 · · · xn

· · ·

· · ·
· · ·

symmetry

Figure 1.2: Reflexivity, symmetry, transitivity

1.3.7 Definition (Equivalence relation). A relation R ⊆ X ×X is an equiva-
lence relation if it is reflexive, symmetric and transitive.

1.3.8 Definition (Equivalence class). Let R be an equivalence relation on X,
and x ∈ X. The R-equivalence class of x, denoted by [x]R, is the following
subset of X.

[x]R := {x′ ∈ X | xRx′}

The collection of R-equivalence classes is called the R-quotient of X and is
denoted by X/R.

1.3.9 Lemma. The whole set X is the disjoint union of equivalence classes.
That is,

1. if two equivalence classes S, S′ ∈ X/R are not disjoint (S ∩ S′ 6= ∅), then
they are equal (S = S′);

2. the union
⋃
X/R :=

⋃
S∈X/R S coincides with X. 2

1.3.10 Definition (Canonical projection). There is a canonical2 map

πR : X −→ X/R
x 7−→ [x]R

which is surjective; this map is called the R-quotient map or the R-projection.

An equivalence relation can be thought of as an abstraction, or an attribute.

1.3.11 Example. Each of the following attributes determines an equivalence
relation over the set of you guys.

2“Canonical” means: there might be some other “coincidental” ones; but this is a “natu-
rally arising” one. The word has to do with “canon” and hence with Christianism (I guess).
Cf. two vector spaces V,W of the same dimension are isomorphic, but in general there is no
canonical choice among the possible isomorphisms.
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x1

x2

x3

x4 x5

x6

[ 上図では同値関係 R を線分で示す．
ただし各元とそれ自身との関係は省略．

]

X = {x1, . . . , x6}
R =

{
(x1, x2), (x2, x1), . . . , (x6, x6)

}
X/R =

 , ,


π : X ↠ X/R

x2 7→

x6 7→

Figure 1.3: Equivalence classes and projection

gender, age, prefecture of birth, city of residence, . . .

See also Exercise 1.15.

1.3.12 Definition (Kernel). A function f : X → Y induces an equivalence
relation ∼f on X, called the kernel of f , by:

x ∼f x′ def⇐⇒ f(x) = f(x′) .

1.3.13 Definition (Reflexive and transitive closure). Let R ⊆ X × X be a
relation. A relation S ⊆ X ×X is said to be the reflexive and transitive closure
of R, denoted by Rrt, if:

1. R ⊆ S;

2. S is reflexive and transitive; and

3. for any reflexive and transitive T ⊆ X × X such that R ⊆ T , we have
S ⊆ T .

At first sight the previous definition might puzzle you. Another way to put
it: S is the “smallest extension of R” that is reflexive and transitive. You add
pairs to R (as few as possible) so that you get reflexivity and transitivity.

But is such extension always possible? In this case, yes.

1.3.14 Lemma. The ∗-closure R∗ (Def. 1.3.4) is the reflexive and transitive
closure of R.

Proof. We have to show, for any reflexive and transitive extension T of R: 1)
R ⊆ R∗ (easy); 2) R∗ is reflexive and transitive (easy); 3) if T is a reflexive and
transitive extension of R then R∗ ⊆ T .

3) is proved as follows. Assume xR∗ y; then we have a sequence

x = x0 Rx1 R . . . R xn = y .
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Since R ⊆ T we have

x = x0 T x1 T . . . T xn = y ;

by T ’s transitivity (when n ≥ 2) or T ’s reflexivity (when n = 0), we have

x = x0 T xn = y .

This concludes the proof. 2
In the above lemma we provided an explicit construction of Rrt and con-

cluded that Rrt always exists. Its existence alone can be shown in the following
way, too. The proof is a general one and applies to a large number of “closures.”

1.3.15 Lemma. For any relation R ⊆ X×X, its reflexive and transitive closure
Rrt always exists.

Proof. Let us denote by R the family of all reflexive and transitive extensions
of R. That is:

R := {S ⊆ X ×X | R ⊆ S, and S is reflexive and transitive.}

Then it holds that ⋂
R =

⋂
S∈R

S

also belongs to R. Therefore the intersection
⋂

R is the smallest reflexive and
transitive extension of R, that is, Rrt. 2

Indeed the following fact can be proved by the same argument.

1.3.16 Lemma. For any R ⊆ X × X, its equivalence closure—the smallest
equivalence relation that contains R—always exists. 2
1.3.2 Order

1.3.17 Definition (Antisymmetry). A binary relation R ⊆ X × X is said to
be

antisymmetric if: xRy and yRx implies x = y.

That is, as a rule,
xRy yRx

x = y (AntiSym.)

1.3.18 Definition ((Partial) order; poset; preorder). A binary relation R ⊆
X ×X is a (partial) order if it is reflexive, antisymmetric and transitive.

A set X equipped with a partial order ≤ is called a partially ordered set
(poset). We write (X,≤).

A relation R is a preorder if it is reflexive and transitive.

A preorder can be turned into an order: see Exercise 1.19.

1.3.19 Definition (Total order). An order ≤ on X is said to be total if

x ≤ y or y ≤ x for any x, y ∈ X.
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1.3.20 Example. Let X be a set. Its powerset P(X) has a natural order ⊆
given by inclusion. It is in general not total. (When is it total?)

1.3.21 Definition (Binary join/meet). Let (X,≤) be a poset. An element
z ∈ X is said to be the join of x, y ∈ X if

1. x ≤ z and y ≤ z;

2. z is the smallest among such, that is, for any u such that x ≤ u and y ≤ u,
we have z ≤ u.

We write x ∨ y for the join of x and y.
The meet x ∧ y of x, y ∈ X is defined in a similar manner.

The previous definitions can be represented as the following rules (recall
double lines = means ‘if and only if’), which we find very useful.

x ≤ u y ≤ u

x ∨ y ≤ u
(Join)

u ≤ x u ≤ y

u ≤ x ∧ y
(Meet) (1.2)

More generally:

1.3.22 Definition (Join, meet). Let (X,≤) be a poset; and S ⊆ X be a subset
of X. The join (also called supremum) of S, denoted by

∨
S, is the element of

X such that
s ≤ u for each s ∈ S∨

S ≤ u
(Join) .

Similarly, the meet
∧
S (also called infimum) is such that

u ≤ s for each s ∈ S

u ≤
∧
S

(Meet) .

1.3.23 Lemma. 1. A join
∨
S, if it exists, is unique. The same holds for a

meet
∧
S.

2. The join
∨
∅ of the emptyset ∅ ⊆ X is nothing but the smallest element

(the minimum) ⊥X of X. Similarly,
∧

∅ is the greatest element (the
maximum) >X .

3. The minimum ⊥X , if it exists, is the unit for ∨. That is, for any x ∈ X

⊥X ∨ x = x .

Similarly, >X ∧ x = x.

1.3.24 Definition (Lattice; complete lattice). A poset (X,≤) is said to be a
lattice if it has

– the minimum ⊥X and the maximum >X ;

– the join x ∨ y and the meet x ∧ y for any x, y ∈ X.

A poset (X,≤) is a complete lattice if for any S ⊆ X, there are
∨

S and
∧
S.

1.3.25 Example. 1. For any set X, its powerset P(X) is a complete lattice
with ∨

S =
⋃

S ,
∧

S =
⋂

S .
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2. For any topological space (X,OX) (consider X = R if you are not famil-
iar), the family OX of its open sets is a complete lattice, with∨

S =
⋃

S ,
∧

S =
(⋂

S
)◦

,

where ( )◦ means taking the interior. Here recall that open sets are closed
under arbitrary unions and finite intersections.

Exercises

1.1. Describe the elements of the following sets.

1. {1, 2} × {3, 4}

2. {1, 2} × {}

3. {1, 2} × {∅}

4. {1, 2} q {3, 4}

5. {1, 2} q {2, 3}

6. {1, 2} × {0, 2} × {0, 1}

1.2. How many elements do the following sets have?

1. {1, 2} × {3, 4, 5}

2. 2{3,4,5}

3. 2{3,4,5,6}

4. {3, 4}{3,4,5,6}

5. {3, 4, 5}{1,2}

6. {3, 4, 5}2

7. {}{3,4,5}

8. {∅}{3,4,5}

9. {3, 4, 5}{}

10. {3, 4, 5}∅

11. ∅∅

1.3. Prove Lem. 1.2.10.

1.4. Are the following correspondences: bijective? injective? surjective? a
function? a partial function? a binary relation?
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1.5. Fill in the details and prove Prop. 1.2.11.

1.6. Prove Prop. 1.2.12.

1.7. Prove Prop. 1.2.14.

1.8. Prove Prop. 1.2.15 using Prop. 1.2.12 and 1.2.14.

1.9. Prove Prop. 1.2.16.

1.10. For the graph shown in Example 1.3.1, describe V and E.

1.11. Show that the diagonal relation ∆X (in (1.1)) is the unit of relational
composition (Def. 1.3.2): ∆Y ◦ R = R = R ◦ ∆X for any binary relation
R ⊆ X × Y .

1.12. Add edges for the relation R ◦ R in the following graph.

What about R∗?

1.13. Prove Prop. 1.3.5.

1.14. Prove Lem. 1.3.9.

1.15. Consider the following relation R over the set of ASCII strings.

xRy
def⇐⇒ x and y, as C programs, compute the same function.

Is this relation R an equivalence relation?

1.16. In Def. 1.3.12, prove that ∼f is indeed an equivalence relation. Prove also
that: ∼f coincides with the diagonal relation ∆X (Exercise 1.11) if and only if
f is injective.

1.17. In Def. 1.3.13, prove that a reflexive and transitive closure of a given
relation R is unique. That is: if S and S′ are both a reflexive and transitive
closure of R, then S = S′.
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1.18. Fill in the details and prove Lem. 1.3.15. Caution: can it be that R = ∅?

1.19. Let ≲ be a preorder over a set X (Def. 1.3.18).

1. Show that the relation ≲ ∩ ≳ is an equivalence relation, for which we
write ∼.

2. Show that we have

x ∼ x′ , y ∼ y′ , x ≲ y =⇒ x′ ≲ y′ .

Therefore the relation ≲ on the set X/ ∼, defined by

[x]∼ ≲ [y]∼
def⇐⇒ x ≲ y

is well-defined. We express this fact as: “≲ induces a well-defined relation
over the quotient set X/ ∼.”

3. Show that the induced relation ≲ on X/ ∼ is a partial order.

1.20. The lexicographic order is the order of words used in a dictionary. State
its precise definition by filling in the blank.

Let (X,≤X) and (Y,≤Y ) be totally ordered sets. The lexicographic
order ≤ on the set X × Y is defined by:

(x, y) ≤ (x′, y′)
def⇐⇒ ...

1.21. Provide more examples of a poset which is not total.
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1.22. Show that the rules (1.2) are indeed equivalent to the definitions in
Def. 1.3.21.

1.23. Prove Lem. 1.3.23.

1.24. Fill in the details of Example 1.3.25.

1.25. Come up with a poset which is not a lattice, and express it in a Hasse
diagram. As a reference, a Hasse diagram for the poset P({0, 1, 2}) is shown
below.

1.26. Let A be a set and T be the the set of all preorders on A. Show that
(T,⊆) forms a lattice.

1.27. (If you have not taken a course on automata and formal languages, skip
this question.)

Let Σ be a nonempty finite alphabet, and Reg = {L ⊆ Σ∗ | L is regular} be
the class of regular languages over Σ. Show that (Reg,⊆) forms a lattice.

Show also that (Reg,⊆) is not a complete lattice.





Chapter 2

Equational Logic as a Showcase

In this course we will learn two basic systems of logic—propositional logic and
predicate logic. Before that we use (even simpler) equational logic as the first
example and get the feeling of what “(formal) logic” is all about.

2.1 First Examples

2.1.1 Polynomials

You must know and have used the equality

(x+ y)2 = x2 + 2xy + y2 ; (2.1)

you should also be able to prove its correctness.

Question: how can a computer decide if (2.1) is true? Can it come up with
a proof for that?

One possible way for a computer to do that (and in fact this is probably
what you, a human, would do too) consists of the following three steps.

1. Fix a language. In the current setting, the following rules determine a
language that is sufficient.

x is a variable
x is a term

(Var)
t is a term t′ is a term

t · t′ is a term
(Prod)

t is a term t′ is a term
t+ t′ is a term

(Sum)
(2.2)

An equivalent definition is given by the following BNF notation:

t ::= x ∈ Var | t · t | t+ t .

2. Specify axioms. Axioms are equalities that are assumed to hold. In the

23
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current setting, the following set would suffice.

t1 · (t2 + t3) = t1 · t2 + t1 · t3 (Distr)

t1 + t2 = t2 + t1 (AddComm)

t1 · t2 = t2 · t1 (MultComm)

t1 + (t2 + t3) = (t1 + t2) + t3 (AddAssoc)

t1 · (t2 · t3) = (t1 · t2) · t3 (MultAssoc)

3. Derive the equality

(x+ y) · (x+ y) = (((x · x) + (x · y)) + (x · y)) + (y · y) (2.3)

(which is the equality (2.1) made precise in the current language), by the
following derivation.

(x+ y) · (x+ y)

= ((x+ y) · x) + ((x+ y) · y) by (Distr)

= (x · (x+ y)) + (y · (x+ y)) by (MultComm)

= ((x · x) + (x · y)) + ((y · x) + (y · y)) by (Distr)

= ((x · x) + (x · y)) + ((x · y) + (y · y)) by (MultComm)

= (((x · x) + (x · y)) + (x · y)) + (y · y) by (AddAssoc).

Note that here (and elsewhere) we identify a sequence of symbols (such as terms)
and abstract syntax trees : for example, what we write as (x+ y) · (x+ y) should
be interpreted as the following tree.

·

+

yx

+

yx

2.1.2 Group

The equality (2.1) was between polynomials (over a commutative ring). Our
second example is the following equality over a group:

(xy)−1xy = e , (2.4)

where e is the unit of a group (xe = x = ex).
We shall run the same scenario as in §2.1.1.

1. Fix a language.

x is a variable
x is a term

(Var) e is a term
(Unit)

t is a term

t−1 is a term
(Inv) t is a term t′ is a term

t · t′ is a term
(Prod)

In a BNF notation:

t ::= x ∈ Var | e | t−1 | t · t .
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2. Specify axioms.

t1 · (t2 · t3) = (t1 · t2) · t3 (Assoc)

e · t = t = t · e (Unit)

t−1 · t = e = t · t−1 (Inv)

3. Derive the equality

((x · y)−1 · x) · y = e (2.5)

(which is the equality (2.4) made precise in the current language), by the
following derivation.

((x · y)−1 · x) · y = (x · y)−1 · (x · y) by (Assoc)

= e by (Inv)

2.1.3 Equational Logic as a Common Platform

We now extract the essence of the scenario repeated in §2.1.1–2.1.2, and for-
malize it in a mathematical language. The result is what is called equational
logic; this is the topic of the current chapter. This chapter provides a rather
detailed treatment of equational logic—eliminating ambiguities and describing
intuitions—so that it serves as a primer to the following chapters about propo-
sitional/predicate logic.

2.1.1 Remark. Equational logic is also called (or rather: is part of the topic
called) universal algebra. It is “universal” since it is a parametrized theory that
instantiates to any kind of algebra: groups, rings, monoids, lattices, etc.1 These
are all instances of the notion of (Σ, E)-algebra (defined later), with suitable
choices of the parameters Σ and E.

2.1.4 Variables vs. Meta-Variables

By the way: have you noticed the distinction between boldface symbols (such
as x, t) and standard-face ones (such as x, y)?

For example, x in (2.3) is a variable on the object level ; x in (2.2) is a
metavariable—variable on themeta level—that stands for some variable x, y, z, x1, x2, . . .
on the object level. The symbol t in (2.2) is also a metavariable that stands for
some (concrete) term on the object level, such as (x · y) + x.

This distinction between object level symbols and meta level ones is a subtle
one, when we try to make it explicit and precise. However you, with program-
ming experience, must have seen it before. Consider the following: it is part of
a Java tutorial.

To read a file (say foo.txt) one uses the following code.

FileInputStream fooFile = new FileInputStream("foo.txt");

InputStreamReader foo = new InputStreamReader(fooFile);

1Fields are an notable exception since one of its operation x 7→ x−1 is not total (undefined
when x = 0).
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Here the fictitious file name foo.txt plays the role of a metavariable2: it would
not be the actual file you want to read; instead it is a placeholder that is to
be replaced with the actual file name (such as grades.txt). Another example
from a Java tutorial:

To store some integer value (say valueToStore) in the memory one
writes:

int variableName;

variableName = valueToStore;

Here variableName is a metavariable that is to be replaced with some actual
variable like x. Thus: x is to x (in §2.1.1–2.1.2) what variableName is to x (in
this example).

This distinction between variables and metavariables—or, more generally,
distinction between the object level and the meta level—is such an important
issue in the study of logic. For example, shortly we will be dealing with (object
level) proofs that are nothing but certain syntactic constructs (namely a tree
of formulas); we will then prove some metatheorems that claim e.g. “no proof
exists.” The “proof” of the latter metatheorem is a proof on the meta level—
which is done based on the meta level logic—and must not be confused with an
object level (syntactic) proof.

While this distinction is an important one, using different symbols for the two
different levels (as we have done, such as x vs. x) is tedious and many textbooks
just do not do that.3 In these lecture notes, only in the current Chap. 2 we shall
be careful about this distinction. In the later chapters we will be more sloppy—
but you must be always aware of the distinction!

2.2 Equational Logic: Term

In §2.1.1–2.1.2, the first step was to specify which syntactic expressions are
legitimate ones. For example, in §2.1.1, x+ (y · ) is not a well-formed term—
the second argument of the operation · is missing—leading to a “syntax error.”

Recall also that we now aim at a general framework that has two examples
in §2.1.1–2.1.2 as two instances. For this purpose we use the following notion
as a parameter.

2.2.1 Definition ((Algebraic) signature). An (algebraic) signature Σ is a se-
quence of sets

Σ = (Σn)n∈N .

An element σ ∈ Σn is called an n-ary operation.

2.2.2 Definition (The set Var). Henceforth we fix a countably infinite set Var
of variables.

An element x ∈ Var is a variable on the object level.

2In English common metavariables are foo, bar, . . . ; in Japanese they are hoge, fuga, . . . .
3[6] is a notable exception.
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2.2.3 Definition (Σ-term). Let Σ be a signature. The set of Σ-terms is defined
inductively by the following rules.

x is a variable
x is a Σ-term

(Var)

t1 is a Σ-term t2 is a Σ-term · · · tn is a Σ-term σ ∈ Σn

σ(t1, . . . , tn) is a Σ-term
(Opr)

Recall (from the end of §2.1.1) that we identify expressions with the abstract
syntax trees that they represent. The term σ(t1, . . . , tn) in the conclusion of
the (Opr) rule represents the tree

σ

t1 t2

· · ·

tn
(2.6)

where ti in a triangle is the tree represented by the term ti. Therefore an n-ary
function symbol σ is a node with n children.

2.2.4 Remark (Inductive definition). This is the first inductive definition that
we formally made. It means two things:

– those which are shown to be Σ-terms using the two rules are Σ-terms; and

– only such are Σ-terms.

The rule (Var) is the base case that generates “atomic” terms; the rule (Opr)
is for the step case that, given smaller terms t1, . . . , tn, generates a bigger term
σ(t1, . . . , tn). Note, however, that when n = 0 the rule needs no ingredient
terms, yielding a special case

σ ∈ Σ0

σ is a Σ-term
.

We also note that 0-ary function symbols are often called constants.

Next we observe the first instance of “definition by induction on the con-
struction of terms.” Those who are familiar with functional programming would
understand it as a definition by pattern matching .

2.2.5 Definition (Free variable). For each Σ-term t, the set FV(t) of free
variables of t is defined as follows.

FV(x) := {x} if x ∈ Var;

FV
(
σ(t1, . . . , tn)

)
:= FV(t1) ∪ · · · ∪ FV(tn) .

Observe that the above definition amounts to a simple (but informal) defi-
nition: “FV(t) is the set of variables that occur in t.” In equational logic every
variable occurring in a term is free. This is true in propositional logic too; in
predicate logic there are variable binders (namely ∀x and ∃x) that make some
variable occurrences bound.
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2.2.6 Example. The signature Σp that we used in §2.1.1 is such that

(Σp)2 = {·,+} , (Σp)0 = (Σp)1 = (Σp)3 = (Σp)4 = · · · = ∅ .

That is, there are two binary operations · and + (and no more).
The signature Σg used in §2.1.2 is

(Σg)0 = {e} , (Σg)1 = { ( )−1 } , (Σg)2 = {·} ,

(Σg)3 = (Σg)4 = · · · = ∅ .

For readability, we use the prefix notation (like +(t, s)) and the infix notation
(like t+ s) interchangeably.

2.2.1 Substitution

2.2.7 Definition. Let Σ be a signature, s, t be Σ-terms, and x be a variable.
The substitution of s for x in t, denoted by

t[s/x]

is the Σ-term obtained by replacing all the (free) occurrences of x in t with s.
Pictorially:

s

A precise (inductive) definition is possible; see Exercise 2.2. Recall that in
equational logic, every variable occurrence is free. Also note the usage of the
word “substitute”: it means “use instead,” and

substitute A for B in C ' replace B with A in C.

2.2.8 Example.(
(x−1 · e) · x

)
[y · e/x] ≡

(
((y · e)−1 · e) · (y · e)

)
,

where ≡ denotes the syntactic equality (see Def. 2.2.9).
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Note that the expression t[s/x] lives on the meta level. The meta level expression(
(x−1 · e) · x

)
[y · e/x] is, concretely on the object level, the expression

(
((y ·

e)−1 · e) · (y · e)
)
.

2.2.9 Definition. We denote by ≡ the syntactic equality , that is, equality
between two syntactic expressions (s ≡ t if they are identical “as ASCII se-
quences”).

2.3 Equational Logic: Axiom and Derivation Rule

In the scenario of §2.1.1–2.1.2, the second step was to specify the assumed
equalities—equational axioms—and establish a basis on which we can derive
further equalities. We now do it in a general setting, i.e. for an arbitrary signa-
ture Σ.

2.3.1 Equational Formula

2.3.1 Definition (Equational formula). Let Σ be a signature. An equational
formula over Σ is a pair (s, t) of Σ-terms delimited by the symbol =, written as

s = t . (2.7)

An equational formula is also called simply a formula.

A remark is in order. The symbol = in (2.7) is nothing but a delimiting
symbol ; our choice of = is arbitrary and it could have been ', ⋆ or ©. After
all, an equational formula is a mere syntactic expression that represents the
following tree.

=

ts

We emphasize that we are yet to interpret equational formulas, that is, formulas
live independently of their meanings or truth values.

2.3.2 Example. Assume a signature Σ is such that · ∈ Σ; then examples of
equational formulas are: x · (y · z) = (x · y) · z and x ·x = x. We see (informally)
that the former is always true in groups, and the latter is not necessarily true.

2.3.2 Axiom and Derivation Rule

Derivation in equational logic is conducted based on mutable axioms (the set
E of which is a parameter) and the other, fixed, derivation rules.

2.3.3 Definition (Algebraic specification). An algebraic specification is a pair

(Σ, E)

of a signature Σ, and a set E of equational formulas over Σ. An element (s =
t) ∈ E is called an axiom.

An algebraic specification (Σ, E) covers the complete set of parameters (i.e.
what are “specified” in the scenario of §2.1.1–2.1.2).
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2.3.4 Definition (Derivation rules in equational logic). Let (Σ, E) be an alge-
braic specification. The derivation rules4 over (Σ, E) consist of the following.

s = t
(Axiom), (s = t) ∈ E

t = t
(Refl) t = s

s = t
(Sym) s = t t = u

s = u (Trans)

s1 = t1 · · · sn = tn
σ(s1, . . . , sn) = σ(t1, . . . , tn)

(Cong),σ ∈ Σn
s = t

s[u/x] = t[u/x]
(Subst)

(2.8)

Recall that s[u/x] is a substitution (Def. 2.2.7). The rule (Cong) is called the
congruence rule.

In (2.8), the rules (Axiom) and (Cong) are the only ones that rely on the
parameter (Σ, E); the others are fixed regardless.

2.3.5 Notation (Axiom scheme). Consider, as an example, the axiom(s) that
express: “the binary operation · is commutative.” Then the set E must contain
all of the following formulas (and more):

x · y = y · x, y · x = x · y, z · y = y · z, (x · y) · z = z · (x · y),
(x · y) · (z · u) = (z · u) · (x · y), . . .

There are infinitely many of such formulas.
We use metavariables and let a single “formula”

s · t = t · s

stand for all these (concrete) formulas. Note that s · t = t · s itself is not a
formula unless the metavariables s and t are instantiated with concrete terms.
Such “formulas” with metavariables (like s · t = t · s) are called axiom schemes.

In the same sense, (Refl) in (2.8) (and others) is a rule scheme: what is
used in a proof tree is a rule instance which has the metavariable t instantiated.

2.3.6 Example. The set Ep of axioms that we used in §2.1.1 consists of five
axiom schemes (Distr)–(MultAssoc) in §2.1.1.

The axiom schemes (Assoc), (Unit) and (Inv) in §2.1.2 constitute a set of
axioms, which we denote by Eg.

2.4 Equational Logic: Derivation

Finally we derive equalities—the last step in the scenario of §2.1.1–2.1.2. We
formalize a derivation itself as a mathematical object; more specifically as a tree.

2.4.1 Definition (Proof tree; derivability). A proof tree (also called a derivation
tree or simply a proof ) in an algebraic specification (Σ, E) is

– a finite depth tree,

4Also called: deduction rules, or deductive rules.
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– each node of which is a legitimate instance of the derivation rules over
(Σ, E) (Def. 2.3.4).

An equational formula s = t is said to be derivable (or provable) if there
exists a proof tree Π whose root is s = t. We denote this fact by `(Σ,E) s = t.

2.4.2 Example. The following is a proof tree in (Σg, Eg). It witnesses `(Σg,Eg)

((xy)−1x)y = e.

Axiom scheme (Assoc)

((xy)−1x)y = (xy)−1(xy)
(Axiom)

Axiom scheme (Inv)

(xy)−1(xy) = e
(Axiom)

((xy)−1x)y = e
(Trans)

2.4.3 Remark. Note that, in the current setting, axioms (i.e. what are assumed
to be true) are always (plain) equations. A more general setting allows Horn
clauses as axioms: they are formulas of the form(

s1 = t1 ∧ · · · ∧ sn = tn
)

⊃ s = t ,

that is, conditional equalities. (We do not even have logical connectives ∧ or ⊃
yet!)

2.4.4 Proposition. Assume E is substitution-closed, that is, for any s, t,u
and x

(s = t) ∈ E =⇒ (s[u/x] = t[u/x]) ∈ E .

Then the (Subst) rule in Def. 2.3.4 is dispensable. That is, for any equational
formula s = t that is derivable in (Σ, E), there is a proof tree with s = t its root
that does not use the (Subst) rule.

Proof. See Exercise 2.4. 2

Figure 2.1: Syntactic side of equational logic: an overview



32 2 Equational Logic as a Showcase

It is remarkable that, by formalizing the notion of proof using derivation
rules, we can now speak of proofs as object level entities. An example is: “let
Π be a proof of a formula A.” It is for this reason that logic is often called
metamathematics .

2.5 Equational Logic: Semantics

What we have discussed up to now are the syntactic components of equational
logic. They are terms, formulas (recall that these are merely two terms delimited
by =), and proofs (that are trees labeled with formulas). Note, in particular,
that we are yet to assign any “meaning” to terms or formulas. Derivation is
a syntactic activity—mechanically applying (syntactic) derivation rules—that
can be done without any worry whether the formulas are “true” or “false.”

Of course the aim of the syntactic machinery of derivation rules is to derive
formulas that are “true.” We shall show that this is indeed the case (in the
form of the soundness and completeness results); before that, however, we need
a mathematical definition of “truth,” or “meaning.” This is what semantics is
about.

2.5.1 Model I: Σ-algebra

2.5.1 Definition. Let Σ be a signature. A Σ-algebra X (also called a model of
Σ) consists of:

– a nonempty set X (called the carrier set); and

– for each n ∈ N and for each n-ary operation σ ∈ Σn, its interpretation
given by a function

JσKX : Xn −→ X . (2.9)

We write X =
(
X, (JσKX)σ∈Σ

)
for a Σ-algebra.

Consider Σ = Σg; a Σg-algebra X determines

– what the term e designates (since e ∈ (Σg)0); and

– what the term e · e designates.

Note, however, that at the current stage it is not necessarily the case that e · e
and e designate the same element of X. (Thus a Σ-algebra, instead of a (Σ, E)-
algebra)

Moreover, if a term contains a variable (e.g. x−1 · e), its meaning is not yet
determined (what does x designate?). We use the following notion.

2.5.2 Definition (Valuation). A valuation on a Σ-algebra X =
(
X, (JσKX)σ∈Σ

)
is a function

J : Var −→ X .

Recall that Var is a fixed set of variables (Def. 2.2.2).
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2.5.2 Denotation

Given a Σ-algebra—which determines the meaning JσK of each operation—and
a valuation J—which determines the meaning of variables—we can now assign
a meaning to each Σ-term.

2.5.3 Definition (Denotation). Let X =
(
X, (JσKX)σ∈Σ

)
be a Σ-algebra, and

J : Var → X be a valuation on X. For each Σ-term t, we define its denotationJtKX,J ∈ X

as follows, inductively on the construction of t.JxKX,J := J(x) if x ∈ Var;Jσ(t1, . . . , tn) KX,J := JσKX( Jt1KX,J , . . . , JtnKX,J ) .

Note here that the second line also accounts for the denotation of a constant
(i.e. a 0-ary operation). Recall that the term σ(t1, . . . , tn) should be understood
as a tree (2.6).

2.5.4 Example. Let us take Σ = Σg, the one in §2.1.2 for groups. Let X be
the set S3 of permutations (i.e. bijections) of three elements, that is

X := S3 =
{
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

}
,

where for example (2, 1, 3) denotes the permutation[
1 7→ 2, 2 7→ 1, 3 7→ 3

]
.

The set X can be equipped with the following interpretations of the operations
in Σg: JeKX := (1, 2, 3) = id ,J·KX (s, t) := t ◦ s ,J( )−1K (s) := s−1 ,

where t ◦ s denotes the composition of permutations

(t ◦ s)(i) = t(s(i)) ;

and s−1 denotes the inverse of the permutation s (i.e. the inverse of the bijective
function s). For example:

(3, 1, 2)−1 =

 1 7→ 3
2 7→ 1
3 7→ 2

−1

=

 1 7→ 2
2 7→ 3
3 7→ 1

 = (2, 3, 1) .

This determines a Σg-algebra X.
Let J be a valuation on X such that

J(x) = (2, 1, 3) and J(y) = (3, 1, 2) ;

then we have Jx · (y−1)KX,J = J·KX( J(x), J( )−1KX(J(y)) )
= (3, 1, 2)−1 ◦ (2, 1, 3)

= (2, 3, 1) ◦ (2, 1, 3)

= (3, 2, 1) .
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The denotation of a term t relies only on the valuations of the variables that
occur in t. To put it precisely:

2.5.5 Lemma. Let J, J ′ be two valuations on X, and t be a term. Assume that

J(x) = J ′(x) for each x ∈ FV(t),

where FV(t) is from Def. 2.2.5. Then we have

JtKX,J = JtKX,J ′ .

Proof. By induction on the construction of a term t. 2
We briefly discuss the relationship between denotation J K and substitution

s[t/x].
In the next definition, the valuation J [x 7→ a] is almost J , but the value

assigned to x is updated.

2.5.6 Definition (Update of a valuation). Let J : Var → X be a valuation
over a Σ-algebra X; x ∈ Var; and a ∈ X. We define a new valuation J [x 7→ a]
by

J [x 7→ a] : Var −→ X

y 7−→

{
J(y) if y 6≡ x;

a if y ≡ x.

2.5.7 Proposition. J s[t/x] KX,J = J s KX,J[x 7→JtKX,J ] .

Proof. By induction on the construction of the term s. 2
2.5.3 Truth Value of a Formula

Now that we know which element a term t designates (namely its denotationJtK), we can mathematically define whether an equational formula—itself a pair
of terms delimited by =—is true or not.

2.5.8 Definition (Truth Value). Let Σ be a signature; s = t be an equational
formula over Σ; X be a Σ-algebra; and J be a valuation over X.

– The formula s = t is said to be true under X and J if we have

JsKX,J = JtKX,J .

Note that = here means the equality between elements of the set X (unlike
that in s = t which is merely a delimiting symbol.)

– The formula s = t is said to be valid in X if, under any valuation J :
Var → X on X, the formula s = t is true. We write

X |= s = t

for this fact.

The word “valid” roughly means: “always true.” The symbol |= is here
used for semantical validity/truth; recall that ` denotes syntactic derivability
(Def. 2.4.1).
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2.5.9 Example. In the Σg-algebra X in Example 2.5.4, the formula

x−1 · x = e

is valid; it is true regardless of what element of X is assigned to the variable x.

In contrast, the formula

x · x = x

is not valid. Under some valuations it becomes true coincidentally (for example:
if J(x) = id = (1, 2, 3)); but such is not always the case.

2.5.10 Remark. Are you fed up with all the “bureaucracy” around here?
(Modern) mathematics is a constant fight between intuition and precision.
Without precision what you do is no longer mathematics. However, without
intuition you never “understand” mathematics. (Think: what is to understand
mathematics?)

What you usually find in mathematics books is a monster of precision: it
champions logical rigor over intuitions since the latter are easily subject to
objections. You need to learn to read out the intuitions hidden behind the
text—this task is much like finding out the real intention of bureaucrats and/or
politicians behind an official government document. (As UT students you must
be good at it :-P)

One recommendable way of doing it is to follow the path of the “founding
father” who built the theory—i.e. to be driven by the original motivations.
(This is probably why some mathematicians say students should learn original
papers, not textbooks) I intend the current notes to be written that way, too,
first explaining motivations and intuitions (“we want to do this!”) and then
laying out mathematical definitions (“to do it precisely, . . . ”).

2.5.4 Model II: (Σ, E)-algebra

We have defined the notions of Σ-algebra, and truth of formulas. With these
we can finally define (the generalization of the notion of) group: it is a set with
certain operations that satisfy certain equations.

2.5.11 Definition ((Σ, E)-algebra). Let (Σ, E) be an algebraic specification,
and X =

(
X, (JσKX)σ∈Σ

)
be a Σ-algebra.

The data X is said to be a (Σ, E)-algebra if it satisfies all the axioms in E.
More precisely: for each axiom (s = t) ∈ E,

X |= s = t .

2.5.12 Definition (Validity). Let (Σ, E) be an algebraic specification, and
s = t be an equational formula over Σ. We say s = t is valid over (Σ, E), and
write

|=(Σ,E) s = t ,

if for any (Σ, E)-algebra X we have

X |= s = t .
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2.6 Equational Logic: Syntax vs. Semantics

We have introduced

– derivation rules, that are syntactic machinery that derive equational for-
mulas, and

– semantics of formulas, that mathematically defines whether a formula is
true or not.

Our next goal is to see if the former machinery works as expected. (For example:
is the formula ((xy)−1x)y = e, derived in Example 2.4.2, always true?)
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Figure 2.2: Derivation rules vs. semantics

More specifically, our interest is in the following properties.

– Soundness : what is derived is true, that is

|=(Σ,E) s = t ⇐= `(Σ,E) s = t .

– Completeness : what is true is derived, that is

|=(Σ,E) s = t =⇒ `(Σ,E) s = t .

A bit more of general discussion is due. Soundness says “the machine never
lies” and is considered to be a mandatory property of a deductive system. Com-
pleteness5, in contrast, is like a bonus. It is desirable but not mandatory; in
fact there are many “truths” that are just too complicated for any deductive
system to be complete against. Gödel’s incompleteness theorem is a celebrated
result that states impossibility to be complete.

2.6.1 Remark. Here we are using the terms “machines,” “machinery,” “com-
plicated,” etc. in very sloppy ways. After finishing the second half of this course,
you are supposed to be able to make all these precise.

In equational logic we do have soundness and completeness. We take a
detailed look at the proofs: each of them employs a (different) characteristic
method whose importance in computer science is paramount.

5In this sentence, “completeness” includes (the above kind and) others such as the notion of
completeness used in Gödel’s incompleteness theorem, which is stronger than the above kind
of completeness in some sense (this “sense” will be explained around (9.5) in Section 9.2).
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2.6.1 Soundness

2.6.2 Theorem (Soundness). Let (Σ, E) be an algebraic specification, and s = t
be an equational formula over Σ. We have

`(Σ,E) s = t =⇒ |=(Σ,E) s = t .

The proof is by: “induction on the derivation of s = t”; or equivalently:
“induction on the height of a proof tree for s = t.” Similar inductive arguments
have occurred before (mostly in exercises); here we describe (some of) its details.

Proof. Assume `(Σ,E) s = t. By definition of `(Σ,E) (Def. 2.4.1), there exists a
proof tree Π whose root is s = t. We choose one such Π.

We shall show:

for any (Σ, E)-algebra X and any valuation J on X, we have JsKX,J =JtKX,J
by induction on the height hgt(Π) of the proof tree Π.

1. Case: hgt(Π) = 0. By inspection of the rules (Def. 2.3.4), this is possible
in the following three cases.

(a) If the last rule applied is (Axiom): in this case (s = t) ∈ E. It is
the definition of (Σ, E)-algebra itself that, for any (Σ, E)-algebra X,
we have X |= s = t.

(b) If the last rule applied is (Refl): in this case it happens that s ≡ t
(the terms are syntactically identical). Therefore JsKX,J = JtKX,J is
trivial.

(c) If the last rule applied is (Cong), with σ being 0-ary: in this case too
we have s ≡ t ≡ σ, a constant.

2. Case: hgt(Π) > 0. We distinguish cases according to the last applied rule
in Π.

(a) If it is (Cong): we have

s ≡ σ(s1, . . . , sn) , t ≡ σ(t1, . . . , tn) , (2.10)

and the formulas

s1 = t1 , . . . , sn = tn

have proof trees Π1, . . . ,Πn whose height is smaller than that of Π.
See below.

Π ≡

 .... Π1

s1 = t1

.... Π2

s2 = t2 · · ·

.... Πn

sn = tn
s = t

(Cong)


By the induction hypothesis, we have for each i = 1, . . . , n,

JsiKX,J = JtiKX,J for any X and J . (2.11)
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Now

JsKX,J = JσKX( Js1KX,J , . . . , JsnKX,J ) by Def. 2.5.3 and (2.10)

= JσKX( Jt1KX,J , . . . , JtnKX,J ) by (2.11)

= JtKX,J by Def. 2.5.3 and (2.10).

(b) If it is (Subst): we have

s ≡ s′[u/x] , t ≡ t′[u/x] , (2.12)

and

Π ≡

 .... Π′

s′ = t′

s = t
(Subst)

 .

By the induction hypothesis, we have

Js′KX,J = Jt′KX,J for any X and J . (2.13)

Here a valuation J can be anything; thus in particular

Js′KX,J[x 7→JuKX,J ] = Jt′KX,J[x 7→JuKX,J ] for any X and J . (2.14)

Use Prop. 2.5.7 and the claim follows.

(c) If it is (Sym) or (Trans): exercise (easy). 2
Notice that the distinction between the cases 1. and 2. (i.e. if hgt(Π) is 0 or

not) is in fact vacuous.

2.6.3 Remark. (You can skip this) The underlying mathematical structure
that is relevant to the above inductive proof is that of a well-founded set . Here
we are appealing to the well-founded structure of

– the set of proof trees over (Σ, E), or

– (via the function hgt) the set N.

2.6.4 Remark. We made seven cases (two for the (Cong) rule; one for each of
the other rules) in the above proof. Each case can be understood as a “building
block” of the proof that a derivable formula is valid.

Take for example the proof tree in Example 2.4.2. To show that the root
formula ((xy)−1x)y = e is valid, you use

– the case 1.-(a) to show that ((xy)−1x)y = (xy)−1(xy) is valid;

– the case 1.-(a) again to show that (xy)−1(xy) = e is valid;

– and then the case 2.-(c) to show that the root formula ((xy)−1x)y = e is
valid.
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2.6.2 Completeness

Completeness states that the machinery of derivation rules is powerful enough
that it derives all the valid formulas.

2.6.5 Theorem (Completeness). Let (Σ, E) be an algebraic specification, and
s = t be an equational formula over Σ. We have

|=(Σ,E) s = t =⇒ `(Σ,E) s = t .

Let us stop a bit and think how we would be able to prove this result. A
direct proof would require

to construct a proof tree for a given valid formula

which sounds rather hard. (By induction? On what??) Let us instead consider
the contraposition of the original statement:

6`(Σ,E) s = t =⇒ 6|=(Σ,E) s = t , that is,

there is no proof for s = t =⇒ there exist X and J such that JsKX,J 6= JtKX,J .
(2.15)

It is this statement that we are going to prove; hence we,

given an underivable formula s = t, construct a counter model X, J
that makes the formula false.

But how? We use syntactic ingredients in the construction of a counter model—
the carrier X of X would be the set of (certain equivalence classes of) Σ-terms.

To summarize: what we do now is a standard strategy in completeness
proofs, that is,

construction of a counter model with syntactic ingredients
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The counter model X, J constructed in the current setting will in fact be a
universal one—meaning that this single model falsifies all underivable formu-
las.6 That is,

`(Σ,E) s = t ⇐⇒ X |= s = t . (2.16)

(Note that =⇒ is ensured by soundness) To put it differently: X is a (Σ, E)-
algebra that validates

– formulas that are valid in all the (Σ, E)-algebras, and

– nothing more.

Such an algebra is said to be free.7

In the current notes we do not formally define what a free algebra is (a
proper definition calls for the notion of homomorphism between algebras). Some
intuitions, nevertheless: a free algebra is an algebra where the minimal set of
equational formulas hold. For example, the one-element set 1 = {0} can be
made into a (Σ, E)-algebra 1 for any (Σ, E)—the interpretations JσK1 : 1n → 1
are obvious and the axioms in E are trivially satisfied. In this algebra 1, many
more equations than required by E are forced to hold. In contrast, a free algebra
is free from such oppression—it satisfies only those which are required by E.

In the following proof, before describing a free (Σ, E)-algebra X (which is a
counter model), we first describe a free Σ-algebra X′.

Proof. (of Thm. 2.6.5) We first define a Σ-algebra

X′ =
(
X ′, (JσKX′)σ∈Σ

)
in the following syntactic manner.

– The carrier set X ′ is the set of all Σ-terms (using variables from Var).

– Each operation σ ∈ Σn is interpreted syntactically, by

JσKX′ : (X ′)n −→ X ′

( t1, . . . , tn ) 7−→ σ( t1, . . . , tn ) .
(2.17)

Note here that the expression σ( t1, . . . , tn ) is a Σ-term and hence indeed
belongs to X ′.

It is obvious that X′ is indeed a Σ-algebra; however it is in general not (yet) a
(Σ, E)-algebra. Consider, for example, (Σg, Eg) in Example 2.3.6. We have

e ∈ (Σg)0 , · ∈ (Σg)2 and (x · e = x) ∈ Eg .

For X′ to be a (Σg, Eg)-algebra we need to have e · e = e as elements of X ′;
this is not the case since the two terms e · e and e are different as syntactic
expressions (i.e. e · e 6≡ e).

6In other cases (i.e. for other kinds of logic) it is often the case that the constructed counter
model is different depending on the given underivable formula.

7Recall the notion of free group if you have heard of it. Its construction too bears a strong
syntactic flavor.
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We therefore quotient (i.e. identify some elements of) the algebra X′ so
that it satisfies the required equational axioms. Let us define a binary relation
∼E⊆ X ′ ×X ′ by

s ∼E t
def⇐⇒ `(Σ,E) s = t . (2.18)

2.6.6 Sublemma. The relation ∼E is an equivalence relation.

Proof. (Of Sublem. 2.6.6) We show its transitivity; reflexivity and symmetry is
left as exercise. Assume s ∼E t and t ∼E u; we need to show s ∼E u.

By the definition of ∼E we have

`(Σ,E) s = t and `(Σ,E) t = u ,

that is, there are proof trees Π,Π′ over (Σ, E) such that

Π ≡
[

...
s = t

]
; Π′ ≡

[
...

t = u

]
.

Using these two, we construct the following proof tree:
.... Π

s = t

.... Π′

t = u
s = u (Trans)

,

where (Trans) is the rule in Def. 2.3.4. Thus `(Σ,E) s = u; this proves the
claim. 2

Therefore we can take the quotient set by ∼E and set it to be the set X.
That is,

X := X ′/ ∼E =
{
[s]∼E

∣∣ s ∈ X ′ } .

We now endow the set X with a Σ-algebra structure, and prove that it satisfies
all the axioms in E. An operation σ ∈ Σn is interpreted by:JσKX : (X)n −→ X(

[t1]∼E
, . . . , [tn]∼E

)
7−→

[
σ( t1, . . . , tn )

]
∼E

.
(2.19)

We need to check that this function JσKX is well-defined (it appears to depend
on the choice of a representative ti from the class [ti]∼E

).

2.6.7 Sublemma. The function JσKX is well-defined. That is:

t1 ∼E t′1 , . . . , tn ∼E t′n

=⇒ σ( t1, . . . , tn ) ∼E σ( t′1, . . . , t
′
n ) .

Proof. (Of Sublem. 2.6.7) Like the proof of Sublem. 2.6.6, using the (Cong)
rule. 2

Therefore the data
X :=

(
X, (JσKX)σ∈Σ

)
constitutes a Σ-algebra. Before proving that X is indeed a (Σ, E)-algebra, let
us introduce a canonical valuation Jc:

Jc : Var −→ X
x 7−→ [x ]∼E

.

Note here that x ∈ Var is itself a term, thus [x ]∼E
is an element of X. This

canonical valuation acts like a projection map. Furthermore, this extends as
the following.
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2.6.8 Sublemma. For any Σ-term t, we have JtKX,Jc
= [t]∼E

.

Proof. (Of Sublem. 2.6.8) By induction on the construction of a term t. 2
2.6.9 Sublemma. X is a (Σ, E)-algebra.

Proof. (Of Sublem. 2.6.9) Let (s = t) ∈ E and J : Var → X be an arbitrary
valuation over X. We need to show that JsKX,J = JtKX,J .

Let x1, . . . ,xn be an enumeration of the variables that occur in s or t (i.e.
{x1, . . . ,xn} = FV(s) ∪ FV(t)). The valuation J assigns an element of X to
each of these variables; let us choose a representative ui and set

J(x1) = [u1]∼E
, . . . , J(xn) = [un]∼E

. (2.20)

Then we have

JsKX,J = JsKX,Jc[xi 7→J(xi)] by Lem. 2.5.5

= JsKX,Jc[xi 7→[ui]∼E
] by (2.20)

= JsKX,Jc[xi 7→JuiKX,Jc ]
by Sublem. 2.6.8

= Js[ui/xi]KX,Jc
by Lem. 2.5.7.

Similarly we have: JtKX,J = Jt[ui/xi]KX,Jc . Now:

JsKX,J = Js[ui/xi]KX,Jc by the above

=
[
s[ui/xi]

]
∼E

by Sublem. 2.6.8

=
[
t[ui/xi]

]
∼E

(∗)

= Jt[ui/xi]KX,Jc
by Sublem. 2.6.8

= JtKX,J by the above,

where the equality (∗)—i.e. the fact that `(Σ,E) s[ui/xi] = t[ui/xi]—is wit-
nessed by the following proof tree.

(s = t) ∈ E

s = t
(Axiom)

s[ui/xi] = t[ui/xi]
(Subst)

This concludes the proof of Sublem. 2.6.9. 2
Let us turn back to the proof of Thm. 2.6.5. We shall show that

6`(Σ,E) s = t =⇒ JsKX,Jc
6= JtKX,Jc

,

which immediately proves the ⇐= direction of (2.16). But this follows immedi-
ately from Sublem. 2.6.8 and the definition of ∼E (2.18). 2

The proof was rather lengthy but its basic idea was simple: the set of terms,
quotiented by the derivable equalities, carries a free (Σ, E)-algebra.

2.6.10 Remark. The above construction may be hard to understand for those
who are not used to abstract algebra. For some intuition, we list some elements
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of the free Σg-algebra X′ and those of the (Σg, Eg)-algebra X, for the algebraic
specification (Σg, Eg) in Example 2.2.6.

X ′ = {e, x, e · e, . . . } ,

X =
{
[e]∼E

, [x]∼E
, [e · e]∼E

, . . .
}

=


{e, e · e, e · (e · e), (y · y−1) · e, . . . },
{x, x · e, x · (x−1 · x), (e · x) · e, . . . },
{e, e · e, e · (e · e), (y · y−1) · e, . . . },
. . .


Note that [e]∼E

and [e · e]∼E
, are equal as the elements of X = X ′/ ∼E .

2.7 What is Logic?

To summarize the current chapter—meant to be a showcase of formal logic—we
have seen a framework of formal logic consists of the following building blocks.

– Syntactic specification that makes clear which syntactic expressions are
legitimate formulas (Def. 2.2.3, 2.3.1).

– Derivation rules that derive formulas in a syntactic manner (Def. 2.3.4).

– Semantics that mathematically defines which formulas are true (Def. 2.5.8).

Connecting the latter two are the soundness and completeness results. They
are proved by characteristic proof methods, by induction on derivation and
syntactic construction of a counter model.

In the following two chapters we exhibit more complicated systems of formal
logic—namely propositional logic and predicate logic. The basic overview of a
framework (see below) stays the same.
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Exercises

2.1. We have observed many instances of arguments “by induction on the con-
struction of Σ-terms.” In fact the “highschool induction” (i.e. induction on
n ∈ N) is a special case; describe a suitable choice of the parameter Σ.

2.2. Describe a precise, inductive definition of the substitution t[s/x] (cf. Def. 2.2.7).
(Hint: induction on what?)

Based on this precise definition, prove the following: if x 6∈ FV(t), we have
t[s/x] ≡ t.

2.3 (From [19]). Construct a proof tree in (Σg, Eg) for each of the formulas

(x−1x)x−1 = x−1 , x−1(xx−1) = (x−1x)x−1 , (xx−1)(xx−1) = x(x−1(xx−1)) .

Let P1, P2, P3 be the proof trees, respectively. Use them in a proof tree for the
formula

(xx−1)(xx−1) = xx−1 .

2.4. Prove Prop. 2.4.4.
Hint: write `′

(Σ,E) for the derivability without using (Subst). The fact

`(Σ,E) s = t =⇒ `′
(Σ,E) s = t

can be shown by induction on derivation.

2.5. Give a detailed proof of Lem. 2.5.5.

2.6. Give a detailed proof of Prop. 2.5.7.

2.7. Modify the interpretations in Example 2.5.4 so that X is not a (Σg, Eg)-
algebra.

2.8. Fill in the details of the proof of Thm. 2.6.5.



Chapter 3

Propositional Logic

Propositional logic is a system where atomic statements like

– it rains today;

– UT Hongo Campus is located in Tokyo;

– Tokyo Disney Land is located in Tokyo; or

– Dept. Inf. Sci., U. Tokyo is located in Tokyo

are combined using logical connectives ∧,∨,⊃,¬—whose intuitive meanings are
“and,” “or,” “implies,” and “not,” respectively.1

We will be rather quick in this chapter and the next, since the intuitions and
the structure of the theories are the same as in Chap. 2. Note also that from
now on we will not express explicitly the distinction between the object level
and the meta level (cf. §2.1.4). We will most of the time let a variable x stand
for a metavariable x, etc.; however this does not mean that the distinction is
gone. It is still there; we just, due to our laziness, do not use different symbols
any longer.

3.1 Propositional Logic: Formula

Atomic statements are expressed as a propositional variable, which we denote
usually by P,Q,R, P1, P2, etc.

3.1.1 Definition (The set PVar). Henceforth we fix a countably infinite set
PVar of propositional variables.

3.1.2 Definition ((Propositional) formula). The set of propositional formu-
las (also called formulas of propositional logic or simply formulas)2 is defined

1Precisely speaking, of course, the symbols ∧,∨,⊃,¬ are syntactic entities and their mean-
ings (such as “and”) are determined only when their semantics is defined.

2The word “formulae” is also used as a plural form of “formula.”
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inductively by the following rules.

P ∈ PVar
P is a formula

(Var)

A is a formula B is a formula
A ∧B is a formula

(∧) A is a formula B is a formula
A ∨B is a formula

(∨)

A is a formula B is a formula
A ⊃ B is a formula

(⊃) A is a formula
¬A is a formula

(¬)

We denote the set of propositional formulas by PFml.
Equivalently, in a BNF notation:

PFml 3 A ::= P ∈ PVar | A ∧A | A ∨A | A ⊃ A | ¬A .

The symbols ∧,∨,⊃,¬ are called logical connectives ; their names are con-
junction, disjunction, implication and negation, respectively. We use metavari-
ables A,B,C, . . . for formulas.

3.1.3 Notation (Omission of parentheses). We let the binding strength of the
logical connectives to be

¬ >

(
∧
∨

)
> ⊃ ,

that is for example, ¬P ∧Q ⊃ C means ((¬P ) ∧Q) ⊃ C.3

We let ⊃ associate from the right. That is, A ⊃ B ⊃ C is short for A ⊃ (B ⊃
C), not (A ⊃ B) ⊃ C. This is like in functional programming—think of ⊃ as
→ for function types. The correspondence between ⊃ (in logic) and → (in type
theory) can in fact be made into a formal one. This is called the Curry-Howard
correspondence; it is not only foundational in functional programming but also
used for techniques like program extraction, a notable tool supporting which is
Coq.

3.1.4 Definition (Free variable). For each formula A ∈ PFml, the set FV(A)
of free variables of A is defined as follows.

FV(P ) := {P} if P ∈ PVar,

FV
(
A ∧B

)
:= FV(A) ∪ FV(B) ,

FV
(
A ∨B

)
:= FV(A) ∪ FV(B) ,

FV
(
A ⊃ B

)
:= FV(A) ∪ FV(B) ,

FV
(
¬A

)
:= FV(A) .

We will use the following abbreviation conventions later.

3.1.5 Notation (
∧
Γ,
∨
Γ ;>,⊥). Let Γ ≡ A1, . . . , Am be a finite sequence of

formulas. We let

(· · · (A1 ∧A2) ∧ · · · ) ∧Am be abbreviated by
∧

Γ ;

(· · · (A1 ∨A2) ∨ · · · ) ∨Am be abbreviated by
∨

Γ .

3Or, more precisely, the abstract syntax tree designated by this expression.



3.2 Propositional Logic: Derivation Rule 47

If m = 0 (i.e. Γ is the empty sequence): we define
∧
Γ to be P ⊃ P for some

fixed propositional variable P ; and
∨
Γ to be ¬(P ⊃ P ). We also write

> (“top”) for P ⊃ P ;

⊥ (“bottom”) for ¬(P ⊃ P ) .

The formula > ≡ P ⊃ P is a formula that is “always true”; ⊥ ≡ ¬(P ⊃ P )
is “always false.”

3.2 Propositional Logic: Derivation Rule

We shall now do to propositional logic what we did in §2.3 to equational logic,
i.e. introduce a system of derivation rules.

For propositional/predicate logic, there are several “styles” of derivation
systems that are known to be equivalent.

– Hilbert style, featuring a lot of axioms (i.e. rules without premises)
and only a couple of rules with axioms. Often favored by philosophers.
Via the Curry-Howard correspondence, this style of logic corresponds to
combinatory logic (where one sees combinators like S,K).

– Natural deduction, originally due to Gentzen. You will be (probably)
learning about this in the exercise course. The Curry-Howard correspon-
dence establishes the connection between this formalism and simply-typed
λ-calculus, therefore it is favored by type theorists.

– Sequent calculus which we will be using in this course. It is also due to
Gentzen. In doing proof theory—mathematics of proofs, or more precisely,
mathematics of proof trees—this is probably the most convenient style.

– Tableau method which can be understood as a close, semantics-oriented
variant of sequent calculus.

In sequent calculus, what is derived is not a single formula but is a construct
called a sequent. This small—but ingenious—extension makes many arguments
much simpler.

3.2.1 Definition (Sequent). A sequent is two finite sequences of formulas,
separated by a delimiting symbol ⇒. That is,

A1, . . . , Am ⇒ B1, . . . , Bn . (3.1)

Note here that the both sides A1, . . . , Am and B1, . . . , Bn are sequences of
formulas, therefore: 1) the order matters (distinguish A,B,C and A,C,B); 2)
the multiplicity matters (distinguish A,B,B and A,B).4 Also note that m and
n can be 0.

The informal “meaning” of the sequent (3.1) is:

if all of A1, . . . , Am are true, then at least one of B1, . . . , Bn is true;

4In fact in the current setting of classical logic, we could have considered sets of formulas
instead of sequences. This is not the case for different kinds of logics like linear logic.
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that is,
∧

i Ai ⊃
∨

j Bj . Later in defining semantics we make this intuition
precise.

The following derivation system for propositional logic—in the style of se-
quent calculus—is historically called (propositional) LK. This is short for “lo-
gistischer klassischer Kalkül.”

3.2.2 Definition (Derivation rules of propositional LK). The derivation rules
for propositional LK are presented in Fig. 3.1. There Γ,∆,Π,Σ, . . . are metavari-
ables that stand for sequences of formulas.

Initial sequents

A ⇒ A
(Init)

Structural rules

Γ ⇒ ∆
A,Γ ⇒ ∆

(Weakening-L) Γ ⇒ ∆
Γ ⇒ ∆, A

(Weakening-R)

A,A,Γ ⇒ ∆

A,Γ ⇒ ∆
(Contraction-L)

Γ ⇒ ∆, A,A

Γ ⇒ ∆, A
(Contraction-R)

Γ, A,B,Γ′ ⇒ ∆

Γ, B,A,Γ′ ⇒ ∆
(Exchange-L)

Γ ⇒ ∆, A,B,∆′

Γ ⇒ ∆, B,A,∆′ (Exchange-R)

Γ ⇒ ∆, A A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(Cut)

Logical rules

A,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
(∧-L1)

B,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
(∧-L2)

Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧B
(∧-R)

A,Γ ⇒ ∆ B,Γ ⇒ ∆

A ∨B,Γ ⇒ ∆
(∨-L)

Γ ⇒ ∆, A

Γ ⇒ ∆, A ∨B
(∨-R1)

Γ ⇒ ∆, B

Γ ⇒ ∆, A ∨B
(∨-R2)

Γ ⇒ ∆, A B,Π ⇒ Σ

A ⊃ B,Γ,Π ⇒ ∆,Σ
(⊃-L)

A,Γ ⇒ ∆, B

Γ ⇒ ∆, A ⊃ B
(⊃-R)

Γ ⇒ ∆, A

¬A,Γ ⇒ ∆
(¬-L)

A,Γ ⇒ ∆

Γ ⇒ ∆,¬A (¬-R)

Figure 3.1: Derivation rules of propositional LK

3.2.3 Definition (Proof tree; derivability). A proof tree (also called a derivation
tree or simply a proof ) in propositional LK is

– a finite depth tree,

– each node of which is a legitimate instance of the derivation rules of propo-
sitional LK (Fig. 3.1).
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A sequent Γ ⇒ ∆ is said to be derivable (or provable) if there exists a proof
tree Π whose root is Γ ⇒ ∆. We denote this fact by ` Γ ⇒ ∆.

A formula A ∈ PFml is derivable if the sequent

⇒ A

(with the empty sequence on the left hand side) is derivable. We write ` A for
this.

Note that in LK, the rule (Init) is the only one that has no premises.
Therefore in a proof tree, any leaf is an instance of (Init).

3.2.4 Example. Let A,B ∈ PFml. Let us give a proof tree for A ⊃ B ⇒
¬(A ∧ ¬B).

A ⇒ A
(Init) B ⇒ B

(Init)

B,¬B ⇒ (¬-L)

A ⊃ B,A,¬B ⇒ (⊃-L)

A ⊃ B,A ∧ ¬B,A ∧ ¬B ⇒ (∧-L1),(∧-L2)

A ⊃ B,A ∧ ¬B ⇒ (Contraction-L)

A ⊃ B ⇒ ¬(A ∧ ¬B)
(¬-R)

Here we suppressed the use of the (Exchange) rules.

In the previous example, one wonders if we could just use the following
variant of the (∧-L) rules

A,B,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
(∧-L’) (3.2)

in place of the application of (∧-L1), (∧-L2) and (Contraction-L). This new
rule is admissible in the following sense.

3.2.5 Definition (Admissible rule). A rule

Γ1 ⇒ ∆1 · · · Γn ⇒ ∆n

Γ ⇒ ∆

is said to be admissible if there is a “proof tree with premises Γ1 ⇒ ∆1, . . . ,Γn ⇒
∆n,” that is,

– a finite depth tree,

– each node of which is either

• a legitimate instance of the derivation rules of propositional LK
(Fig. 3.1), or

• a leaf whose label is one of the sequents Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n, and

– whose root is Γ ⇒ ∆.
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Thus an admissible rule is like a “macro.”

The following lemma supports the intuition about a sequent Γ ⇒ ∆ as∧
i Ai ⊃

∨
j Bj .

3.2.6 Lemma. The following are equivalent.

1. ` Γ ⇒ ∆.

2. `
∧
Γ ⇒

∨
∆.

3. `
∧
Γ ⊃

∨
∆.

Here
∧
Γ and

∨
∆ are as in Notation 3.1.5.

3.3 Propositional Logic: Semantics

We now define the “meaning” of the syntactic expressions in propositional
logic. The expressions are formulas—atomic statements as propositional vari-
ables combined using logical connectives—therefore their meaning is whether
true or false.

First, much like in Def. 2.5.2, we fix the meaning of the variables.

3.3.1 Definition (Valuation). A valuation is a function

J : PVar −→ {tt, ff}

that maps each propositional variable either to tt (for “true”) or to ff (for
“false”).

A valuation is extended to the “meaning” of more complicated formulas.
This is like in Def. 2.5.3.

3.3.2 Definition (Denotation). Let J : PVar → {tt, ff} be a valuation. For
each formula A, we define its denotation

JAKJ ∈ {tt, ff}
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as follows, inductively on the construction of A.

JP KJ = tt
def⇐⇒ J(P ) = tt if P ∈ PVar

JA ∧BKJ = tt
def⇐⇒ JAKJ = tt and JBKJ = tt

JA ∨BKJ = tt
def⇐⇒ JAKJ = tt or JBKJ = tt

JA ⊃ BKJ = tt
def⇐⇒ JAKJ = ff or JBKJ = tt

J¬AKJ = tt
def⇐⇒ JAKJ = ff

Note the definition for A ⊃ B. It is unlike the word “implies” in the everyday
sense. For example,

if 0 = 1, the world is mine

is true in the above “mathematical” sense of implication.
Truth table is a useful formalism in the semantics of propositional formulas.

Its row corresponds to a possible choice of a valuation, i.e. possible assignment of
truth values to the relevant propositional variables. For example, the following
are the truth tables for the formulas ¬P ∨Q and P ⊃ Q.

P Q ¬P ¬P ∨Q

tt tt ff tt
tt ff ff ff
ff tt tt tt
ff ff tt tt

P Q P ⊃ Q

tt tt tt
tt ff ff
ff tt tt
ff ff tt

(3.3)

Validity is the word for being “always true.” In propositional logic, for
historical reasons, the word tautology—which means “saying the same thing
twice”—is more commonly used.

3.3.3 Definition (Tautology). A formula A is a tautology if, for any valuation
J : PVar → {tt, ff}, we have JAKJ = tt.

How can one check if a given formula is tautology? The set PVar is count-
ably infinite so the set of all valuations is of the cardinality ℵ. The following
lemma says we can just use truth tables.

3.3.4 Lemma. Let J, J ′ be two valuations, and A be a formula. Assume that

J(P ) = J ′(P ) for each P ∈ FV(A),

where FV(A) is from Def. 3.1.4. Then we have

JAKJ = JAKJ ′ .

Proof. By induction on the construction of a formula A. 2
3.3.5 Definition (Satisfiability; logical equivalence). A formula A is satisfiable
if there exists a valuation J such that JAKJ = tt.

Formulas A and B are said to be logically equivalent if, for any valuation J ,
we have JAKJ = JBKJ . We write A ∼= B for logical equivalence.
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3.3.6 Lemma. 1. A formula A is not satisfiable if and only if the formula
¬A is a tautology.

2. Formulas A and B are logically equivalent if and only if the formula (A ⊃
B) ∧ (B ⊃ A) is a tautology. 2

Finally, the denotation of a sequent is defined.

3.3.7 Definition. Let Γ ⇒ ∆ be a sequent. Its denotation JΓ ⇒ ∆KJ under a
valuation J is defined by

JΓ ⇒ ∆KJ := J∧Γ ⊃
∨

∆KJ ,

where the formulas
∧
Γ,
∨
∆ are as in Notation 3.1.5.

A sequent Γ ⇒ ∆ is valid if the formula
∧

Γ ⊃
∨

∆ is a tautology. We write
|= Γ ⇒ ∆.

In particular: the sequent
A ⇒

means A ⊃ ¬(P ⊃ P ) (Notation 3.1.5), that is, ¬A.
Using the following result we can “push negation inwards.” The first two

are commonly called the de Morgan law .

3.3.8 Proposition. Let A,B be formulas. We have the following logical equiv-
alences.

¬(A ∧B) ∼= ¬A ∨ ¬B ¬(A ∨B) ∼= ¬A ∧ ¬B
¬(A ⊃ B) ∼= A ∧ ¬B ¬¬A ∼= A 2

3.4 Propositional Logic: Syntax vs. Semantics

The situation is the same as in §2.6: we now look at the soundness and com-
pleteness properties of propositional LK. We do get completeness.

Soundness is again by induction.

3.4.1 Theorem (Soundness). ` Γ ⇒ ∆ implies |= Γ ⇒ ∆. 2
Note: unless you do hardcore theoretical work, most of the proofs that you

write in computer science will be by induction. Familiarize yourself by doing
Exercise 3.12!

3.4.2 Corollary. For any formula A, ` A implies that A is a tautology. 2
3.4.3 Theorem (Completeness). |= Γ ⇒ ∆ implies ` Γ ⇒ ∆.

The proof strategy is the same as in Chap. 2: given an underivable formula,
we construct a counter model that makes the formula false. In propositional
logic, a model is a valuation; and we again use syntactic ingredients to construct
a counter model.

We use the following notions.

3.4.4 Definition (Consistent pair). Let (U, V ) be a pair of sets of formulas
(i.e. U, V ⊆ PFml). The pair (U, V ) is said to be consistent if: for any finite
sequences Γ from U and ∆ from V , 6` Γ ⇒ ∆.
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The intuition is:

– there is a guy (say Charlie) who claims that

• the formulas in U are true and

• those in V are false;

– and the deduction system LK tries to “detect Charlie’s lie” by proving
` Γ ⇒ ∆ for some Γ from U and ∆ from V . If LK succeeds in derivation,
then it means (by soundness) that some formula in ∆ must be true (or
some in Γ is false), revealing that Charlie is lying. Consistency asserts
that LK does not succeed.

3.4.5 Definition (Maximally consistent pair). A maximally consistent pair is
a consistent pair (U, V ) such that, for each A ∈ PFml, A ∈ U or A ∈ V .

In a maximally consistent pair, Charlie has a say for any formula—you give
him any formula and he would claim either that it is true, or that it is false.

3.4.6 Lemma. Let (U, V ) be a consistent pair.

1. The sets U and V have no formula in common: U ∩ V = ∅.

2. The pair (U, V ) can be extended to a maximally consistent pair. That
is, there are U ′, V ′ ⊆ PFml such that U ⊆ U ′, V ⊆ V ′ and (U ′, V ′) is
maximally consistent.

Proof. 1. Assume not; then there is A ∈ U ∩ V . Take Γ ≡ ∆ ≡ A; then the
sequent Γ ⇒ ∆ is derivable (obvious from the (Init) rule). This contradicts
with consistency.

2. There are only countably many formulas in PFml; therefore we can take
an enumeration A0, A1, A2, . . . . That is,

{A0, A1, A2, . . . } = PFml .

Let U0 := U and V0 := V ; for each i ∈ N, we inductively add Ai to either Ui or
Vi and obtain a new consistent pair (Ui+1, Vi+1).

3.4.7 Sublemma. Let i ∈ N; assume (Ui, Vi) is a consistent pair. Then at least
one of (

Ui ∪ {Ai}, Vi

)
or

(
Ui, Vi ∪ {Ai}

)
is consistent.

Proof. (Of Sublem. 3.4.7) Assume not. By the definition of consistent pair, we
can take four finite sequences

Γ from Ui ∪ {Ai} , ∆ from Vi ; Π from Ui , Σ from Vi ∪ {Ai} ;

such that ` Γ ⇒ ∆ and ` Π ⇒ Σ. We observe that Γ necessarily contains Ai:
otherwise, ` Γ ⇒ ∆ proves inconsistency of (Ui, Vi), violating the assumption.
Therefore we can write

Γ ≡ Γ′, Ai,Γ
′′ .

Similarly, Σ contains Ai and we set Σ ≡ Σ′, Ai,Σ
′′.
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Since ` Γ′, Ai,Γ
′′ ⇒ ∆ and ` Π ⇒ Σ′, Ai,Σ

′′, by the (Cut) rule we see that
` Π,Γ′,Γ′′ ⇒ Σ′,Σ′′,∆ (see below).

....
Π ⇒ Σ′, Ai,Σ

′′

Π ⇒ Σ′,Σ′′, Ai
(Exchange-R)

....
Γ′, Ai,Γ

′′ ⇒ ∆

Ai,Γ
′,Γ′′ ⇒ ∆

(Exchange-L)

Π,Γ′,Γ′′ ⇒ Σ′,Σ′′,∆
(Cut)

This proves inconsistency of (Ui, Vi), which is a contradiction. 2
We turn back to the proof of Lem. 3.4.6.2. By Sublem. 3.4.7, an inductive

construction of consistent pairs

(U0, V0) , (U1, V1) , . . .

is indeed possible. (Note it is not unique; you may be able to choose which of
Ui or Vi you add Ai to) By construction, for each i ∈ N:

– (Ui, Vi) is consistent;

– Ui ⊆ Ui+1 and Vi ⊆ Vi+1; and

– Ai ∈ Ui+1 ∪ Vi+1.

Now we define
U ′ :=

⋃
i∈N

Ui , V ′ :=
⋃
i∈N

Vi ,

and claim that (U ′, V ′) is a maximally consistent pair. Any formula Ai belongs
either to U ′ or V ′ because Ai ∈ Ui+1 ∪ Vi+1.

3.4.8 Sublemma. The pair (U ′, V ′) is consistent.

Proof. (Of Sublem. 3.4.8) Assume it is not consistent; then we can take B1, . . . , Bm

from U ′ and C1, . . . , Cn from V ′ such that

` B1, . . . , Bm ⇒ C1, . . . , Cn .

Since there are only finitely many formulas in B1, . . . , Bm and C1, . . . , Cn, and
that Ui and Vi are increasing, for a sufficiently large k ∈ N we have

B1, . . . , Bm ∈ Uk and C1, . . . , Cn ∈ Vk .

Therefore the pair (Uk, Vk) is inconsistent; this is a contradiction. 2
Finally, U ⊆ U ′ and V ⊆ V ′ follow from U = U0 and V = V0. This concludes

the proof of Lem. 3.4.6. 2
A maximally consistent pair can be identified with a valuation. To show

that, we need the following facts.

3.4.9 Lemma. Let (U ′, V ′) be a maximally consistent pair.

1. A ∧B ∈ U ′ if and only if A ∈ U ′ and B ∈ U ′.

2. A ∨B ∈ U ′ if and only if (A ∈ U ′ or B ∈ U ′).
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3. A ⊃ B ∈ U ′ if and only if (A 6∈ U ′ or B ∈ U ′).

4. ¬A ∈ U ′ if and only if A 6∈ U ′, that is, A ∈ V ′.

Proof. Use logical rules. 2
3.4.10 Lemma. Let (U ′, V ′) be a maximally consistent pair; and let us define
a valuation J : PVar → {tt, ff} by

J(P ) = tt
def⇐⇒ P ∈ U ′ .

Then we have, for any formula A,

JAKJ = tt ⇐⇒ A ∈ U ′ .

Proof. By induction on the construction of a formula A, using Lem. 3.4.9. 2
Finally:

Proof. (Of Thm. 3.4.3) Assume 6` Γ ⇒ ∆. Let U be the set of formulas in the
sequence Γ; V be those in ∆. Then (U, V ) is a consistent pair. By Lem. 3.4.6.2,
we can extend it to a maximally consistent pair (U ′, V ′). Define a valuation
J : PVar → {tt, ff} by

J(P ) = tt
def⇐⇒ P ∈ U ′ .

Then by Lem. 3.4.10 we have

JAKJ = tt for any A ∈ U ′; and JBKJ = ff for any B ∈ V ′.

Therefore, under J , all the formulas in Γ are true and all in ∆ are false. ThusJΓ ⇒ ∆KJ = ff; hence 6|= Γ ⇒ ∆. 2
To summarize the proof: an underivable sequent Γ ⇒ ∆ is extended to a

maximally consistent pair; it is then used to induce a counter model J . This
completeness proof in fact has a strong tableau method flavor. Its merit is that
it generalizes smoothly to other kinds of logics (predicate, modal, intuitionistic,
etc.).

Exercises

3.1. In LK, restricting the rule (Init) to

P ∈ PVar
P ⇒ P

(Init’)

does not lessen the set of derivable formulas. Prove this fact.

3.2. Give proof trees for the following sequents.

1. A ⇒ ¬¬A

2. ¬¬A ⇒ A

3. ⇒ A ⊃ B ⊃ A
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4. (A ⊃ B) ⊃ B ⊃ C ⇒ A ⊃ B ⊃ C

5. ⇒ (A ∧B) ⊃ ¬(¬A ∨ ¬B)

3.3. Show that the rule (∧-L’) in (3.2) is admissible.

3.4. Prove Lem. 3.3.6.

3.5. Prove that each of the following sets of formulas are logically equivalent.

1. P ⊃ Q , (¬P ) ∨Q , and ¬(P ∧ (¬Q))

2. (P ∧Q) ⊃ R and P ⊃ Q ⊃ R

3.6. For each of the following formulas, decide if it is valid/satisfiable/unsatisfiable.

1. A ⊃ B ⊃ A

2. (A ⊃ B) ⊃ B

3. ¬A ⊃ A

4. ((P ⊃ Q) ⊃ P ) ⊃ P (Peirce’s law)

3.7. Although illegitimate, it most of the time causes no problem if we write
A ∧B ∧ C or A ∨B ∨ C. Why? Argue from the semantic point of view.

3.8. The set {∧,¬} is functionally complete: using these two we can “encode”
any logical connective. Give formulas that use only these connectives and are
equivalent to the following formulas.

A ⊃ B A ∨B

What about other subsets of {∧,∨,¬,⊃}?

3.9. Are
6|= A and |= ¬A

equivalent? Why (not)? How about the following?

6` A and ` ¬A

3.10 (Conjunctive normal form; disjunctive normal form). These normal forms
play an important role in complexity theory, where a negative literal ¬P is often
denoted by P .

A literal is either a propositional variable P ∈ PVar or its negation ¬P
(with P ∈ PVar). A propositional formula A is in conjunctive normal form
(CNF) if it is a conjunction of disjunctions of literals, that is,

A ≡
n∧

i=1

mi∨
j=1

Lij ,

where Lij is a literal. A propositional formula A is in disjunctive normal form
(DNF) if it is a disjunction of conjunctions of literals, that is,

A ≡
n∨

i=1

mi∧
j=1

Lij .
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1. Convert the following formulas to CNF/DNF, preserving logical equiva-
lence.

P ⊃ Q (P ⊃ Q) ⊃ R ⊃ P ∧ (Q ∨ ¬R)

2. (Might be hard) Prove that, for any formula A, there are formulas in
CNF/DNF that are logically equivalent to A.

3. Conversion to DNF can also be semantically. Give a truth table for the
formula ¬(P ⊃ (Q ∧R)); and derive a DNF of the formula.

3.11. Among the following symbols in this chapter, which are meta level ones?

P, |=, ∧, ⇒, `, A

3.12. Prove Thm. 3.4.1.

3.13. Prove Lem. 3.4.9.

3.14. Prove Lem. 3.4.10.

3.15. Give another proof of Lem. 3.4.6.2 using Zorn’s lemma.





Chapter 4

Predicate Logic

Predicate logic is an extension of propositional logic, where

– aside from formulas (expressing statements), in syntax we have terms that
express individuals (such as “Alice,” “Bob,” “Bob’s father,” “Alice and
Bob’s first child,” “the natural number 0,” etc.); and

– we have additional connectives ∀ (“for all,” universal quantification) and
∃ (“there exists,” existential quantification). These are called quantifiers.

4.1 Predicate Logic: Term and Formula

The syntax of predicate logic depends of the following parameters: function
symbols and predicate symbols. Both of these are given in the form of signa-
tures (Def. 2.2.1)—i.e. each function/predicate symbol comes with a (fixed) arity
n ∈ N. Convention: we write f, g, h, . . . for function symbols and P,Q,R, . . .
for predicate symbols. The signatures for function and predicate symbols are
denoted by FnSymb and PdSymb, respectively.

4.1.1 Example. – 「海老蔵と海老蔵の父は共演したことがある」:

P (c, f(c)) , ここで，
 P (x, y) : 「x, yは共演したことがある」

f(x) : 「xの父」
c : 「海老蔵」

– 「共演したことがあるという関係は対称的」:

∀x. ∀y.
(
P (x, y) ⊃ P (y, x)

)
.

– 「役者にはかならず共演者がいる」:

∀x. ∃y. P (x, y) .

– 「すべての役者と共演したことのある大役者がいる」:

∃x. ∀y. P (x, y) .

59
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We proceed to the formal definition of syntax. Firstly, variables in predicate
logic range over individuals (like “Alice,” “Bob” and「海老蔵」.) This is much
like in equational logic; and is unlike in propositional logic where a propositional
variable is an atomic statement.

4.1.2 Definition (The set Var). Henceforth we fix a countably infinite set Var
of variables.

4.1.3 Definition (Term; formula). Let FnSymb and PdSymb be signatures;
we assume that they are disjoint. The set of terms over FnSymb, denoted by
Terms,1 is defined inductively by the following BNF notation.

Terms 3 t1, . . . , tn ::= x ∈ Var | f(t1, . . . , tn) ,

where f ∈ FnSymb is a function symbol which is n-ary.

The set of (predicate) formulas over FnSymb and PdSymb, denoted by
Fml, is defined inductively by the following BNF notation.

Fml 3 A ::= P (t1, . . . , tn) | A ∧A | A ∨A | A ⊃ A | ¬A
| ∀x.A | ∃x.A ,

where t1, . . . , tn ∈ Terms are terms over FnSymb; P ∈ PdSymb is a predicate
symbol of arity n; and x is a variable.

A formula in the form P (t1, . . . , tn) is said to be atomic; one in the form
∀x.A is universally quantified ; and ∃x.A is existentially quantified.

4.1.4 Remark. You are invited to spot metavariables in Def. 4.1.3 (we have
been lazy in using different fonts).

4.1.5 Notation (Omission of parentheses). We let quantifiers ∀x. and ∃x. bind
stronger than the other connectives.

Mathematically/structurally speaking, the current syntax is a much more
complicated one than those for equational/propositional logics. The distin-
guishing feature is variable binder : the quantifiers ∀x. and ∃x binds certain
occurrences of the variable x. This is like scoping in programming.

4.1.6 Definition (Free/bound occurrence). Let A be a formula. An occurrence
of a variable x in A is said to be bound if it is inside a quantifier ∀x. or ∃x. An
occurrence that is not bound is said to be free.

4.1.7 Example. In a formula (∀x.P (x)) ⊃ Q(x, y),

– the first occurrence of x is bound;

– the second occurrence of x and the occurrence of y are both free.

1To be precise this should be denoted by something like Terms(FnSymb); we do not do
so for readability.
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4.1.8 Definition (Free variable). A variable x is free in a formula A if it has
a free occurrence in A.

To put it more precisely: for each term t ∈ Terms, the set FV(t) of free
variables of t is defined as follows.

FV(x) := {x} if x ∈ Var;

FV
(
f(t1, . . . , tn)

)
:= FV(t1) ∪ · · · ∪ FV(tn) .

Here f ∈ FnSymb is an n-ary function symbol.
For each formula A ∈ Fml, the set FV(A) of free variables of A is defined

as follows.

FV
(
P (t1, . . . , tn)

)
:= FV(t1) ∪ · · · ∪ FV(tn) ,

FV
(
A ∧B

)
:= FV(A) ∪ FV(B) ,

FV
(
A ∨B

)
:= FV(A) ∪ FV(B) ,

FV
(
A ⊃ B

)
:= FV(A) ∪ FV(B) ,

FV
(
¬A

)
:= FV(A) ,

FV
(
∀x.A

)
:= FV(A) \ {x} ,

FV
(
∃x.A

)
:= FV(A) \ {x} .

A closed formula is a formula that has no free variables.

Bound variables/variable binders are tricky especially in relation to substi-
tution.2

4.1.9 Definition (α-equivalence). Two formulas A,B are said to be α-equivalent
if they are the same except for renaming of the bound variables with fresh vari-
ables.

2We circumvent the trickiness by being informal—you can try to make the subsequent
definitions totally formal and see how awkward the task is! This becomes a real problem
when you implement logic for a theorem prover/proof assistant. Some theoretical gadgets to
deal with it: de Bruijn index ; presheaf category ; nominal set .
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The intuition is: it is the link between a bound (occurrence of a) variable
and a variable binder that matters. The name of a bound variable is just an
“alias” for this link; therefore renaming it (causing α-equivalence) results in an
“equivalent” formula.

4.1.10 Notation. In what follows, we regard two α-equivalent formulas to be
syntactically equal. Therefore we have, for example,

∀x. P (x) ≡ ∀y. P (y) .

4.1.11 Example. The formulas

(∀x.P (x)) ⊃ Q(x, y) , (∀y.P (y)) ⊃ Q(x, y) and (∀z.P (z)) ⊃ Q(x, y)

are all mutually α-equivalent.

However,
(∀x.Q(x, y)) and (∀y.Q(y, y))

are not α-equivalent—for renaming we must use a fresh (i.e. occurring nowhere)
variable.

In the presence of variable binders, a careless substitution causes an unde-
sired “crush” of variables—as is familiar to you in a programming language with
variable scoping. Consider substituting f(x) for y in ∀x.R(x, y). The variable x
in f(x) has nothing to do with that in ∀x.R(x, y)—after all the latter formula is
“the same thing” as ∀w.R(w, y). However, by simple replacement we obtain a
formula ∀x.R(x, f(x)), where the last x is undesirably captured by a quantifier.

It is therefore customary to use capture-avoiding substitution .
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4.1.12 Definition (Capture-avoiding substitution). Let x ∈ Var be a variable,
t ∈ Terms be terms and A be a formula. By A[t/x] we denote capture-avoiding
substitution: we replace every free occurrence of x in A with t; but, in case it
results in capture of a variable in t, we suitably rename bound variables.

4.1.13 Example. We have(
∀x.R(x, y)

)
[f(x)/y] ≡

(
∀w.R(w, f(x))

)
.

Note that this is further (syntactically) equal to ∀z.R(z, f(x)) (Notation 4.1.10).

4.1.14 Remark. The syntax we presented is that of the first-order predicate
logic; in it there is only one level of individuals that are quantified. In the second-
order predicate logic, a predicate symbol can also be quantified, resulting e.g.
in a formula

∀x. (P (x) ∨Q(x)) ⊃ ∀R. ∀x.
(
(P (x) ⊃ R(x)) ⊃ (Q(x) ⊃ R(x)) ⊃ R(x)

)
.

4.2 Predicate Logic: Derivation Rule

A derivation system for predicate logic can be given as an extension of one
for propositional logic. Here we present predicate LK, that is an extension
of propositional LK (§3.2). Other styles of derivation systems—Hilbert style,
natural deduction, etc.—are also possible.

The definition of sequent is the same.

4.2.1 Definition (Sequent). A sequent is two finite sequences of formulas in
Fml, separated by a delimiting symbol ⇒. That is,

A1, . . . , Am ⇒ B1, . . . , Bn . (4.1)

4.2.2 Definition (Derivation rules of predicate LK). The derivation rules for
predicate LK are

– the same rules as in propositional LK (Fig. 3.1), augmented with

– the following rules for quantifiers.

A[t/x],Γ ⇒ ∆

∀x.A,Γ ⇒ ∆
(∀-L)

Γ ⇒ ∆, A[z/x]

Γ ⇒ ∆, ∀x.A (∀-R), (VC)

A[z/x],Γ ⇒ ∆

∃x.A,Γ ⇒ ∆
(∃-L), (VC)

Γ ⇒ ∆, A[t/x]

Γ ⇒ ∆, ∃x.A (∃-R)

Here the two rules with (VC) come with the following side condition:

Eigenvariable condition (VC): the variable z does not have any
free occurrence in the sequent on the bottom.

For a deduction rule, it is very important that the legitimacy of the rule’s
application can be checked “easily.” This often means “syntactically” (recur-
sively to be general and precise—we will come back to this later). For example,
a “rule”

⇒ A
(If A is a valid formula)
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derives all the valid formulas. But this is obviously cheating: we cannot “eas-
ily” or “effectively” check the side condition. In contrast, all the rules that we
have seen can be applied “easily.” The new rules for quantifiers are not excep-
tions: the side condition (VC) is a syntactic condition and can be checked in a
straightforward manner.

4.2.3 Example. Assume x does not freely occur in A. Here is an LK proof for
the sequent ∀x.(A ⊃ B) ⇒ A ⊃ ∀x.B.3

A ⇒ A
(Init)

B ⇒ B
(Init)

A ⊃ B,A ⇒ B
(⊃-L)

∀x.(A ⊃ B), A ⇒ B
(∀-L)

∀x.(A ⊃ B), A ⇒ ∀x.B
(∀-R), (VC)

∀x.(A ⊃ B) ⇒ A ⊃ ∀x.B
(⊃-R)

In the application of (∀-L), we took x as t in the rule (Def. 4.2.2); in the
application of (∀-R), we took x as z in the rule (Def. 4.2.2). Since x does not
occur freely in A, it does not occur freely in the sequent ∀x.(A ⊃ B), A ⇒ ∀x.B
either, satisfying (VC).

In contrast, the following is not a correct proof tree for the sequent ∀x. ∃y.R(x, y) ⇒
∃y. ∀x.R(x, y).

R(x, y) ⇒ R(x, y)
(Init)

R(x, y) ⇒ ∀x.R(x, y)
(∀-R), (VC)

R(x, y) ⇒ ∃y. ∀x.R(x, y)
(∃-R)

∃y.R(x, y) ⇒ ∃y. ∀x.R(x, y)
(∃-L), (VC)

∀x. ∃y.R(x, y) ⇒ ∃y. ∀x.R(x, y)
(∀-L)

(4.2)

Why not? (Exercise 4.3) After all, is this sequent valid? (See §4.3 later).

4.2.4 Definition (Proof tree; derivability). The same as in propositional logic
(Def. 3.2.3).

4.3 Predicate Logic: Semantics

The scenario is the same: we fix a model—a basic set of data that specifies
the “meaning” of atomic expressions—and extend it to the “meaning” of more
complicated terms and formulas.

The name structure is a historical one. It is the notion of model for predicate
logic.

4.3.1 Definition ((First-order) structure). A (first-order) structure S over
FnSymb and PdSymb is a tuple

S =
(
U,
(JfKS)f∈FnSymb

,
(JP KS)P∈PdSymb

)
,

where

3Say: A means “it is fine today”; B means “x is happy.”
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– U is a nonempty4 set called domain (or universe);

– for each f ∈ FnSymbn, JfKS : Un → U is the interpretation of f ; and

– for each P ∈ PdSymbn, JP KS : Un → {tt, ff} is the interpretation of P .

Note that the interpretation JP KS : Un → {tt, ff of a predicate symbol P can
be thought of as the characteristic function (Def. 1.2.13) of some subset of Un,
hence can be identified with a subset JP KS ⊆ Un.

4.3.2 Definition (Valuation). A valuation on a structure S = (U, . . . ) is a
function

J : Var −→ U .

Recall that Var is a fixed set of variables (Def. 4.1.2).

Compared to the semantics of equational logic: the parameters (structure
and valuation) consist of the same set of data as in equational logic (algebra
and valuation), augmented with the interpretation JP KS of predicate symbols.

4.3.3 Definition (Denotation). Let

S =
(
U,
(JfKS)f∈FnSymb

,
(JP KS)P∈PdSymb

)
,

be a structure over FnSymb and PdSymb; and J : Var → X be a valuation
on S. For each term t, we define its denotation

JtKS,J ∈ U

as follows, inductively on the construction of t.

JxKS,J := J(x) if x ∈ Var;J f(t1, . . . , tn) KS,J := JfKS( Jt1KS,J , . . . , JtnKS,J ) .

Furthermore, for each formula A, we define its denotation

JAKS,J ∈ {tt, ff}

4This condition of nonemptiness is convenient (especially in classical logic): this is related
to (the current style of) rule (∃-R), by which e.g., we can derive (∀x.A) ⊃ B ⇒ ∃x.(A ⊃ B)
(x /∈ FV(B)), which is used in Lemma 5.5.6. However, there are also other styles of predicate
logic where we do not impose this nonemptiness for structures.

If we allow the empty domain and keep the current syntax, some confusions arise; e.g.,
∀x.⊥ ⇒ ⊥ is derivable, and ∀x.⊥ should hold for the empty structure, but ⊥ should not hold
even for the empty structure! One way for avoiding this kind of incorrect reasoning is to use
the notion of an environment, which explicitly declares what variables are used in a sequent:
with environments, it is y | ∀x.⊥ ⇒ ⊥ that can be derivable, where y is an environment
and a required term t for ∀-L is prepared under this environment; then, ⊥ above is in fact
y | ⊥, which means “for all y, ⊥ holds”, a valid statement in the empty structure. See, e.g.,
[4][end of Section 4.1] for this style of predicate logic and another example. In this style with
explicit environments, Γ ⇒ ∆ in the current syntax corresponds to Var | Γ ⇒ ∆ rather than
FV(Γ) ∪ FV(∆) | Γ ⇒ ∆ or ∅ | Γ ⇒ ∆.
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as follows, inductively on the construction of A.

JP (t1, . . . , tn)KS,J = tt
def⇐⇒ JP KS( Jt1KS,J , . . . , JtnKS,J ) = tt where P ∈ PdSymbnJA ∧BKS,J = tt
def⇐⇒ JAKS,J = tt and JBKS,J = tt

JA ∨BKS,J = tt
def⇐⇒ JAKS,J = tt or JBKS,J = tt

JA ⊃ BKS,J = tt
def⇐⇒ JAKS,J = ff or JBKS,J = tt

J¬AKS,J = tt
def⇐⇒ JAKS,J = ff

J∀x.AKS,J = tt
def⇐⇒ JAKS,J[x 7→u] = tt for any u ∈ U

J∃x.AKS,J = tt
def⇐⇒ JAKS,J[x 7→u] = tt for some u ∈ U

On the first line, JtiKS,J ∈ U is the denotation of a term ti defined earlier; and
recall that JP KS is a function Un → {tt, ff}. On the last two lines, recall that
J [x 7→ u] is an updated valuation (Def. 2.5.6).

The denotation of a sequent Γ ⇒ ∆ is defined in the same way as in propo-
sitional logic.

4.3.4 Definition (Validity; satisfiability). A formula A (over FnSymb and
PdSymb) is valid under a structure S if, for any valuation J over S, we haveJAKS,J = tt. We write S |= A for this.

A formula A is said to be valid if it is valid under any structure S over
FnSymb and PdSymb.

A formula A is said to be satisfiable if there exist a structure S and a valuation
J such that JAKS,J = tt.

Logical equivalence ∼= is defined in the same way: A ∼= B if and only if

JAKS,J = JBKS,J for each S and J .

Continuing Proposition 3.3.8, we have the following result. It can be thought
of as an infinitary version of the de Morgan law .

4.3.5 Proposition. We have the following logical equivalences.

¬∀x.A ∼= ∃x.¬A ¬∃x.A ∼= ∀x.¬A

Proof. Exercise 4.4.

Here are a couple of technical lemmas that are used later. The first one is
much like Lem. 3.3.4.

4.3.6 Lemma. Let S be a structure; J, J ′ be two valuations over S; and A be a
formula. Assume that

J(x) = J ′(x) for each x ∈ FV(A),

where FV(A) is from Def. 4.1.8. Then we have

JAKS,J = JAKS,J ′ .

Proof. By induction on the construction of a formula A. (This involves careful
handling of free/bound variables; do Exercise 4.7!) 2
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The second one is like Prop. 2.5.7.

4.3.7 Lemma. Let A be a formula, s, t be a term, x be a variable, S be a struc-
ture and J be a valuation over S, all over the same FnSymb and PdSymb.
We haveJ s[t/x] KS,J = J s KS,J[x 7→JtKS,J ] and JA[t/x] KS,J = JA KS,J[x 7→JtKS,J ] .

Proof. By induction on the construction of a term s, and a formula A. Let us
here do one of the trickiest cases, where A is a universally quantified formula.

By renaming a bound variable (i.e. taking an α-equivalent formula), we can
assume that A is of the form

A ≡ ∀y.B ,

where y ∈ Var is a variable such that

y 6≡ x and y 6∈ FV(t) . (4.3)

Now, J (∀y.B)[t/x] KS,J = tt

⇐⇒ J∀y. (B[t/x]) KS,J = tt

by def. of capture-avoiding substitution and (4.3)

⇐⇒ JB[t/x] KS,J[y 7→u] = tt for any u ∈ U

⇐⇒ JB K
S,
(
J[y 7→u]

)
[x 7→JtKS,J[y 7→u]]

= tt for any u ∈ U

by induction hypothesis (B is “smaller” than A)

⇐⇒ JB K
S,
(
J[y 7→u]

)
[x 7→JtKS,J ] = tt for any u ∈ U

by y 6∈ FV(t) from (4.3), and Lem. 4.3.6

⇐⇒ JB K
S,
(
J[x 7→JtKS,J ])[y 7→u]

= tt for any u ∈ U

by x 6≡ y from (4.3)

⇐⇒ J∀y.B KS,J[x 7→JtKS,J ] = tt .

This proves J (∀y.B)[t/x] KS,J = J∀y.B KS,J[x 7→JtKS,J ]. The other cases are left as
an exercise (Exercise 4.8). 2

4.4 Predicate Logic: Syntax vs. Semantics

4.4.1 Theorem (Soundness). ` Γ ⇒ ∆ implies |= Γ ⇒ ∆.

Proof. The proof is again by induction, and is mostly the same as for proposi-
tional logic. Here we do just one case (which needs careful handling of free/bound
variables and hence is tricky), for the rule (∀-R).

Γ ⇒ ∆, A[z/x]

Γ ⇒ ∆, ∀x.A (∀-R), (VC)

Let S be an arbitrary structure; and J be an arbitrary valuation over S. We
are to prove JΓ ⇒ ∆, ∀x.AKS,J = tt. Assume J∧ΓKS,J = tt and J∨∆KS,J = ff—
otherwise the goal is trivial. We need to show that J∀x.AKS,J = tt, that is,JAKS,J[x 7→u] = tt for any u ∈ U . (4.4)
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4.4.2 Sublemma. JAKS,J[x 7→u] = JAK
S,
(
J[z 7→u]

)[
x 7→( J[z 7→u] )(z)

] .

Proof. (Of Sublem. 4.4.2) If z ≡ x, then the valuation
(
J [z 7→ u]

)[
x 7→ ( J [z 7→

u] )(z)
]
on the right is obviously equal to the valuation J [x 7→ u]. If z 6≡ x, we

have

JAK
S,
(
J[z 7→u]

)[
x 7→( J[z 7→u] )(z)

] = JAK
S,
(
J[z 7→u]

)
[x 7→u]

= JAK
S,
(
J[x 7→u]

)
[z 7→u]

(∗)
= JAKS,J[x 7→u] ,

where (∗) holds due to Lem. 4.3.6—if z ∈ FV(A), then z ∈ FV(∀x.A) since
z 6≡ x; and this violates (VC). This concludes the proof of the sublemma. 2

We turn back to the proof of Thm. 4.4.1. We have

JAKS,J[x 7→u] = JAK
S,
(
J[z 7→u]

)[
x 7→( J[z 7→u] )(z)

] by Sublem. 4.4.2

= JAK
S,
(
J[z 7→u]

)[
x 7→JzKS,J[z 7→u]

] by def. of JzK
= JA[z/x]KS,J[z 7→u] by Lem. 4.3.7.

Now:

JΓ ⇒ ∆, A[z/x] KS,J[z 7→u] = tt by induction hypothesis;J∧ΓKS,J[z 7→u] = J∧ΓKS,J since z is not free in Γ by (VC)

= tt by assumption;J∧∆KS,J[z 7→u] = ff similarly.

Therefore we have JA[z/x]KS,J[z 7→u] = tt, for each u ∈ U . Combined withJAKS,J[x 7→u] = JA[z/x]KS,J[z 7→u] that we showed above, we obtain (4.4). This
concludes the (∀-R) case of the soundness proof. 2
4.4.3 Theorem (Completeness). |= Γ ⇒ ∆ implies ` Γ ⇒ ∆. Moreover: for
any formula A, |= A implies ` A.

Proof. The proof strategy is the same as before: given an underivable sequent,
we construct a counter model using syntactic ingredients. The construction
is involved and we do not present it here. Interested readers are referred to
e.g. [6, 8]. 2

Completeness for predicate logic was first shown by K. Gödel; this is Gödel’s
completeness theorem.

But what about the famous Gödel’s incompleteness theorem? The difference
is in their statements: in Thm. 4.4.3, it is shown that

a deductive system (like predicate LK) proves all the sequents that
are true under any model (i.e. structure).

Recall the definition of |=. In contrast, what the incompleteness theorem states
is (roughly):
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there is no sound and complete set of deductive rules for the formulas
that are true in one specific structure N, namely that of natural
numbers.

` A
soundness+3

|= A
completeness
ks

obvious +3
N |= A×××ks

This means that there are nonstandard structures, besides N, that falsifies what
is true in N. We will briefly come back to this point later in this course. An
interested reader can look at [6, 19], among other textbooks.

Exercises

4.1. Assume that f ∈ FnSymb1 and g ∈ FnSymb2. Which of the following
are (syntactically legitimate) terms?

f(c, g(d)) x(g(c, f(y))) g(f(c), g(x, f(y)))

4.2. Give explicit formulas for the following (capture-avoiding) substitutions.(
R(x, y)

)
[f(x)/y]

(
Q(x) ∧ ∃x.R(x, y)

)
[g(y)/x]

(
Q(y) ∧ ∃x.R(x, y)

)
[f(x)/y](

∀x.R(x, y)
)
[f(x)/x]

4.3. Point out what is wrong with the “proof” in (4.2).

4.4. Prove Proposition 4.3.5.

4.5. Let P,Q,R be predicate symbols of arity 0, 1, 1, respectively. Are these
formulas valid/satisfiable/unsatisfiable?

– ∀x.(P ∨Q(x)) ⊃ P ∨ (∀x.Q(x))

– ∀x.(R(x) ∨Q(x)) ⊃ (∀x.R(x)) ∨ (∀x.Q(x))

– ∀x.(P ∧Q(x)) ⊃ P ∧ (∀x.Q(x))

– ∀x.(R(x) ∧Q(x)) ⊃ (∀x.R(x)) ∧ (∀x.Q(x))

–
(
(∀x.Q(x)) ⊃ P

)
⊃ ∃x.

(
Q(x) ⊃ P

)
Present proof trees in LK for those which are valid.

4.6. In Def. 4.3.1, a universe U is assumed to be nonempty. Show that, if we
change the definition and allow U to be empty, soundness (Thm. 4.4.1) no longer
holds. (Hint: consider the formula ∀x. P (x) ⊃ ∃x. P (x))

4.7. Prove Lem. 4.3.6.

4.8. Complete the proof of Lem. 4.3.7.

4.9. Complete the proof of Thm. 4.4.1.





Chapter 5

Some More Meta-Theorems

In this chapter we discuss some further topics on propositional/predicate logic.

5.1 Cut Elimination

As you have done in exercises, derivation rules are usually used from bottom
to top: given a formula to be derived, you try to construct a proof tree in the
bottom-up manner. In that aspect, among the rules in Fig. 3.1, the (Cut) rule
distinguishes itself.

Γ ⇒ ∆, A A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(Cut)

In the (Cut) rule, even if you are given the lower sequent Γ,Π ⇒ ∆,Σ, you
have absolutely no idea what the formula A in the upper sequent—called the
cut formula—should be. In the other rules, in contrast, what appears in the
upper sequent is always a subformula of a formula in the lower sequent. This
property is called the subformula property of a rule (or a derivation system). In
summary: the (Cut) rule makes the subformula property of LK—a property
much desired in proof search—fail.

5.1.1 Remark. Note that in the predicate case the definition of subformula is
a bit tricky. Consider e.g. the following rule.

A[t/x],Γ ⇒ ∆

∀x.A,Γ ⇒ ∆
(∀-L)

We define that A[t/x], with any term t, is a subformula of ∀x.A. This is another
burden in proof search; it is mainly due to this fact that validity of a predicate
formula is undecidable.

We are saved by the following result, originally due to Gentzen.

5.1.2 Theorem (Cut elimination). LK, whether propositional or predicate, ad-
mits cut-elimination. That is, each derivable sequent has a cut-free derivation.

Proof. There are syntactic conversion procedures that turn an LK proof (with
cuts) into a cut-free LK proof. See e.g. [14, 8]. 2

71
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On a superficial level, the theorem states “any proof can be converted into
a proof in some normal form.” Notice that it is a meta result, on proofs
as object level entities. Cut elimination is central in proof theory, that is
(meta)mathematics of proofs.

5.1.3 Remark. The cut elimination result also exists for natural deduction,
where it is often called proof normalization . Via the Curry-Howard correspon-
dence, cut elimination corresponds to β-reduction of λ-terms. See [3] if you are
interested.

5.2 Theory and Compactness

Compactness reveals the limitation of propositional/predicate logic: their ex-
pressive power is limited due to their finitary nature.

In this section we present definitions and theorems at the same time for both
propositional and predicate logics.

5.2.1 Definition (Theory). A (propositional) theory Φ is a set of propositional
formulas.

A (predicate) theory Φ is a set of closed predicate formulas.
A formula A ∈ Φ is often called a non-logical axiom .1

This notion is similar to the set E of axioms in Chap. 2. Note that with this
definition, we have dragged “the notion of theory” down to the object level.

5.2.2 Definition (Derivability within a theory). A sequent Γ ⇒ ∆ is said to
be derivable within a theory Φ if there is an proof tree of Γ ⇒ ∆ in LK, where
we are allowed to use the following additional rule scheme.

⇒ B
(Axiom), B ∈ Φ

We write Φ ` Γ ⇒ ∆ if the sequent Γ ⇒ ∆ is derivable within Φ.

5.2.3 Lemma (Deduction Theorem). Φ ` Γ ⇒ ∆ if and only if there exist
finitely many formulas A1, . . . , An ∈ Φ such that ` A1, . . . , An,Γ ⇒ ∆.

Proof. The ‘if’ part: let Π be a proof of A1, . . . , An,Γ ⇒ ∆ in LK (without any
non-logical axioms). Then

⇒ An
(Axiom)

⇒ A1
(Axiom)

.... Π

A1, A2, . . . , An,Γ ⇒ ∆

A2, . . . , An,Γ ⇒ ∆
(Cut)

....
An,Γ ⇒ ∆

Γ ⇒ ∆
(Cut)

(that eliminates A1, . . . , An by (Axiom) and (Cut)) is a proof tree within the
theory Φ. Thus Φ ` Γ ⇒ ∆.

The ‘only if’ part: let Π1 be a proof tree of Γ ⇒ ∆ within Φ.

1In contrast, an initial sequent A ⇒ A may well be called a logical axiom .
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To this tree we apply the following operations.

– To the left hand side of each of its nodes, we add formulas A1, . . . , An;
and

– each (Axiom) node is transformed into a suitable combination of the
(Init) and (Weakening-L) rules (see above right).

Then the resulting tree is an LK proof tree without any non-logical axioms—
note that the added formulas A1, . . . , An cause no problem in rule applications.
Therefore ` A1, . . . , An,Γ ⇒ ∆. 2

A theory can be any set of formulas—it can even contain both P and ¬P !

5.2.4 Definition (Consistency). A theory Φ is consistent if Φ 6` ⇒ . Otherwise
it is inconsistent .

Note here that the sequent ⇒ (with both hands empty) means “false” (cf.
Lem. 3.2.6). From this, using (Weakening-R), one can derive any formula A.
Therefore: an inconsistent theory derives anything.2

5.2.5 Lemma. 1. Φ is consistent if and only if any finite subset Φ′ of Φ is
consistent.

2. A theory Φ is consistent if and only if (Φ, ∅) is a consistent pair (Def. 3.4.4).

Proof. 1. Immediate from Lem. 5.2.3.
2.

(Φ, ∅) is a consistent pair

⇐⇒ ∀Φ′ ⊆fin. Φ. 6` Φ′ ⇒ by def. of consistent pair

⇐⇒ ∀Φ′ ⊆fin. Φ. Φ
′ 6`⇒ by Lem. 5.2.3

⇐⇒ ∀Φ′ ⊆fin. Φ. Φ
′ is consistent

⇐⇒ Φ is consistent by Lem. 5.2.3. 2
Consistency is a syntactic notion; the corresponding semantic notion is that

of satisfiability.

5.2.6 Definition (Satisfiable theory). A propositional theory Φ is said to be
satisfiable if there exists a valuation J such that

JAKJ = tt for every A ∈ Φ.

2http://togetter.com/li/37411
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A predicate theory Φ is said to be satisfiable if there exist a structure S and a
valuation J over S such that

JAKS,J = tt for every A ∈ Φ.

We now show that consistency and satisfiability are equivalent. First, the
easier direction:

5.2.7 Lemma. If Φ is satisfiable, then it is consistent.

Proof. Assume not, that is, Φ `⇒. By Lem. 5.2.3, there exist A1, . . . , An ∈ Φ
such that ` A1, . . . , An ⇒.

By soundness of LK, A1 ∧ · · · ∧ An ⊃ ⊥ is valid (cf. Lem. 3.2.6 and Nota-
tion 3.1.5); this is logically equivalent to

¬(A1 ∧ · · · ∧ An) , and thus to ¬A1 ∨ · · · ∨ ¬An .

This contradicts with satisfiability of Φ. 2
The other direction is:

5.2.8 Theorem (Strong completeness). If a theory Φ is consistent, then it is
satisfiable.

Proof. For the propositional case, the proof is much like that of completeness
(Thm. 3.4.3). We present its outline.

We proved in Lem. 5.2.5.2 that (Φ, ∅) is a consistent pair. We use Lem. 3.4.6
to extend it to a maximally consistent pair (U ′, V ′); and then derive a valuation
J as in Lem. 3.4.10. The resulting valuation makes all the formulas in U ′ true;
thus in particular all the formulas in Φ.

For the predicate case, too, a completeness proof (which we skipped) can be
easily turned into a proof of strong completeness. 2

Thm. 5.2.8 is called strong completeness since it yields completeness (Exer-
cise 5.1).

Finally we come to compactness. It states satisfiability—i.e. consistency, by
Lem. 5.2.7 and Thm. 5.2.8)—is “finitely determined.”

5.2.9 Theorem (Compactness). Let Φ be a theory. Then the following are
equivalent:

1. any finite subset Φ′ of Φ is satisfiable;

2. Φ is satisfiable.

Proof. Immediate from Lem. 5.2.7, Thm. 5.2.8 and Lem. 5.2.5.1. 2
Note here that Thm. 5.2.9 does not mention the derivation system LK.

5.3 Axiomatizable Class of Structures—Consequence
of Compactness

Here we follow [15, §2.7] and use compactness to exhibit a limitation of predicate
logic. Specifically, we show that no theory characterizes well-ordered sets.
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5.3.1 Well-Ordered Set

First, let us recall:

5.3.1 Definition (Well-ordered set). A well-ordered set is a poset (S,≤) such
that:

any nonempty subset S′ ⊆ S has its minimum.

An example is N. Non-examples are

– Z (consider {−1,−2,−3, . . . }); and

– R (consider {x ∈ R | 0 < x}).
A poset (X,≤) is called totally ordered if for any x, y ∈ X, at least one of

x ≤ y or y ≤ x holds. Then we have:

5.3.2 Lemma. For a poset (X,≤), the following are equivalent.

1. (X,≤) is a well-ordered set.

2. (X,≤) is a totally ordered set, and there is no infinite descending chain
x0 > x1 > x2 > . . . . 2

We will be using the characterization of Lem. 5.3.2.2.

5.3.2 Model

5.3.3 Definition. In the current section we overload previous definitions (in-
cluding Def. 4.3.1) and assume that:

– PdSymb contains a special binary symbol =, and

– its interpretation J=KS in a structure S is fixed to be the actual equality.
That is, J=KS =

{
(u, u) | u ∈ U

}
.

Now let us fix

FnSymb = ∅ and PdSymb = {R,=} , (5.1)

where we let R and = be binary predicate symbols.
A structure

S =
(
U,
(JfKS)f∈FnSymb

,
(JP KS)P∈PdSymb

)
,

for these FnSymb and PdSymb has an underlying binary relationJRKS ⊆ U × U .

The following predicate formulas state that the underlying binary relation
is indeed a total order.

A1 :≡ ∀x.R(x, x)
A2 :≡ ∀x. ∀y.

(
R(x, y) ∧R(y, x) ⊃ x = y

)
A3 :≡ ∀x. ∀y. ∀z.

(
R(x, y) ∧R(y, z) ⊃ R(x, z)

)
A4 :≡ ∀x. ∀y.

(
R(x, y) ∨R(y, x)

)
We define a theory Φ by

Φ := {A1, A2, A3, A4}
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5.3.4 Definition (Model of a theory). A model of a theory Φ is a structure S
such that

S |= A for each A ∈ Φ.

We denote the set of models of Φ by Mod(Φ).

Thus a model is a structure where all the (non-logical) axioms are valid.
Recalling Chap. 2: model is to structure what (Σ, E)-algebra is to Σ-algebra.

5.3.5 Lemma. Assume that S is the structure. Then:

S is a model of Φ ⇐⇒ the underlying binary relation is a total order. 2
Thus we have seen that

the class of totally ordered sets can be characterized by a theory;

in other words,

predicate logic is expressive enough to characterize totally ordered
sets.

5.3.3 Non-Axiomatizable Class of Structures

We now show that there is no theory Φ′ such that Mod(Φ′) is exactly the class
of well-ordered sets.3

5.3.6 Definition (Axiomatizability). Let any FnSymb andPdSymb be fixed.
A class A of structures is said to be axiomatizable if there is a theory Φ′ such
that

A = Mod(Φ′) .

The next trivial lemma is used in the theorem after this.

3Here “class” means “set”; we used the word “class” simply to avoid “set of sets” that
sounds cumbersome.
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5.3.7 Lemma. Let FnSymb ⊆ FnSymb′ and PdSymb be signatures, S′ be a
structure over FnSymb′ and PdSymb, and S be the structure over FnSymb
and PdSymb obtained from S by forgetting the interpretations of symbols in
FnSymb′ \ FnSymb. Then, for a formula A and a theory Φ over FnSymb
and PdSymb, we have

JAKS = JAKS′ and S |= Φ ⇐⇒ S′ |= Φ .

5.3.8 Theorem. Let FnSymb and PdSymb be as in (5.1). The class of
well-ordered sets is not axiomatizable.4

The proof relies on compactness (Thm. 5.2.9).

Proof. We argue by contradiction. Assume that a theory Φ′ is such that, for
any structure S,

S |= Φ′ ⇐⇒ S is a well-ordered set.

Now let us consider FnSymb′ := {c1, c2, . . . } where all ci are nullary. For each
n ∈ N, consider the following formula:

Bn :≡ R(cn+1, cn) ∧ ¬R(cn, cn+1) ,

which intuitively means “cn+1 < cn.” We consider the theory

Φ′′ := Φ′ ∪ {Bn | n ∈ N}

over the signatures FnSymb′ and PdSymb. By Lemma 5.3.7, for any structure
S′ = (U, (JciKS′)i, JRKS′),
S′ |= Φ′ ⇐⇒ (U, , JRKS′) |= Φ′ ⇐⇒ (U, , JRKS′) is a well-ordered set.

The theory Φ′′ must not be satisfiable: if Φ′′ is satisfied by S′, then Φ′ means
that there is no infinite descending chain (Lem. 5.3.2); but by satisfying all the
Bn’s there is a descending chain

Jc0KS′ > Jc1KS′ > Jc2KS′ > · · · ,

which is a contradiction.
Let Φ′′′ be an arbitrary finite subset of Φ′′, and we claim that Φ′′′ is satisfi-

able. Since Φ′′′ is finite, there are only finitely many Bn’s in it; so it suffices to
show that

Φ′ ∪ {B0, . . . , BN−1}
is satisfiable for any N ≥ 0. To see this, consider a structure S′N with the
universe

{0, 1, . . . , N}
and JciKS′N =

{
N − i if i ∈ [0, N ]

0 otherwise,

and JRKS′N is <, the usual inequality between natural numbers. Then S′N is a
model of Φ′—since S′N is well-ordered—and satisfies B0, . . . , BN−1.

Thus any finite subset Φ′′′ of Φ′′ is satisfiable; thus by compactness (Thm. 5.2.9),
Φ′′ is satisfiable. This is a contradiction. 2

4To be precise, we here consider only nonempty well-ordered sets, just because our seman-
tics of predicate logic targets only nonempty structures.
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A question about expressivity of a (finitary) formalism—like the one that we
have just seen—is everywhere in (theoretical) computer science. You must find
some of the results that you learned in formal language theory bear the same
flavor.

5.4 The Resolution Principle: Propositional Case

LK is a clever formalism that is convenient for many meta-theorems (complete-
ness, cut-elimination, etc.) We now introduce another formalism for derivation
in propositional logic—that of resolution—that is suited for proof search. It is
originally due to J.A. Robinson, and is a foundation of many proof assistants
as well as logic programming.

Here is an example of resolution.

{Q,R} {Q,¬R}
{Q}

{P ,¬Q,R} {¬P ,R}
{¬Q,R}

{R} {¬R}
∅

(5.2)

5.4.1 Definition (Literal; clause; Horn clause). Among propositional formu-
las/sequents:

– A literal is either a propositional variable P ∈ PVar, or its negation ¬P .

– A clause is a finite set
c = {L1, . . . , Ln}

of literals.

– A Horn clause is a sequent of the form

P1, . . . , Pn ⇒ P

where Pi and P are propositional variables. The number n can be 0.

The intuition is: the clause {L1, . . . , Ln} means

L1 ∨ · · · ∨ Ln .

A Horn clause can be thought of as a special case of clause, since

(P1 ∧ · · · ∧ Pn) ⊃ P ∼= ¬(P1 ∧ · · · ∧ Pn) ∨ P
∼= ¬P1 ∨ · · · ∨ ¬Pn ∨ P .

5.4.2 Definition (Complement L∗ of a literal). For each literal L, its comple-
ment L∗ is defined by:

if L ≡ P , then L∗ :≡ ¬P ;
if L ≡ ¬P , then L∗ :≡ P .

5.4.3 Definition (Resolvent). Let c, c1, c2 be clauses. We say c is a resolvent
of c1 and c2 if there exists a literal L such that
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– L ∈ c1,

– L∗ ∈ c2, and

– c =
(
c1 \ {L}

)
∪
(
c2 \ {L∗}

)
.

Note that, given c1 and c2, their resolvent is not necessarily unique since
multiple choices of a literal L might be possible.

5.4.4 Example. Let c1 = {P,¬Q,¬R} and c2 = {¬P,¬Q,R, S}. Then each
of

{¬Q,¬R,R, S} and {P,¬P,¬Q,S}

is their resolvent.

In resolution, we derive clauses from a finite set S of clauses:

S = {c1, . . . , cn}

=


{L1,1, . . . , L1,m1

},
...

{Ln,1, . . . , Ln,mn
}

 ,

where each Li,j is a literal. The intuition is that S stands for an assumption

(
∨

c1) ∧ · · · ∧ (
∨

cn) , i.e.

(L1,1 ∨ · · · ∨ L1,m1
)

∧(L2,1 ∨ · · · ∨ L2,m2
)

∧ . . .
∧(Ln,1 ∨ · · · ∨ Ln,mn)

.

5.4.5 Definition (Resolution tree). Let S be a finite set of clauses. A resolution
tree under S is a finite tree—each of whose node is labeled with a clause—defined
inductively as follows.

– If ci ∈ S = {c1, . . . , cn}, the one-node tree

ci

is a resolution tree under S.

– If .... Σ1

c1
and

.... Σ2

c2

are both resolution trees under S, and c is a resolvent of c1 and c2, then

.... Σ1

c1

.... Σ2

c2
c

is a resolution tree under S.

Roughly speaking: in resolution one starts with a clause in S and proceeds
by taking resolvents.
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5.4.6 Example. The tree in (5.2) is a resolution tree under the set{
{Q,R}, {Q,¬R}, {P,¬Q,R}, {¬P ,R}, {¬R}

}
.

5.4.7 Notation (c(S)). Let S = {c1, . . . , cn} be a finite set of clauses. The
formula c(S) is defined by

(
∨

c1) ∧ · · · ∧ (
∨

cn) , i.e.

(L1,1 ∨ · · · ∨ L1,m1
)

∧(L2,1 ∨ · · · ∨ L2,m2
)

∧ . . .
∧(Ln,1 ∨ · · · ∨ Ln,mn

)

,

where
∧

and
∨

are from Notation 3.1.5, and the order of clauses and formulas
are chosen arbitrarily. Note that c(S) is in conjunctive normal form (CNF,
Exercise 3.10).

5.4.8 Theorem (Soundness of resolution). Let S = {c1, . . . , cn} be a finite set
of clauses. If there is a resolution tree under S whose root is a clause c, then
the sequent

c(S) ⇒
∨

c

is derivable in LK. Therefore by Thm. 3.4.1, c(S) ⇒
∨
c is valid.

Proof. By induction on the construction of a resolution tree. If it is a one-node
tree with c ∈ S, it is easy to see that ` c(S) ⇒ c.

For the step case, assume

` c(S) ⇒
∨

c1 , ` c(S) ⇒
∨

c2 , and c is a resolvent of c1 and c2.

Let L be the literal such that L ∈ c1, L
∗ ∈ c2 and c = (c1 \ {L}) ∪ (c2 \ {L∗}).

Writing A1 :≡
∨(

c1 \ {L}
)
and A2 :≡

∨(
c2 \ {L∗}

)
, by assumption we have

` c(S) ⇒ A1 ∨ L , ` c(S) ⇒ A2 ∨ L∗ , and
∨

c ∼= A1 ∨A2 .

The first two, together with `⇒ L,L∗, derive

` c(S) ⇒ A1 ∨A2

by applying the (Cut) rule a few times. Using
∨

c ∼= A1 ∨ A2 we obtain the
claim. 2

In the actual use of resolution, what is usually done is refutation-based rea-
soning . That is,

– given assumptions, and a formula A to be derived from the assumptions,

– we add ¬A to the assumption and try to derive contradiction.

5.4.9 Notation. In resolution it is customary to denote the empty clause {} = ∅
by 2. We adopt this convention in what follows. Semantically, it is the disjunc-
tion of zero formulas—i.e. the unit for ∨—thus it means ⊥ (Notation 3.1.5).

The completeness property also holds.
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5.4.10 Theorem (Completeness of resolution). Let S = {c1, . . . , cn} be a finite
set of clauses. If

c(S) ⇒

is derivable in LK—i.e. if the formula ¬c(S) is valid—then there exists a reso-
lution tree under S whose root is the empty clause 2.

For the proof we use the following lemmas.

5.4.11 Lemma (Weakening an assumption). Assume there is a resolution tree
under S = {c1, . . . , cn} whose root is c; and let d be a finite set of formulas.

Then there is some d′ ⊆ d such that there exists a resolution tree under

S′ := {c1 ∪ d, c2, . . . , cn}

whose root is c ∪ d′.

In S′, an assumption c1 ∈ S is weakened into c1 ∪ d. The lemma claims that
some weakened conclusion c ∪ d′ can always be derived.

Proof. (Of Lem. 5.4.11) By induction on the construction of a resolution tree
for c. (Exercise 5.5) 2
5.4.12 Lemma (Strengthening an assumption). Assume there is a resolution
tree under S = {c1, . . . , cn} whose root is c; and that c̃1 ⊆ c1.

Then there is some c̃ ⊆ c such that there exists a resolution tree under

S′ := {c̃1, c2, . . . , cn}

whose root is c̃.

In this lemma, an assumption c1 is strengthened; and the claim is that it
necessarily derives some stronger clause c̃ ⊆ c.

Proof. (Of Lem. 5.4.12) By induction on the construction of a resolution tree
for c. We only show the step case.

Assume c’s resolution tree is of the form

.... Σ1

c1

.... Σ2

c2
c

with L ∈ c1, L
∗ ∈ c2 and c = (c1 \ {L}) ∪ (c2 \ {L∗}). By induction hypothesis,

we have the following resolution trees under S′:

.... Σ′
1

c̃1
and

.... Σ′
2

c̃2
(5.3)

where c̃1 ⊆ c1 and c̃2 ⊆ c2. Now we make the following three cases.

– If L ∈ c̃1 and L∗ ∈ c̃2, then

c̃ := (c̃1 \ {L}) ∪ (c̃2 \ {L∗})

is a resolvent of c̃1 and c̃2. Therefore by (5.3) there is a resolution tree for
c̃. Furthermore, it is easy to see that c̃ ⊆ c; thus we obtained the claim.
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– If L 6∈ c̃1, then

c = (c1 \ {L}) ∪ (c2 \ {L∗})
⊇ (c1 \ {L})
⊇ c̃1 since c̃1 ⊆ c1 and L 6∈ c̃1.

Thus we can take c̃1 as c̃ in the claim.

– If L∗ 6∈ c̃2, by similar arguments, we see that c̃2 can be taken as c̃ in the
claim.

This concludes the proof. 2
Proof. (Of Thm. 5.4.10) By induction on the number of ∨’s occurring in the
formula c(S).

If there is none, then each ci must be a singleton: ci = {Li} for each i (where
Li is some literal). The assumption then says that the sequent

L1, . . . , Ln ⇒

is derivable in LK. It is straightforward (Exercise 5.7) that this is only possible
when there are two literals in L1, . . . , Ln which are complement to each other.
That is: Lj = L∗

k with some j 6= k. In this case, since cj = {Lj} and ck = {Lk}

cj ck2
is a resolution tree under S.

Assume there is at least one ∨ occurring in c(S). We can assume, without
loss of generality, that c1 contains more than one elements: c1 = {L} q c′1. By
assumption we have

` L ∨ (
∨

c′1),
∨

c2, . . . ,
∨

cn ⇒ . (5.4)

It is easy to see that

` L ⇒ L ∨ (
∨

c′1) and ` (
∨

c′1) ⇒ L ∨ (
∨

c′1) ;

combining with (5.4) and applying the (Cut) rule, we obtain

` L,
∨

c2, . . . ,
∨

cn ⇒ and ` (
∨

c′1),
∨

c2, . . . ,
∨

cn ⇒ .

These two sequents contains less ∨’s than c(S); therefore we can use the induc-
tion hypothesis and obtain

– a resolution tree Σ1 under
{
{L}, c2, . . . , cn

}
whose root is 2; and

– a resolution tree Σ2 under
{
c′1, c2, . . . , cn

}
whose root is 2.

We apply Lem. 5.4.11 to Σ2; and see that for some d ⊆ {L}, there is a resolution
tree under {

{L} ∪ c′1, c2, . . . , cn
}
= {c1, . . . , cn} = S

whose root is d.
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– If d = ∅: we are done.

– If d 6= ∅: necessarily d = {L}. Let us denote this resolution tree (under
S, leading to {L}) by Σ3. We can combine (copies of) Σ3 and Σ1 in the
following way.

The result is a resolution tree under S leading to 2. 2

5.5 The Resolution Principle: Predicate Case

Here we present only a sketch of the predicate version of resolution.
The notions of literal, clause and resolvent are defined in the same way, re-

placing propositional variables (in the propositional case) with atomic formulas
P (t1, . . . , tn) (in the predicate case).

In resolution we have one additional rule of substitution.

5.5.1 Definition (Resolution tree). Let S be a finite set of clauses. A resolution
tree under S is a finite tree—each of whose node is labeled with a clause—defined
inductively as follows.

– If ci ∈ S = {c1, . . . , cn}, the one-node tree

ci

is a resolution tree under S.

– If .... Σ1

c1
and

.... Σ2

c2

are both resolution trees under S, and c is a resolvent of c1 and c2, then

.... Σ1

c1

.... Σ2

c2
c

is a resolution trees under S.
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– If .... Σ
c

is a resolution tree under S, then

.... Σ
c

C[t/x]

where x is any variable and t is any term, is a resolution tree under S.

The soundness and completeness properties hold here as well. We skip their
proofs; if you are interested see e.g. [15].

5.5.2 Theorem (Soundness and completeness of resolution). Let S = {c1, . . . , cn}
be a finite set of clauses, and x1, . . . , xm are variables occurring in S. The se-
quent

∀x1. . . . ∀xm. c(S) ⇒

is derivable in LK—i.e. the formula ¬∀x1. . . . ∀xm. c(S) is valid—if and only if
there exists a resolution tree under S whose root is the empty clause 2.
Proof. Soundness is easy by induction. For completeness Skolemization and
Herbrand’s theorem; Skolemization is explained later in §5.5.1. 2

Although the above soundness and completeness are restricted to formulas
of the form ¬∀x1. . . . ∀xm. c(S), in fact we see in Section 5.5.1 that every formula
can be transformed to a formula of the above form so that essentially the above
theorem applicable to all formulas.

5.5.3 Example. (Taken from [15, pp. 142]) Consider the following assumptions:

– Isaac is a boy and Kate is a girl.

– Joe’s friends are all tall.

– Harry loves any girl that is tall.

– Isaac and Kate are friends of Joe.

We are to examine the following question:

Does Harry love any of Joe’s friends? If he does, who does he love? (5.5)

We can express these assumptions by the following clauses.{
B(i)

} {
G(k)

} {
¬F (j, x), T (x)

} {
¬G(y),¬T (y), L(h, y)

}{
F (j, i)

} {
F (j, k)

}
Here h, i, j, k are constants; and x, y are variables.

The question can now be formulated as a clause{
¬L(h, z),¬F (j, z)

}
by taking the negation of the desired property. If we manage to derive a contra-
diction 2 from these clauses, then it means a positive answer to (5.5)—Harry
loves some of Joe’s friend.
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Indeed, 2 is derived by the following resolution tree.

In the resolution tree, the variable z (the person the question (5.5) asks about)
gets replaced with k. Therefore we see that Kate is an answer.

As we saw in the previous example, in resolution for predicate logic finding a
suitable substitution is a key—given two formulas A and B, find a substitution
θ so that Aθ ≡ Bθ. Such a substitution θ is called a unifier of A and B; the
problem of finding a unifier is called unification.

5.5.4 Example (Unification). An example from [15].

P (x, f(y)) P (g(z, z), z) P (g(f(u), v), w)
g(z, z)/x P (g(z, z), f(y)) P (g(z, z), z) P (g(f(u), v), w)
f(y)/z P (g(f(y), f(y)), f(y)) P (g(f(y), f(y)), f(y)) P (g(f(u), v), w)

y/u P (g(f(y), f(y)), f(y)) P (g(f(y), f(y)), f(y)) P (g(f(y), v), w)
f(y)/v P (g(f(y), f(y)), f(y)) P (g(f(y), f(y)), f(y)) P (g(f(y), f(y)), w)
f(y)/w P (g(f(y), f(y)), f(y)) P (g(f(y), f(y)), f(y)) P (g(f(y), f(y)), f(y))

Thus the substitution

θ :=[g(z, z)/x] [f(y)/z] [y/u] [f(y)/v] [f(y)/w]

=[g(f(y), f(y))/x, f(y)/z, y/u, f(y)/v, f(y)/w]
(5.6)

is a unifier. In fact it is the most general unifier (mgu), in the following sense.
The following substitution

ξ := [g(f(g(y, f(y))), f(g(y, f(y))))/x, f(g(y, f(y)))/z,

g(y, f(y))/u, f(g(y, f(y)))/v, f(g(y, f(y)))/w]

is another unifier but is more specialized; and it is obtained from the mgu θ by

ξ = θ[g(y, f(y))/y] .

Any unifier σ factors through the mgu: there exists a substitution σ′ such that
σ = θσ′.
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5.5.1 Prenex Normal Form and Skolemization

It must be noted that, in the resolution principle for predicate logic, there are
absolutely no quantifiers around. Still Thm. 5.5.2 states that the formalism
of resolution is powerful enough to derive all the valid formulas.5 How is that
possible?

We shall now exhibit one of the two crucial results for this—namely Skolem-
ization.6 It states that satisfiability of any formula can be reduced to that of a
closed formula of the form

∀x1. . . . ∀xn. B (5.7)

where B is quantifier-free.

5.5.5 Definition (Prenex normal form). A predicate formula A is said to be
in prenex normal form if it is in the following form:

A ≡ Qx1. . . . Qxn. B

where Q is either ∀ or ∃, x1, . . . , xn are different variables, and B is a quantifier-
free formula.

5.5.6 Lemma. For any predicate formula A, there is a formula Apnf in prenex
normal form that is logically equivalent to A (i.e. A ∼= Apnf).

Proof. Use the following logical equivalences to pull quantifiers outwards. We
assume that x does not occur freely in B.

∀x.A ∧B ∼= ∀x.(A ∧B) ∃x.A ∧B ∼= ∃x.(A ∧B)

∀x.A ∨B ∼= ∀x.(A ∨B) ∃x.A ∨B ∼= ∃x.(A ∨B)

∀x.A ⊃ B ∼= ∃x.(A ⊃ B) ∃x.A ⊃ B ∼= ∀x.(A ⊃ B)

¬∀x.A ∼= ∃x.¬A ¬∃x.A ∼= ∀x.¬A 2
Further we eliminate all the existential quantifiers. Note that, unlike in

Lem. 5.5.6, we lose logical equivalence (Exercise 5.11).

5.5.7 Definition (Skolemization). Let

∀x1,1. . . . .∀x1,n1 .
∃y1. ∀x2,1. . . . .∀x2,n2 .
. . .
∃ym. ∀xm+1,1. . . . .∀xm+1,nm+1

. B

be a formula in prenex normal form, with B quantifier-free. A Skolemization is
a formula

∀x1,1. . . . .∀x1,n1 .
∀x2,1. . . . .∀x2,n2

.
. . .
∀xm+1,1. . . . .∀xm+1,nm+1

.
B [ f1(

−→x1) / y1, f2(
−→x1,

−→x2) / y2, . . . , fm(−→x1,
−→x2, . . . ,

−→xm) / ym ] .

5More precisely: resolution refutes all the unsatisfiable formulas.
6Named after a Norwegian logician, T. Skolem.
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Here f1, . . . , fm are “fresh” function symbols (they are not in the original
FnSymb) of suitable arities; fm(−→x1,

−→x2, . . . ,
−→xm) is short for

fm
(
x1,1, . . . , x1,n1

,
. . . ,
xm,1, . . . , xm,nm

)
.

The previous definition is a “hell of syntactic bureaucracy” but the idea is
simple: you remove all the existential quantifiers, and replace each existentially
quantified variable yi by fi(. . . ). The arguments of the fresh function symbol
fi are the universally quantified variables that are outside ∃yi.

5.5.8 Example. A formula

∀x.∀y.∃z.∀u.∃w.(P (f(x,w), y) ⊃ Q(y, z, g(u)))

is in a prenex normal form; we can use fresh function symbols h, i to Skolemize
it:

∀x.∀y.∀u.(P (f(x, i(x, y, u)), y) ⊃ Q(y, h(x, y), g(u))) .

5.5.9 Remark. Skolemization is in fact a common thing to do when you write
a (not necessarily formal) mathematical proof. For example, let’s say f : R → R
is a continuous function. By definition,

For each x ∈ R and ε > 0, there exists δ > 0 such that |x′ − x| < δ
implies |f(x′)− f(x)| < ε.

In using this fact in a proof, say, of the fact that f + g is continuous if f and g
are, you would say:

Let x ∈ R and ε > 0; then we can take δ > 0 such that: |x′ − x| < δ
implies |f(x′)− f(x)| < ε/2.

This δ in fact depends on x and ε—thus a function δ(x, ε). This is the “fresh
function symbol” used in Skolemization!

5.5.10 Proposition. Let A be a formula in a prenex normal form; and ASko

be a Skolemization of A. Then we have

A is satisfiable ⇐⇒ ASko is satisfiable .

Proof. Here we just sketch the simple case that A is of the form ∀x.∃y.B with
B quantifier-free; a general proof is a straightforward extension and left as an
exercise.

There is a fresh function symbol f of arity 1, such that

ASko ≡ ∀x.B
[
f(x)/y

]
.

Assume A is satisfiable. We take S, J so that JAKS,J = J∀x.∃y.BKS,J = tt. We
extend S and J , and obtain a new structure S′ for FnSymb′ := FnSymbq{f},
and J ′ over S′. This is done by:

JfKS′(u) := (v ∈ U such that JBKS,J[x 7→u,y 7→v] = tt) ;

note that, by J∀x.∃y.BKS,J = tt, such v always exists for any u. We set J ′ := J .
Then it is easy to see that JASkoKS′,J ′ = J∀x.B[f(x)/y]KS′,J ′ = tt.
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Conversely, assume ASko is satisfiable. Let S′ and J ′ be such that JASkoKS′,J ′ =J∀x.B[f(x)/y]KS′,J ′ = tt. Then the structure S for the original FnSymb, defined
as the restriction of S′, and J ′ = J obviously satisfy JAKS,J = J∀x.∃y.BKS,J = tt.2

Combining the results presented so far, we obtain the following procedure
for checking by Thm. 5.5.2 if a given predicate formula A is valid.

A is valid ⇐⇒ ¬A is not satisfiable

⇐⇒ (¬A)pnf is not satisfiable by Lem. 5.5.6

⇐⇒ ((¬A)pnf)Sko is not satisfiable by Prop. 5.5.10.

⇐⇒ ¬((¬A)pnf)Sko is valid

(We remark that this also constitutes part of the completeness proof (Thm. 5.5.2).)

Exercises

5.1. Use Thm. 5.2.8 (strong completeness) to give another proof of completeness
of propositional LK (Thm. 3.4.3).

5.2. Prove Thm. 5.2.9.

5.3. Prove Lem. 5.3.2.

5.4 (From [5]). Given the following hypotheses:

– If it rains, Joe brings his umbrella.

– If Joe has an umbrella, he doesn’t get wet.

– If it doesn’t rain, Joe doesn’t get wet.

Use resolution to prove that Joe doesn’t get wet.
Hint: express “it rains” by R, “Joe has an umbrella” by U , “Joe gets wet”

by W .

5.5. Prove Lem. 5.4.11.

5.6. Complete the proof of Lem. 5.4.12.

5.7. Assume
` L1, . . . , Ln ⇒

where each Li is a literal. Prove that there are j, k ∈ [1, n] such that Lj = L∗
k.

5.8. Prove the soundness part of Thm. 5.5.2.

5.9. Prove the completeness part of Thm. 5.5.2. (Hard. You will most probably
have to rely much on literature)

5.10. In the proof of Lem. 5.5.6:

1. Prove the listed logical equivalences. (The first one for ⊃ can be under-
stood as: “when everybody has finished eating, a taxi is coming”)
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2. Show that, if x occurs freely in B, then

∀x.A ∨ ∀B ∼= ∀x.(A ∨B)

does not hold.

3. In the proof it is assumed that x does not occur freely in B. Justify this
assumption.

5.11. Describe the relationship between the logical equivalence A ∼= B and the
fact that

A is satisfiable ⇐⇒ B is satisfiable .

Is there any implication between the two?

5.12. 1. Express the following (informal) statement as a predicate formula:
“for any number, there is another number that is strictly smaller.”

2. Skolemize the formula.

3. Show that the two formulas thus obtained are not logically equivalent.

5.13. Complete the proof of Prop. 5.5.10.

5.14 (Universal closure). Let B be a formula, with FV(B) = {x1, . . . , xn}.
Show that

B is valid ⇐⇒ ∀x1. . . . ∀xn. B is valid.

The formula ∀x1. . . . ∀xn. B is said to be a universal closure of B. Note that it
is indeed a closed formula.
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Computability
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Preface to Part II

The central question in the second part of this textbook is simple:

What can “machines” do?

We will discuss, in mathematically rigorous terms, what are “machines,” what
they can do, and what they cannot. Remarkable points are:

– There are, indeed, things that machines cannot do. Moreover we can
mathematically prove this.

– Different natural “definitions of machine”—Turing machine, λ-calculus,
recursive function, while program—coincide in their capabilities.

As our definitions/formalizations/representations of machine, we use two:

– recursive functions,7 which are convenient in mathematical reasoning; and

– while-programs, which are intuitive for many of the modern programmers.

The former are mathematical and abstract representation; the latter are more
concrete and operational (you can more easily imagine how they operate step
by step). We go back and forth between these two representations.8

In this part we will also see some basic and important techniques in theo-
retical computer science. To name a couple of them:

– The Gödel numbers that translates any syntactic formalism into natural
numbers;

– the diagonal method.

The latter loosely means “negative self-reference,” such as in the liar’s paradox.

7Also called: µ-recursive functions or simply computable functions. The last name is more
widely accepted in recent years. See [7].

8In the (numerous) textbooks on the theory of computability, it is also standard to use
two formalisms, one abstract and one concrete. For the latter Turing machines are very often
used.
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Chapter 6

Recursive Function

First we introduce our first “definition” of machine, namely recursive function.
We have

recursive function = primitive recursive function

+ (unbounded) µ-operator.

6.1 Primitive Recursive Function

6.1.1 Definition

We begin with introducing a more basic class of functions.

6.1.1 Notation ((Meta) λ-notation). We will be using a bold-style symbol λ
to denote functions from N to N. For example, λx. x+ 1 denotes a function

λx. x+ 1 : N −→ N , x 7−→ x+ 1 .

More generally, the same λ-notation is used for functions Nm → N, as in

λ(x1, x2, x3). x1 + x2 + x3 : N3 −→ N .

Note that λ is a meta symbol, unlike the object level symbol λ in the λ-calculus
(like in λx.λy. xy).

6.1.2 Definition (Primitive recursive function). The class of primitive recur-
sive functions is defined inductively as follows. We write “PR” for “primitive
recursive.”

– (Base cases)

• The zero function zero : N0 → N, defined by zero() = 0, is PR.

• The successor function succ : N → N, defined by succ(x) = x + 1, is
PR.

• A projection projni : Nn → N, defined by projni (x0, . . . , xn−1) = xi is
PR. Here i ∈ n = {0, 1, . . . , n− 1}.
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– (Composition) Assume g : Nm → N is PR, and the functions g0, . . . , gm−1 :
Nn → N (with the same arity) are all PR, too. Then the function

λ(x0, . . . , xn−1). g
(
g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1)

)
is PR.

– (Primitive recursion) Let g : Nn → N and h : Nn+2 → N be PR functions.
Then the function f : Nn+1 → N, defined by

f(−→x , 0) := g(−→x ) ,

f(−→x , y + 1) := h(−→x , y, f(−→x , y))
(6.1)

is PR. Here −→x is short for x0, . . . , xn−1.

That is, in a simple rule-based presentation:

zero is PR
(zero)

succ is PR
(succ)

projni is PR
(projni )

g is PR g1 is PR · · · gm is PR

λ−→x . g(g1(
−→x ), . . . , gm(−→x )) is PR

(Comp)

g is PR h is PR f(−→x , 0) = g(−→x ) f(−→x , y + 1) = h(−→x , y, f(−→x , y))

f is PR
(PR)

Recall that N0 ∼= 1; hence a 0-ary function N0 → N can be thought of as an
element of N.

6.1.3 Remark. Observe that

{primitive recursive functions} ⊆
⋃
m∈N

(Nm → N) ,

where Nm → N = N(Nm) is the function space from Nm to N.

6.1.4 Remark. Note that, in Def. 6.1.2, the functions zero, f , g, etc. are all
mathematical entities. There are no syntactic symbols, or “syntax,” there.

6.1.2 Some Examples

6.1.5 Example (Identity). The identity function

idN : N −→ N , x 7−→ x

is PR, since idN = proj10.

6.1.6 Example (Predecessor). The predecessor function pred : N → N, defined
by

pred(x) :=

{
0 if x = 0;

x− 1 if x > 0

is PR. Indeed, pred can be defined via primitive recursion:

pred(0) = zero ; pred(y + 1) = proj20
(
y, pred(y)

)
.

Note that the last expression proj20
(
y, pred(y)

)
is equal to y; we need this com-

plicated expression to match the format (6.1) of primitive recursion.
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Projections allow us to use “any argument, in any order.”

6.1.7 Lemma. Let i0, . . . , im−1 ∈ n = {0, . . . , n − 1}, and f : Nm → N be a
PR function. Then the function

λ(x0, . . . , xn−1). f(xi0 , xi1 , . . . , xim−1
) : Nn −→ N

is PR.

Proof. Let −→x stand for x0, . . . , xn−1. The function is the same as

λ(x0, . . . , xn−1). f
(
projni0(

−→x ), . . . , projnim−1
(−→x )

)
,

which is PR by the composition rule. 2
Most of the “usual operations” on natural numbers are PR. For the proof

you need programming in PR functions.

6.1.8 Example (Addition). The function add : N2 → N, defined by add(x, y) :=
x+ y, is PR. Indeed,

add(x, 0) = x ; add(x, y + 1) = succ(add(x, y)) ; (6.2)

it is straightforward that this definition indeed determines a PR function (Ex-
ercise 6.1).

6.1.9 Example (Normalized subtraction −̇). The function subtr : N2 → N,
defined by

subtr(x, y) :=

{
x− y if y ≤ x

0 otherwise

is PR. We denote this normalized subtraction operation by x −̇ y.

6.1.10 Example. The following functions are all PR.

mult : N2 −→ N , mult(x, y) := x · y ;
exp : N2 −→ N , exp(x, y) := xy ;
fact : N −→ N , fact(x) := x! = x · (x− 1) · · · · · 2 · 1 .

6.1.11 Lemma (Bounded sum/product). Let f : Nn+1 → N be a PR function.
The functions

λ(−→x , y).
∑
z<y

f(−→x , z) : Nn+1 −→ N

λ(−→x , y).
∏
z<y

f(−→x , z) : Nn+1 −→ N

are PR. Here −→x is short for x0, . . . , xn−1; given (−→x , y) as an argument, the
functions produces the outputs∑

z<y

f(−→x , z) = f(−→x , 0) + · · ·+ f(−→x , y − 1) ;

∏
z<y

f(−→x , z) = f(−→x , 0) · · · · · f(−→x , y − 1) ,

respectively.
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Let us give a detailed proof for once. We do the sum part.

Proof. Let us temporarily write F : Nn+1 → N for the former “bounded sum”
function. Then we have

F (−→x , 0) = zero , F (−→x , y + 1) = add
(
F (−→x , y), f(−→x , y)

)
. (6.3)

Therefore, in view of (6.1), it suffices to show that the functions

λ−→x . zero and λ(−→x , y, z). add
(
z, f(−→x , y)

)
are PR. The former is obvious by the (Composition) rule of Def. 6.1.2; the latter
is obvious, too, since

λ(−→x , y, z). z is PR by Lem. 6.1.7; (6.4)

λ(−→x , y, z). f(−→x , y) is PR by Lem. 6.1.7; (6.5)

λ(−→x , y, z). sum
(
z, f(−→x , y)

)
is PR (6.6)

by (6.4), (6.5) and the (Composition) rule of Def. 6.1.2. (6.7)

This concludes the proof. 2
6.1.3 Primitive Recursive Predicate

6.1.12 Definition (Predicate). A predicate (of arity n) is a subset

P ⊆ Nn .

Note again that a predicate P ⊆ Nn is a mathematical—or “semantic”—
entity; it is different from a predicate symbol in Chap. 4.

Recall from Def. 1.2.13 the characteristic function χP : Nn → 2 for a subset
P ⊆ Nn. It returns 0 (“true”) if the argument belongs to P ; it returns 1 (“false”)
otherwise.

6.1.13 Definition (Primitive recursive predicate). A predicate P ⊆ Nn is said
to be primitive recursive (PR) if the composition

Nn
χP

//2 �
�

//N

is a PR function Nn → N. Here the function 2 ↪→ N is the inclusion function
given by 0 7→ 0 and 1 7→ 1.

6.1.14 Example. 1. The 1-ary predicate ( = 0), i.e. {0} ⊆ N is PR.
Indeed, we have

χ( =0)(x) = 1 −̇ (1 −̇ x) ,

where −̇ is the normalized subtraction operation from Example 6.1.9.

2. The 2-ary predicate =—which we can also denote by ( 1 = 2) or by
λ(x1, x2). x1 = x2—is PR. It is, as a subset,

{(x, y) | x = y} ⊆ N2 ;

its characteristic function is

χ=(x, y) = χ( =0)

(
(x −̇ y) + (y −̇ x)

)
.
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3. The 2-ary predicate ≤ is PR; its characteristic function is

χ≤(x, y) = χ( =0)(x −̇ y) .

The class of PR predicates is closed under the Boolean operations.

6.1.15 Lemma. Let P,Q ⊆ Nn be PR predicates. Then the predicates

¬P , P ∨Q , P ∧Q ,

which are, as subsets,

Nn \ P , P ∪Q , P ∩Q ,

are also PR. 2
It is also true under bounded quantifiers. Note the arities of the predicates;

in particular, y is an argument of the predicates.

6.1.16 Lemma. Let P ⊆ Nn+1 be a PR predicate. Then the (n + 1)-ary
predicates

λ(−→x , y).
(
∀z<y. P (−→x , z)

)
λ(−→x , y).

(
∃z<y. P (−→x , z)

)
are both PR.

The former predicate is true if and only if all of

P (−→x , 0) , P (−→x , 1) , . . . , P (−→x , y − 1)

are true. The latter is true if at least one of these predicates is true.

Proof. For the former predicate, its characteristic function is given by

χ( =0)

(∑
z<y

χP (
−→x , z)

)
.

This is a PR function by Lem. 6.1.11. For the latter:∏
z<y

χP (
−→x , z) . 2

6.1.17 Lemma. Let P ⊆ Nm be a PR predicate; and f0, . . . , fm−1 : Nn → N
be PR functions. Then the predicate

λ−→x . P
(
f0(

−→x ), . . . , fm−1(
−→x )
)
,

where −→x is short for x0, . . . , xn−1, is a PR predicate. 2
6.1.18 Lemma (Case distinction). Let P0, . . . , Pn−1 ⊆ Nm be PR predicates
such that, for any −→x ∈ Nm, exactly one out of P0(

−→x ), . . . , Pn−1(
−→x ) is true.

Furthermore, let g0, . . . , gn−1 : Nm → N be PR functions. Then the function
f : Nm → N, defined by

f(−→x ) :=


g0(

−→x ) if P0 is true

g1(
−→x ) if P1 is true

· · ·
gn−1(

−→x ) if Pn−1 is true,

is a PR function.
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Proof.

f(−→x ) =
∑
i<n

(
1 −̇ χPi

(−→x )
)
· gi(−→x ) 2

6.1.19 Example. The functions max,min : N2 → N are PR.

We note that every PR function is total—all the functions have been of the
type Nm → N. We will next introduce a wider class of recursive functions ; these
are not necessarily total.

We present some further examples that are used later.

6.1.20 Lemma. Let P ⊆ Nn+1 be a PR predicate. The function

λ(−→x , y).
(
µz<y. P (−→x , z)

)
: Nn+1 −→ N ,

is PR. Here the number µz<y. P (−→x , z) is defined by:

– if any of P (−→x , 0), P (−→x , 1), . . . , P (−→x , y − 1) is true, then

µz<y. P (−→x , z) := (the least z such that P (−→x , z) is true);

– if none of P (−→x , 0), P (−→x , 1), . . . , P (−→x , y − 1) is true, then

µz<y. P (−→x , z) := y .

The operator µz<y is called bounded minimization.

Proof. (Sketch) Its characteristic function can be given by

χP (
−→x , 0)

+ χP (
−→x , 0) · χP (

−→x , 1)
+ · · ·
+ χP (

−→x , 0) · χP (
−→x , 1) · · · · · χP (

−→x , y − 1) .

2
6.1.21 Example. 1. The function div : N2 → N, defined by div(x, y) :=

x÷ y, is PR. Indeed:

div(x, y) =
(
µz<x+1. x < z · y

)
−̇ 1 .

2. The function rem : N2 → N, where rem(x, y) is the remainder when x is
divided by y, is also PR.

6.1.22 Lemma. Let f : N → N be a PR function. Let f# : N2 → N be the
function that applies f multiple times. Concretely,

f#(x, 0) := x ; f#(x, y + 1) := f(f#(x, y)) .

This function f# is PR. 2
6.1.23 Lemma. 1. The predicate prime ⊆ N, where prime(x) is true if and

only if x is a prime number, is PR.

2. The function pr : N → N, mapping x to the x-th smallest prime number,
is PR.

Proof. Exercise 6.8. 2
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6.2 Recursive Function

It is not hard to see that primitive recursive functions do not cover all the
functions that are “computable.” Consider the class of functions that are rep-
resented by some while-programs; they are naturally thought of as computable.
However they are not necessarily total functions. For example, the program

z := 0;

while (z + 1 != 0) {

z := z + 1

}

does not terminate. In the formalism of (primitive) recursive function, such
“while-loops” are introduced in the form of the minimization1 operator µ.2

6.2.1 Definition

Compare the next definition with Def. 6.1.2 of PR function; the principal dif-
ference is in the minimization operation. Note also that a recursive function is
in general a partial function Nm ⇀ N; partiality results from minimization.

6.2.1 Definition (Recursive function). The class of recursive functions is de-
fined inductively as follows.

– (Base cases)

• zero : N0 → N is recursive.

• succ : N → N is recursive.

• projni : Nn → N is recursive.

– (Composition) Assume g : Nm ⇀ N and g0, . . . , gm−1 : Nn ⇀ N are all
recursive functions. Then the partial function

λ(x0, . . . , xn−1). g
(
g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1)

)
: Nn ⇀ N

is a recursive function. Here the value

g
(
g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1)

)
is

• defined if all of the values

g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1), and
g
(
g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1)

)
are defined; and

• undefined if any of these values is undefined.

1Also called: the least solution operator.
2There are total computable functions that are not primitive recursive; see Example 6.2.5.
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– (Primitive recursion) Let g : Nn ⇀ N and h : Nn+2 ⇀ N be recursive
functions. Then the partial function f : Nn+1 ⇀ N, defined by

f(−→x , 0) := g(−→x ) ,

f(−→x , y + 1) := h(−→x , y, f(−→x , y))
(6.8)

is a recursive function.

– (Minimization) Let f : Nn+1 ⇀ N be a recursive function. The function

λ−→x .
(
µy. f(

−→x , y) = 0
)

: Nn ⇀ N

is a recursive function. Here the least solution µy. f(
−→x , y) = 0 is

• defined to be z, in case

∗ f(−→x , 0), f(−→x , 1), . . . , f(−→x , z) are all defined,

∗ f(−→x , 0), f(−→x , 1), . . . , f(−→x , z − 1) are all 6= 0, and

∗ f(−→x , z) = 0;

• undefined otherwise.

The minimization operation looks at the values of f(−→x , 0), f(−→x , 1), . . . one
by one, checks if they are equal to 0, and returns the least index z for which
f(−→x , z) is 0. The number µy. f(

−→x , y) = 0 is undefined if:

– f(−→x , 0), f(−→x , 1), . . . are all defined and 6= 0, or

– there does exist the smallest z such that f(−→x , z) = 0, but before reaching
this z, there is some y < z with which f(−→x , y) is undefined (note that f
is in general a partial function).

We can think of the fact that f(−→x , y) is undefined as non-termination or “taking
infinitely long for computation.”

6.2.2 Example. The partial function

µy. (y + 1 = 0)

is a 0-ary recursive function N0 ⇀ N. It is as a function ∅ → N where ∅ ⊆ N0—
i.e. its value is not defined for the unique input.

We also note that the partial function

0 ·
(
µy. (y + 1 = 0)

)
is a 0-ary recursive function N0 ⇀ N. By the (Composition) part of Def. 6.2.1,
its value is not defined. (“Undefined times zero is undefined”)

6.2.3 Definition (Total recursive function). A total recursive function is a
recursive function f : Nn ⇀ N that is defined for any −→x ∈ Nn.

The following is the precise definition of two partial functions being “equal.”

6.2.4 Definition (Kleene equality). Let f, g : Nm ⇀ N be partial functions.
The Kleene equality f

.
= g is defined as follows.

f
.
= g

def⇐⇒ for each x0, . . . , xm−1 ∈ N,{
neither f(x0, . . . , xm−1) nor g(x0, . . . , xm−1) is defined, or

both of them are defined and f(x0, . . . , xm−1) = g(x0, . . . , xm−1).
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That is: f
.
= g means f and g are the same in

– whether they are defined, and

– their values (when defined).

Here is a famous example of a total recursive function that is not primitive
recursive.

6.2.5 Example (The Ackermann function). Consider the following function
A : N2 → N.3

A(x, y) :=


y + 1 if x = 0

A(x− 1, 1) if x > 0 and y = 0

A(x− 1, A(x, y − 1)) if x > 0 and y > 0

(6.9)

This function A is well-defined (which is not trivial—see Exercise 6.9). It is re-
cursive; while showing that directly (i.e. giving a µ-expression that computes A)
is hard, a while-program for A is easy to come up with, and we can use the equiv-
alence between recursive functions and while-programs (Cor. 7.1.9). It is not
primitive recursive; it grows faster than any PR function (Exercise 6.10). Note
that the definition (6.9) is not primitive recursion on x, y (cf. Exercise 6.11).

6.2.2 Recursive Predicate

6.2.6 Definition. A predicate P ⊆ Nn is said to be recursive if its characteristic
function χP : Nn → N is a total recursive function.

A recursive predicate is also called a decidable predicate.

Note the totality requirement on χP . A characteristic function, by its definition,
must be always total (Def. 1.2.13).

6.2.7 Lemma. Let P,Q ⊆ Nn be recursive predicates. Then the predicates

¬P , P ∨Q , P ∧Q ,

which are, as subsets,

Nn \ P , P ∪Q , P ∩Q ,

are also recursive. 2
6.2.8 Lemma (Case distinction). Let P0, . . . , Pn−1 ⊆ Nm be recursive predi-
cates such that, for any −→x ∈ Nm, exactly one out of P0(

−→x ), . . . , Pn−1(
−→x ) is

true. Furthermore, let g0, . . . , gn−1 : Nm ⇀ N be recursive functions. Then the
partial function f : Nm ⇀ N, defined by

f(−→x ) :=


g0(

−→x ) if P0(
−→x ) is true

g1(
−→x ) if P1(

−→x ) is true

· · ·
gn−1(

−→x ) if Pn−1(
−→x ) is true,

(6.10)

is a recursive function.

3There are many variations that are called an “Ackermann function”; the function A here
is one of the simplest.
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We defer the proof to pp. 116 in Chap. 8, since it calls for a machinery of
universal recursive function.

6.2.9 Remark. Note that the proof of Lem. 6.2.8 can not be done in the same
way as in Lem. 6.1.18. Consider, as an example, the partial function:

f(x) :=

{
0 if x = 0,

µy. y + 1 = 0 if x > 0,

where µy. y+1 = 0 is the “undefined value” in Example 6.2.2. By the definition,
the value f(0) is indeed defined and is 0. However, if we are to do the same
proof as the one for Lem. 6.1.18, we need to have

f(x) = (1 −̇ χ(x=0)) · 0 + (1 −̇ χ¬(x=0)) · (µy. y + 1 = 0) .

This value is not defined even for x = 0, since the second “irrelevant” summand

(1 −̇ χ¬(x=0)) · (µy. y + 1 = 0)

evaluates to “undefined.”

Exercises

6.1. Give a detailed proof that the definition (6.2) indeed determines a PR
function.

6.2. Prove that the functions subtr, mult, exp, and fact (Examples 6.1.9–6.1.10)
are all PR.

6.3. Formulate a result similar to Lem. 6.1.7 for PR predicates, and prove it.

6.4. Prove Lem. 6.1.15.

6.5. Prove Lem. 6.1.17.

6.6. Prove that max and min (Example 6.1.19) are both PR.

6.7. Fill in the details of the proof of Lem. 6.1.20.

6.8. Prove Lem. 6.1.23. Hint: for 1., use a bounded quantifier (Lem. 6.1.16).
For 2., use a bounded least solution operator (Lem. 6.1.20); note that, given
the x-th prime pr(x), the (x+ 1)-st prime is not bigger than the prime number
pr(x)! + 1.

6.9. Prove that the function A in Example 6.2.5 is well-defined. Hint: use the
lexicographic order on N2.

6.10. Consider the function A in Example 6.2.5.

1. Let f : Nm → N be any PR function. Show that there exists a natural
number z ∈ N such that

f(x0, . . . , xm−1) < A(z, x0 + · · ·+ xm−1) for any x0, . . . , xm−1 ∈ N.

Note: z is the same for all x0, . . . , xm−1. Hint: use induction along the
definition of PR function.
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2. Conclude that A : N2 → N is not PR. Hint: this is not very easy! You use
a diagonal argument.

6.11. Consider the function A in Example 6.2.5. While the function A : N2 → N
itself is not PR, when we fix its first argument, the function

A(x, ) : N −→ N , y 7−→ A(x, y)

is PR, for any x ∈ N. Prove this.





Chapter 7

Recursive Function and While Program

In this chapter we introduce another formalism for computation—namely while
program—and show that it is equivalent to the formalism of recursive function.
This allows us to prove some useful structural properties of recursive functions.

As already noted, it is more common to use Turing machines instead of
while programs for the second, more operational, formalism. Our choice here
follows [11, 13].

7.1 While Program

For the rigorous development of the theory, it is desirable to define precisely
what a while program is and what function it computes. However, it incurs a
lot of uninspiring details and in the current notes we favor intuitions over rigor
and precision. Thus we will be informal when speaking about while programs.

The set of while programs is the core of the imperative languages like C. An
example is:

i := 1; j := x0;
while (j 6= 0) {
i := i× j ;
j := j −̇ 1

};
return i

which is easily seen to compute the factorial x0! = x0 · (x0 − 1) · · · · · 2 · 1.
In while programs:

– every variable carries a natural number as its value;

– we can use input values (which we always denote by x0, . . . , xn−1);

– we can use arithmetic operations +, −̇,×;

– we can use conditionals by =, 6=, < and their Boolean combinations;

– we can use if-branches if . . . then . . . else . . . ;

– we can use while-loops while . . . {. . . }; and

107
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– the output value is designated by the return construct.

Then it is straightforward to see that any recursive function can be computed
by some while program.

7.1.1 Theorem. For any recursive function f : Nm ⇀ N, there is a while
program p that computes f(x0, . . . , xm−1).

Proof. (Sketch) For zero, succ and projnj , we write

return 0 , return x0 + 1 , return xi ,

respectively.
For the composition

λ(x0, . . . , xn−1). g
(
g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1)

)
,

assume that the program
pi

return ri

computes the function gi, for each i ∈ [0,m− 1]. Furthermore, assume that the
program

q

return r

computes the function g. Then the program

p0
...

pm−1

q[r0/x0, . . . , rm−1/xm−1]

return r[r0/x0, . . . , rm−1/xm−1]

computes the desired composition. Here [r0/x0, . . . , rm−1/xm−1] represents suit-
able substitution.

For primitive recursion (6.8), we write1

r := g(−→x ); j := 0;
while j 6= y {

r := h(−→x , j, r)
j := j + 1

};
return r

Finally, for minimization

λ−→x .
(
µy. f(

−→x , y) = 0
)
,

1Here we are even more informal, writing recursive functions explicitly in a while program.
It is straightforward to replace such explicit occurrences of recursive functions with the while
programs that compute them.
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we can write the following while program.

r := 0;
while f(−→x , r) 6= 0 {

r := r + 1
};
return r

2
Not so easy is the converse, that is, the fact that the function computed by

a while program is a recursive function. Towards this goal let us first consider
only “normalized” while programs.

7.1.2 Definition (Normalized while program). A while program is normalized
if it is of the following form:

w := e(x0, . . . , xn−1); (* encode input into a single variable w*)
while q(w) 6= 0 {
w := g(w) (* update w *)

};
y := h(w); (* prepare an output *)
return y

(7.1)

where e, g, h, q are primitive recursive functions (here we have extended the
syntax of while programs to allow explicit PR functions).

7.1.3 Lemma. Let e, g, h, q be primitive recursive functions. Let f : Nn ⇀ N
be the partial function computed by the normalized program (7.1). Then f is
recursive.

Note that f(−→x ) is undefined if and only if the program does not terminate.

Proof. (Sketch)

f(−→x ) = h

(
g#

(
e(−→x ), µz.

(
q
(
g#
(
e(−→x ), z

) )
= 0

) ) )
,

where g# is as in Lem. 6.1.22. Note here that µz.(q(g
#(e(−→x ), z)) = 0) is the

number of loop executions after which q(w) = 0 is true for the first time. 2
It remains to show that each while program can be transformed into an

equivalent (i.e. computing the same function) while program that is normalized.
Towards this goal we need two “tricks”:

– Computable (or effective) encoding a sequence of natural numbers into a
natural number (a trick called the Gödel numbering); and

– simplification of control structure via program counters.

7.1.1 The Gödel Numbering of Sequences

Our aim now is to encode

a sequence (x0, . . . , xm−1) ∈ Nm of natural numbers
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of an arbitrary length m ∈ N, into

a single natural number n ∈ N.

This is obviously possible if we forget about the computability (or effectivity)
of the encoding, since we can construct a bijection

N∗ =
∐
m∈N

Nm ∼= N

(they have the same cardinality ℵ0). The point here is that one can also do this
effectively, that is, using PR functions.

7.1.4 Definition (The Gödel numbering of sequences). Define G : N∗ → N by:

G(x0, . . . , xm−1) :=
∏

i∈[0,m−1]

(
pr(i)

)xi+1
,

where pr : N → N is the PR function from Lem. 6.1.23.

For example, G(1, 4, 0, 2) = 21+1 · 34+1 · 50+1 · 72+1 = 1666980. The number
G(x0, . . . , xm−1) is called the Gödel number of the sequence x0, . . . , xm−1.

We have the following property. Note that there is no such notion like “a
PR function N∗ → N”—the length of the input must be fixed.

7.1.5 Lemma. For each m, the restriction Gm : Nm → N of the above G is
primitive recursive.

Proof. Obvious from Lem. 6.1.23. 2
Here are the “inverses” of G.

7.1.6 Lemma. There exist PR functions

| | : N −→ N and
λ(x, y). (x)y : N2 −→ N

such that

–
∣∣G(x0, . . . , xm−1)

∣∣ = m, and

–
(
G(x0, . . . , xm−1)

)
i
= xi for each i ∈ [0,m− 1].

Proof. To calculate |x|, find the smallest i such that the remainder of x÷ pr(i)
is not 0. This can be done with a bounded least solution operator since i never
exceeds x. The second is easy. 2
7.1.7 Notation. In what follows, G(1, 4, 0, 2) will often be simply written as
〈1, 4, 0, 2〉.
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7.1.2 Normalizing While Programs

We can transform any while program into an equivalent normalized program
(Def. 7.1.2). The transformation is explained by an example. Consider the
following program, where p, g, h are PR functions.

while x2 == 0 {
if x0 == 0 {
while p(x1, x2) 6= 0 {
x1 := g(x2)

}
} else {
x1 := h(x1)

}
}
return x0

(7.2)

We first put a “marker” for each stage of execution of the program.

0

while x2 == 0 {

1

if x0 == 0 then {

2

while p(x1, x2) 6= 0 {

3

x1 := g(x2)

} 4

} else {

5

x1 := h(x1)

} 6

}

7

return x0

2

Then it is not hard to see that the following program is equivalent to the orig-
inal one (7.2). Here pc stands for “program counter”; and the cases construct
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is the obvious abbreviation of if . . . then . . . else . . . .

while pc 6= 7 {
cases {

pc == 0 && x2 == 0 : pc := 1;
pc == 0 && x2 6= 0 : pc := 7;
. . .
pc == 3 :

(
x1 := g(x2); pc := 2

)
;

. . .
}

}
return x0

(7.3)

Now we “bundle up” the variables using the Gödel numbering (Def. 7.1.4,
Lem. 7.1.6).

w := G(0, x0, x1, x2) (* The first 0 is for pc *)
while (w)0 6= 7 {
cases {

(w)0 == 0 && (w)3 == 0 : (w)0 := 1;
(w)0 == 1 && (w)3 6= 0 : (w)0 := 7;
. . .
(w)0 == 3 :

(
(w)1 := g((w)3); (w)0 := 7

)
;

. . .
}

}
return (w)1

(7.4)

This program is normalized; note in particular that the cases{. . . } part is PR
due to Lem. 6.1.18.

Using Lem. 7.1.3, we obtain:

7.1.8 Theorem. The partial function computed by a while program is recursive.2
Combined with Thm. 7.1.1, we derive:

7.1.9 Corollary. A partial function is computed by a while program if and only
if it is recursive. 2
7.1.3 Kleene’s Normal Form Theorem

In the above proof we normalized while programs. This construction can be
translated into recursive functions and we obtain the following result.

7.1.10 Theorem (Kleene’s normal form). For any recursive function f : Nm ⇀
N, there exist PR functions q : Nm+1 → N and k : Nm+1 → N such that

f(−→x ) = k
(−→x , µy. q(

−→x , y) = 0
)
. (7.5)

The theorem states that any recursive function can be defined using the mini-
mization operator µ only once.

Proof. Given f , there is a while program that computes it (Thm. 7.1.1). The
while program can be normalized; and the partial function computed by this
normalized program is, by Lem. 7.1.3, of the form (7.5). 2
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7.2 Church’s Thesis

In Cor. 7.1.9 we saw the coincidence of the power of two computing formalisms:
while programs and recursive functions. In the early 20th century results were
obtained that many other natural formalisms have exactly the same power,
too—Turing machines, λ-calculus, etc. This led to the following “thesis”:

A partial function is effectively calculable if and only if it is a recur-
sive function.

This is called Church’s thesis (also called the Church-Turing thesis).
It is emphasized that there is no formal/mathematical definition of the word

“effectively calculable” in the thesis. It is an informal notion—it is much like
what we called “what machines can do.” Therefore the truth of Church’s the-
sis cannot be verified or falsified; in particular, it is (conceptually) impossible
to prove Church’s thesis! Nevertheless, Church’s thesis is nearly universally
accepted—that is, it is considered to be sensible to define “effective calculabil-
ity” by recursive functions.

7.2.1 Remark. Quantum computation is a new paradigm of computation that
employs quantum devices. It is commonly believed that it solves (at least) some
computational problems much faster. For example, famous Shor’s algorithm
solves the integer factorization problem in polynomial time—whereas the best
known classical algorithm is subexponential.2

While quantum computation is believed to have advantage in speed, it is
also commonly believed that it is still bound by Church’s thesis—i.e. what is
computed by a quantum computer is a recursive function.

2It is however an open problem whether there is a classical polynomial time algorithm
for the integer factorization problem. In fact, there is no known separation result between
BQP—the most common definition of “quantum polynomial time”—and other related classical
complexity classes like P, PSPACE or NP.





Chapter 8

Further on Recursive Functions/Predicates

8.1 Universal Recursive Function

An important feature of recursive functions—as well as other formalisms like
Turing machines and while programs—is that they can interpret themselves.
This is like in your implementation course, where you would write an interpreter
of OCaml in OCaml. This fact also provides us with a useful vehicle for proving
many theoretical results (later in this chapter); most notably we use it for
proving that the halting problem is not computable—i.e. there is a function
that is not recursive.

We first define a universal recursive function. Note that it is a totally differ-
ent question whether a universal recursive function indeed exists. We will not
present an existence proof, which is via a concrete construction.

8.1.1 Definition (Universal recursive function). A partial function comp :
N2 ⇀ N is said to be a universal recursive function if 1) it is recursive, and 2)
for any m ∈ N and any recursive function f : Nm ⇀ N, there exists pf ∈ N
(called a code of f) such that

λ(x0, . . . , xm−1). comp
(
pf , 〈x0, . . . , xm−1〉

) .
= f .

Recall that 〈x0, . . . , xm−1〉 = G(x0, . . . , xm−1) ∈ N is the Gödel number of the
sequence of natural numbers (x0, . . . , xm−1) (Def. 7.1.4, Notation 7.1.7).

Therefore comp is an interpreter that interprets a code pf of a recursive
function f . The function comp—while it is of a fixed arity 2—interprets a
recursive function of an arbitrary arity m. This is possible since we feed it with
the input 〈x0, . . . , xm−1〉, i.e. the sequence (x0, . . . , xm−1) encoded into a single
natural number.

8.1.2 Theorem. There is a universal recursive function comp : N2 ⇀ N.

Proof. One can explicitly write down the definition of comp. This concrete
construction is much like implementing an interpreter of OCaml in OCaml—
but here it is done in recursive functions instead of in OCaml. See e.g. [13, 11].2

115
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8.1.3 Remark. In the rest of the current notes, we fix one universal recursive
function comp.

As an application, we can finally prove Lem. 6.2.8 on case distinction.

Proof. (Of Lem. 6.2.8, pp. 103) Let pi ∈ N be a code of the recursive function
gi, for each i ∈ [0, n− 1]. Then the function

c := λ−→x .
[
p0 ·

(
1 −̇ χP0

(−→x )
)
+ · · ·+ pn−1 ·

(
1 −̇ χPn−1

(−→x )
) ]

from Nm to N is obviously a (total) recursive function. Then it is easy to see
that the function

λ−→x . comp
(
c(−→x ), 〈−→x 〉

)
is equal to f in (6.10). 2
8.1.4 Remark. Note that, given a recursive function f : Nm ⇀ N, Def. 8.1.1
does not require its code pf to be unique. That is, there can be two different
natural numbers p, p′ ∈ N such that

λ−→x . comp(p, 〈−→x 〉) .
= λ−→x . comp(p′, 〈−→x 〉) .

= f .

Exercise 8.3 shows that this is indeed necessarily the case.

Here is a related remark.

8.1.5 Remark. Given any p,m ∈ N, p is a code of some m-ary recursive
function; namely

λ(x0, . . . , xm−1). comp(p, 〈x0, . . . , xm−1〉) : Nm ⇀ N .

8.2 The Halting Problem is Undecidable

A universal recursive function comp allows us to make self-reference in the
world of recursive functions. As in the liar’s paradox (“what I say is a lie”),
self-reference with a negative twist is a source of paradoxes; this way we obtain
a famous result, namely that the halting problem is undecidable.

First we present the precise statement.

8.2.1 Theorem. Let halt ⊆ N2 be a binary predicate defined by

halt(p, x) is true
def⇐⇒ comp(p, x) is defined.

The predicate halt is not recursive.

The predicate halt(p, x) is true if and only if the recursive function repre-
sented by p is defined (i.e. its computation halts) for the input coded by x. Recall
that a recursive predicate is also called a decidable predicate (Def. 6.2.6)—this
is in the sense that there is an “effective method” to decide if the predicate holds
or not (cf. §7.2). The theorem claims undecidability of the halting problem.

We are set out to prove Thm. 8.2.1. This is via the following key lemma,
which is proved by a diagonal argument (i.e. “negative self-reference”).
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8.2.2 Lemma. Let a total function comp+ : N2 → N be defined by:

comp+(p, x) =

{
y if comp(p, x) is defined and its value is y

0 if comp(p, x) is undefined

This function comp+ is not recursive.

The function comp+ is comp with “padding” so that it becomes total.

Proof. Assume comp+ is recursive. Let diag : N → N defined by

diag(x) := comp+(x, 〈x〉) + 1 ; (8.1)

since comp+ is total and recursive, diag is a total recursive function. Hence we
can take a code p0 of the function diag. For this we have

diag
.
= λx. comp(p0, 〈x〉) (8.2)

and, since diag is total, we have

diag(x) = comp(p0, 〈x〉) for each x ∈ N.

Then

diag(p0)
(8.1)
= comp+(p0, 〈p0〉) + 1

(8.2)
= diag(p0) + 1 .

This is a contradiction. 2
We can indeed present the above proof in a diagonal manner. See Fig. 8.1.

Proof. (Of Thm. 8.2.1) The function comp+ can be defined by

comp+(p, x) =

{
comp(p, x) if halt(p, x) is true,

0 if halt(p, x) is not true.

If halt is a recursive predicate, comp+ is a recursive function by Lem. 6.2.8. This
contradicts Lem. 8.2.2. 2

An intuitive understanding of this undecidability result is: there is no algo-
rithm that

– (as input) takes a program and its input values, and

– (as output) answers if the program terminates or not.

Other well-known undecidable predicates are: “p is a code of a total function”;
and “p is a code of the given function f .” (Both are unary predicate on p ∈ N)
Later we will prove a general result (Thm. 8.3.3) that shows undecidability of
many predicates.

8.3 Recursion Theorem

The main topic of this section is recursion theorem. In it the word “recursion”
has little to do with the phrase “recursive function”; it is the result that allows
us to make a recursive call of programs (i.e. recursive functions).

First we need the following result, which is also famous. It is also called the
parameter theorem.
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Figure 8.1: A diagonal argument for the halting problem (In the top figure, p
and x must be swapped)
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8.3.1 Theorem (s-m-n Theorem). Let m,n ∈ N be natural numbers. There is
a primitive recursive function Sm

n : Nm+1 → N that satisfies the following: for
each p ∈ N, −→x ∈ Nn and −→y ∈ Nm,

λ−→x . comp(Sm
n (p,−→y ), 〈−→x 〉) .

= λ−→x . comp(p, 〈−→x ,−→y 〉). .

Proof. (Sketch) By direct manipulation of codes. Specifically, we consider the
following manipulation.

– Taking p ∈ N and −→y ∈ Nm as input,

– first we build up a while program p whose code is p,

– next fix the last part of the input of p to −→y , and

– finally return a code of the resulting program.

This operation is the function Sm
n : Nm+1 → N. It is a syntactic manipulation

for which we do not need minimization operations (or while loops); therefore
we can construct Sm

n as a PR function. 2
The name “s-m-n theorem” comes from the notation Sm

n . The statement
can be intuitively understood as the foundation of partial evaluation. This is
used in the proof of the following remarkable result.

8.3.2 Theorem (Recursion theorem). Let f : N → N be a total recursive
function, and k ∈ N be an arbitrary natural number. Then there exists r ∈ N
such that r and f(r) represent the same k-ary recursive function. The latter
means:

λ−→x . comp(r, 〈−→x 〉) .
= λ−→x . comp(f(r), 〈−→x 〉) (8.3)

where
.
= is the Kleene equality (Def. 6.2.4).

Proof. Consider a partial function g defined by

g(−→x , v) := comp(f(S1
k(v, v)), 〈−→x 〉). (8.4)

Here v can be thought of as a code of a (k + 1)-ary partial recursive function,
whose last argument is the code of a “subroutine.” The value S1

k(v, v) is then a
code of a k-ary function that makes a recursive call, calling itself as a subroutine.

This function g in (8.4) is recursive; take its code p. Then the number
S1
k(p, p) is what we want as r. Indeed,

comp(S1
k(p, p), 〈−→x 〉)

= comp(p, 〈−→x , p〉) by the property of S1
k

= g(−→x , p) since p is a code of g

= comp(f(S1
k(p, p)), 〈−→x 〉) by def. of g.

2
Some intuitions. We think of f : N → N as a function that takes a code

and returns a code. It is like a code of a recursive function with a subroutine
left open: it takes a code of a subroutine s and returns the code of the whole
program f(s). The equality (8.3) hints that r is the recursive call f(f(f(. . . ))).

As an application we present the following result. It is a useful tool for
proving undecidability of many predicates.
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8.3.3 Theorem (Rice’s theorem). Let k be an arbitrary natural number; and
g : N ⇀ N. If g satisfies the following conditions, then g is not recursive.

1. (“Totality”) For any p ∈ N, the value g(p) is defined and g(p) ∈ {0, 1}.

2. (“No constant”) g is not constant: there exists two natural numbers p0, p1 ∈
N such that g(p0) = 0 and g(p1) = 1.

3. (“Reflects equivalence of codes”) If p, q are codes for the same recursive
function Nk ⇀ N (in Kleene’s sense, Def. 6.2.4), then g(p) = g(q).

Proof. We use the recursion theorem (Thm. 8.3.2).
Assume that g is recursive. Define a total function f : N → N by

f(x) =

{
p1 if g(x) = 0,

p0 if g(x) = 1.

Then f is a total recursive function by Lem. 6.2.8; note the totality of g. By
the recursion theorem, there exists a code r of a k-input recursive function such
that r and f(r) code the same recursive function. Now:

– if g(r) = 0, then f(r) = p1 so g(f(r)) = 1;

– if g(r) = 1, then f(r) = p0 so g(f(r)) = 0.

Therefore g(r) 6= g(f(r)) in either case. This contradicts the condition 3. 2

8.4 Recursively Enumerable Predicate

Now we go a bit further beyond what is recursive/computable/recursive, by in-
troducing a class of predicates called recursively enumerable (RE). These pred-
icates are in general undecidable; however they play an important role later in
incompleteness.

8.4.1 Definition (Recursively enumerable predicate). A predicate P ⊆ Nm

is said to be recursively enumerable (RE) if there exists a recursive predicate
Q ⊆ Nm+1 such that, for any (x0, . . . , xm−1) ∈ Nm,

P (x0, . . . , xm−1) holds ⇐⇒ Q(x0, . . . , xm−1, y) holds for some y ∈ N .

To enumerate a collection is to list the elements of the collection one by one.
The following characterization will help us building this intuition.

8.4.2 Theorem. Let P ⊆ Nm be a predicate. The following are equivalent.

1. P is semi-decidable: there is a recursive function f : Nm ⇀ N such that

f(−→x ) =

{
0 if P (−→x ) holds

undefined if P (−→x ) does not hold

2. P is recursively enumerable.



8.4 Recursively Enumerable Predicate 121

3. There is a recursive function g : Nm ⇀ N such that

P = dom(g) = {−→x ∈ Nm | the value g(−→x ) is defined} .

4. there exists a PR predicate Q ⊆ Nm+1 such that, for for any (x0, . . . , xm−1) ∈
Nm,

P (x0, . . . , xm−1) holds ⇐⇒ Q(x0, . . . , xm−1, y) holds for some y ∈ N .

Furthermore, when m = 1, the above conditions are equivalent to:

5. P ⊆ N is either empty, or there is a PR function h : N → N such that

P = image(h) = {h(x) | x ∈ N} .

In Cond. 1., the function f might look like a characteristic function χP but
it is not, because a characteristic function must be total (Def. 1.2.13; see also
Def. 6.2.6). Cond. 4. says that, in Def. 8.4.1, we could in fact restrict to PR
predicates.

Proof. We present the proof only for the case of m = 1.
[1.⇒ 3.] Take f in Cond. 1. as g in Cond. 3.
[3.⇒ 5.] By Kleene’s normal form theorem (Thm. 7.1.10), the recursive

function g in Cond. 3 can be written as

g(x) = i
(
x, µy.

(
j(x, y) = 0

) )
using PR functions i, j. Assume P is nonempty; choose a ∈ P (a “dummy
value”). Using the Gödel numbering of sequences (Def. 7.1.4, Notation 7.1.7),
we can enumerate all x such that there exists y with j(x, y) = 0:

h(x) :=

{
(x)1 if |x| = 2 and j

(
(x)1, (x)2

)
= 0;

a otherwise

Then, since j, | |, ( )i are all PR, h is PR. Moreover we have image(h) = P .
[5.⇒ 4.] If P is empty, then Q = ∅ obviously satisfies Cond. 4. Otherwise,

define Q by
Q(x, y) holds ⇐⇒ x = h(y) .

Then

x ∈ image(h) (8.5)

⇐⇒ x = h(y) for some y ∈ N (8.6)

⇐⇒ Q(x, y) holds for some y ∈ N. (8.7)

[4.⇒ 2.] Obvious (if a predicate is PR then it is recursive)
[2.⇒ 1.] Let Q ⊆ N2 be a recursive predicate such that

P (x) holds ⇐⇒ Q(x, y) holds for some y ∈ N .

Its characteristic function χQ : N2 → N is a total recursive function (Def. 6.2.6);
use it in the following definition of f in Cond. 1.:

f(x) := 0 ·
(
µy. χQ(x, y) = 0

)
. 2
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By Cond. 5., we can use some PR function h to enumerate the elements of
P :

P =
{
h(0), h(1), h(2), . . .

}
.

Thm. 8.4.2 leads to the following informal description of the difference between
recursive predicates and RE ones.

– If a predicate P ⊆ N is recursive: there is a “machine” that tells, for the
problem of whether a given x ∈ N belongs to P , “yes” or “no” after some
finite time.

– If a predicate P ⊆ N is RE: there is a “machine” that tells “yes” (after
some finite time) if a given x ∈ N is in P . If x is not in P the machine
might not say anything. In this case we can only know that x is not in P
after infinitely long time!

It is straightforward to see that the class of recursive predicates is included
in that of RE predicates (Exercise 8.4). The following proposition separates the
two classes—i.e. the inclusion is proper—by showing that the halting problem
is RE.

(8.8)

8.4.3 Proposition. The predicate halt ⊆ N2 is RE.

Proof. Obvious from the definition of halt (Thm. 8.2.1), Cond. 3. of Thm. 8.4.2,
and the fact that comp is recursive. 2

Note that when P is RE, it negation Nm \ P is not necessarily RE. In fact
we have the following important result; it “attacks from both sides.”

8.4.4 Theorem (Negation theorem). Let P ⊆ Nm be a predicate. The following
are equivalent.

1. P is recursive.

2. P and Nm \ P are both RE.

Proof. [1 to 2] The negation of a recursive predicate is obviously recursive too;
and a recursive predicate is RE.

[2 to 1] We have recursive predicates Q,R ⊆ Nm+1 such that, for any −→x ∈
Nm,

P (−→x ) holds ⇐⇒ Q(−→x , y) holds for some y ∈ N ; (8.9)

P (−→x ) does not hold ⇐⇒ R(−→x , y) holds for some y ∈ N . (8.10)

Now the predicate
λ(−→x , y).

(
Q(−→x , y) ∨R(−→x , y)

)
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is again recursive (Lem. 6.2.7); thus the partial function g : Nm ⇀ N, defined
by

g(−→x ) := µy. Q(−→x , y) ∨R(−→x , y)

= µy. χQ∨R (−→x , y) = 0

is a recursive function. A crucial fact here is that g is total: for each −→x ∈ Nm,
the predicate P either holds or does not hold; thus exactly one of (8.9–8.10) is
true.

We use this function in the following predicate S ⊆ Nm:

S(−→x ) holds
def⇐⇒ λ−→x . Q

(−→x , g(−→x )
)
holds ; (8.11)

our goal is to show that this predicate S is recursive, and that it coincides with
P .

It is clear that S is recursive, since both Q and g are recursive. To see that
S = P , let −→x ∈ Nm be any tuple.

– Assume P (−→x ) holds. Then by (8.9–8.10),

• there exists y ∈ N such that Q(−→x , y) holds, but

• there is no y ∈ N such that R(−→x , y) holds.

Thus the value g(−→x ) is such that Q
(−→x , g(−→x )

)
is true; this means S(−→x )

is true.

– Assume P (−→x ) does not hold. Then by (8.9), Q(−→x , y) is false for any
y ∈ N. Thus in particular Q

(−→x , g(−→x )
)
is false; hence S(−→x ) is false.

This concludes the proof. 2
8.4.5 Remark. What we have seen now is the first two layers of the arithmetical
hierarchy : above recursive predicates (the class ∆0

1) and RE predicates (the class
Σ0

1), we further have the following ladder of classes of predicates. The upper,
the more complex.

...
...

∆0
3

⊋
⊊

Σ0
2

⊊
Π0

2

⊋

∆0
2

⊋
⊊

Σ0
1

⊊
Π0

1

⊋

∆0
1

⊋
⊊

This is how one starts recursion theory ; it is concerned with the “complexity
classes” above recursive predicates. Note that the “complexity classes” that we
hear about more often—like P, NP, EXPTIME, PSPACE, etc.—are all recursive,
thus below ∆0

1.
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We have observed the separation between RE and recursive predicates (see (8.8)).
The separation between PR and recursive predicates holds too. The following
(technical) proof is an exercise of the diagonal method. You can skip it at your
first read.

8.4.6 Proposition. There is a recursive predicate that is not primitive recur-
sive.

Proof. We shall construct a predicate Q ⊆ N that is recursive but is not PR.
The proof uses the diagonal method.

Let PRP ⊆ N be a unary predicate defined by

PRP :=

{
p

∣∣∣∣ p is the encoding of the definition of the characteristic
function χP of some unary PR predicate P

}
.

Then we can show that PRP ⊆ N is a recursive predicate. Its proof relies on the
concrete construction of the universal recursive function comp.

(Note here that PRP is a proper subset of the set

PRP′ :=

{
p

∣∣∣∣ p is a code of the characteristic function χP

of some unary PR predicate P

}
.

PRP′ is bigger than PRP because it is possible that a function defined using
minimization happens to be PR. The set PRP′ is more complex than PRP: for
example PRP′ is not recursive by Rice’s theorem.)

We can “enumerate” the recursive predicate PRP ⊆ N, that is, there exists
a recursive function enumPRP : N → N such that

PRP = image(enumPRP) .

Indeed, such a function can be explicitly given using the minimization operator
µ; or alternatively, one can use Thm. 8.4.2, Cond. 5. (PRP is recursive hence is
RE).

Now consider the following function f : N2 → N.

f(x, y) := comp
(
enumPRP(x), y

)
Obviously f is recursive. Moreover f is total: for each x we have enumPRP(x) ∈
image(enumPRP) = PRP, hence enumPRP(x) is a code of a total function χP

for some PR predicate P . Therefore the predicate Q ⊆ N, defined by

Q(x) holds
def⇐⇒ f(x, x) = 0 (8.12)

is a recursive predicate.
We claim by contradiction that Q is not PR. Assume Q is PR. Then so is

¬Q; therefore there exists x0 ∈ N such that enumPRP(x0) is a code of χ¬Q.
Now

(¬Q)(x0) holds

⇐⇒ comp
(
enumPRP(x0), x0

)
= 0 since enumPRP(x0) is a code of χ¬Q

⇐⇒ Q(x0) holds by (8.12),

which is a contradiction. 2
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Exercises

8.1. Use Thm. 8.3.3 to prove that the predicate total1 ⊆ N, defined by

total1(p) is true
def⇐⇒ λx. comp(p, 〈x〉) is a total recursive function

is undecidable.

8.2. Use Thm. 8.3.3 to prove that the predicate equal1 ⊆ N2, defined by

equal1(p, q) is true
def⇐⇒ λx. comp(p, 〈x〉) .

= λx. comp(q, 〈x〉)

is not recursive.
Hint: fix q and consider a unary function λp. equal1(p, q).

8.3. Use Exercise 8.2 to prove the following: there necessarily exist two different
natural numbers p, q that are codes of the same unary recursive function, that
is,

λx. comp(p, 〈x〉) .
= λx. comp(q, 〈x〉) and p 6= q .

8.4. Show that every recursive predicate is recursively enumerable.

8.5. Let P ⊆ Nm be a recursive predicate, and f0, . . . , fm−1 : Nn ⇀ N be
recursive functions. Prove that the predicate

λ−→x . P
(
f0(

−→x ), . . . , fm−1(
−→x )
)
,

defined by

P
(
f0(

−→x ), . . . , fm−1(
−→x )
)
holds

def⇐⇒ the values f0(
−→x ), . . . , fm−1(

−→x ) are all defined and P
(
f0(

−→x ), . . . , fm−1(
−→x )
)
is true,

(8.13)

is not necessarily recursive. (Note that fi is not necessarily total. Hint: comp
is recursive but halt is not recursive)

8.6. Let P ⊆ Nm be a recursive predicate, and f0, . . . , fm−1 : Nn → N be total
recursive functions. Prove that the predicate

λ−→x . P
(
f0(

−→x ), . . . , fm−1(
−→x )
)
,

defined by defined by (8.13), is recursive.

8.7. Let P ⊆ Nm be an RE predicate, and f0, . . . , fm−1 : Nn ⇀ N be recursive
functions. Prove that the predicate

λ−→x . P
(
f0(

−→x ), . . . , fm−1(
−→x )
)
,

defined by (8.13), is RE. (Hint: rather hard if you use Def. 8.4.1 directly. Choose
a convenient equivalent condition from Thm 8.4.2.)

8.8. (From [13, §6.5]) We are interested in the condition

– f(−→x , 0), f(−→x , 1), . . . , f(−→x , z) are all defined
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in the definition of minimization (Def. 6.2.1). Its intuition was explained right
after Def. 6.2.1; here we observe that, by dropping the condition, we actually
get more than recursive functions.

1. Show that the following function g : N3 ⇀ N is recursive.

g(p, x, y) =

{
0 if y > 0, or comp(p, x) is defined

undefined if y = 0, and comp(p, x) is undefined

2. We define a partial function f : N2 ⇀ N with a relaxed minimization
operator µ′:

f(p, x) := µ′
y.
(
g(p, x, y) = 0

)
,

where the right-hand side denotes the smallest y ∈ N such that g(p, x, y) =
0 holds (we do not require that g(p, x, 0), g(p, x, 1), . . . , g(p, x, y − 1) are
all defined).

Show that this partial function f is not recursive.



Chapter 9

Gödel’s Incompleteness Theorem

9.1 Theory in Predicate Logic

We first extend the predicate logic part of what is in Chap. 5. This will be
needed in later sections.

9.1.1 Definition (Validity under a theory). Let Φ be a theory. We say a
formula A is valid under Φ and write Φ |= A, if for any model S of Φ we have

S |= A .

We will be using the following fact.

9.1.2 Lemma. For a closed formula A, a structure S and any valuations J, J ′

over S, we have

JAKS,J = JAKS,J ′ . (9.1)

It follows that
S |= A or S |= ¬A .

Proof. The first part is immediate from Lem. 2.5.5. For the second part: assume
S 6|= A. Then by Def. 4.3.4, there is a valuation J such that JAKS,J = ff.
Therefore we have J¬AKS,J = tt; moreover by (9.1) we have J¬AKS,J ′ = tt for
any J ′. Therefore S |= ¬A. 2

The following is a consequence of the strong completeness result, Thm. 5.2.8.

9.1.3 Theorem (Strong completeness, revisited). Let Φ be a theory in predicate
logic; assume that Φ consists only of closed formulas. Then for any formula A,
we have

Φ ` A ⇐⇒ Φ |= A .

Recall that Φ ` A means A is derivable using the axioms from Φ (Def. 5.2.2);
Φ |= A is from Def. 9.1.1. The condition that any B ∈ Φ must be closed is not a
real burden—when we have a formula (i.e. an axiom) B′ ∈ Φ that is not closed,
it is most of the time its universal closure ∀−→x .B′ that is really intended.

Proof. We show that the following are all equivalent.

127
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1. Φ ` A

2. Φ ∪ {¬A} is inconsistent

3. Φ ∪ {¬A} is unsatisfiable

4. Φ |= A

[1.⇒ 2.] Let Π be a proof of A under Φ. Then the following proof is under
Φ ∪ {¬A}.

.... Π

⇒ A ⇒ ¬A (Axiom)

⇒ A ∧ ¬A (∧-R)

A ⇒ A
(Init)

A,¬A ⇒ (¬-L)

A ∧ ¬A ⇒ (∧-L)
⇒ (Cut)

[2.⇒ 1.] Let Π′ be a proof of ⇒ under Φ ∪ {¬A}. We apply the following
operations to Π′ and obtain Π′′.

– We first add a formula A to the right-hand side of all the sequents in Π′.

– At each leaf of Π′ where the (Axiom) rule is used to derive ⇒ ¬A, i.e.

⇒ ¬A (Axiom)
,

we now have

⇒ ¬A,A (Axiom)
.

We replace this with

A ⇒ A
(Init)

⇒ ¬A,A
(¬-R)

.

The resulting Π′′ is a proof under Φ and its root is the sequent ⇒ A.

[2.⇔ 3.] By Thm. 5.2.8.

[3.⇒ 4.] Assume S is a model of Φ (Def. 5.3.4). We argue by contradiction:
assume that there is a valuation J over S such that JAKS,J = ff. Then S and J
make all the formulas in Φ ∪ {¬A} true; this contradicts Cond. 3.

[4.⇒ 3.] By contradiction. Assume S and J make all the formulas in Φ∪{¬A}
true, that is,

JBKS,J = tt for each B ∈ Φ;JAKS,J = ff .

Since each B ∈ Φ is a closed formula, we have

JBKS,J = tt for each J .

This means that S is a model of Φ. At the same time we have S 6|= A and this
contradicts Cond. 4. 2
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9.2 Introduction to Incompleteness

We have seen, in Thm. 4.4.1 & 4.4.3, that predicate LK is sound and complete.
This means: derivable formulas are exactly those formulas that are valid under
any structure S.

` A
soundness+3

|= A
completeness
ks ks by def. +3 for any S, S |= A (9.2)

In Thm. 9.1.3 we observed a stronger result:

Φ ` A
soundness+3

Φ |= A
strong completeness

ks ks by def. +3 for any S ∈ Mod(Φ), S |= A

(9.3)

Now let’s say we want to do “usual mathematics” within this formal frame-
work of predicate logic. Let us first focus on a minimal fragment of “mathemat-
ics,” i.e. arithmetic over natural numbers. Therefore we choose the following
symbols:

FnSymba = {0, s,+, · } , PdSymba = {=, <} , (9.4)

where each symbol comes with a suitable arity.

In this case, however, the scheme (9.3) would not be the most interesting one.
We have a clear idea of what a model should be—namely the set N of natural
numbers, on which the function/predicate symbols are interpreted in a natural
way—and the other (strange, “nonstandard”) models are of less interest. That
is, we are more interested in the following scheme.

Φ ` A ks ?? +3 N |= A (9.5)

Now the question is to find a suitable set Φ of axioms (i.e. a theory, Def. 5.2.1)
such that (9.5) holds. Unfortunately, what Gödel’s incompleteness theorem
states is that this is impossible—however cleverly we choose Φ—as long as Φ is
a “reasonable” set of axioms.

In fact, if any set of formulas is allowed as Φ, then the choice

ΦArithTruth = {A | N |= A} (9.6)

makes (9.5) hold. However this is cheating: given a formula A, how can we know
if A belongs to ΦArithTruth or not? It is very much questionable if the derivation
system using ΦArithTruth as an axiom set can be possibly called a “syntactic
machinery.”

It is at this very point that we use the theory of computability that we
learned in the earlier chapters. Namely, a reasonable theory Φ must be such
that, given a formula A, whether A belongs to Φ is “effectively decidable,” that
is, recursive. Such a theory is formally called a recursively axiomatized theory .
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Φ0 6` A

Φ0 ` A

Φ1 6` A

Φ1 ` A
· · ·

N 6|= A

N |= A

classification by classification by · · · classification by
the theory Φ0 the theory Φ1 the structure N

Figure 9.1: Classifications of different granularities

Then Gödel’s incompleteness theorem can be understood in the following
way. The way recursively axiomatized theories classify closed formulas,1 i.e.

{closed formulas} =

{A | A is closed and Φ ` A} q {A | A is closed and Φ 6` A}
(9.7)

is necessarily simpler than the arithmetic truth:

{closed formulas} =

{A | A is closed and N |= A} q {A | A is closed and N 6|= A} .

See Fig. 9.1.

9.2.1 Remark. The above story differs from the common (and historical) path
the incompleteness results are introduced. There completeness is a purely syn-
tactic property (like in Def. 9.3.1); and Gödel’s incompleteness theorem states
that

a complete, recursively axiomatized, consistent extension of Peano’s
arithmetic is impossible.

Notice that all these properties (like consistency in Def. 5.2.4) are syntactic;
in contrast our version of incompleteness (Thm. 9.4.4) involves a model N, a
semantical and infinitary entity.

In case you are skeptical about the existence or legitimacy of a monster like
N, the statement of Thm. 9.4.4 is of no use. Still we made our choice because
this way a great deal of technical subtleties (like the notion of ω-inconsistency)
can be saved. An interested reader is referred e.g. to [12, 6].

9.3 Complexity of Theories

Note that the notion of “completeness” that we have talked about in Chap. 2–5
is concerned with a derivation system (like: “LK is complete”). Although we
use the same word, the following notion is something totally different.

9.3.1 Definition (Complete theory). A theory Φ is said to be complete if, for
any closed formula A, we have exactly one of

Φ ` A or Φ ` ¬A .

1The reason we restrict our attention to closed formulas is Lem. 9.1.2.
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In particular, a complete theory is consistent (Def. 5.2.4. See also Exer-
cise 9.1).

In the definition of complete theory we are only concerned with closed for-
mulas. This is because of Lem. 9.1.2.

A single structure determines a complete theory.

9.3.2 Lemma. Let S be an arbitrary structure. The theory

ΦS := {A | S |= A}

is complete.

Proof. Let A be an arbitrary closed formula. If S |= A then obviously ΦS ` A
(using the (Axiom) rule).

Otherwise, by Lem. 9.1.2, we have S |= ¬A therefore ¬A ∈ ΦS. Therefore
we have ΦS ` ¬A (again using the (Axiom) rule). 2

To formally define the notion of recursively axiomatized theory, we need to
encode formulas into natural numbers. Recall that 〈x0, . . . , xm−1〉 = G(x0, . . . , xm−1) ∈
N is the Gödel number of the sequence of natural numbers (x0, . . . , xm−1)
(Def. 7.1.4, Notation 7.1.7).

9.3.3 Definition (The Gödel numbering of predicate logic). We fix an encoding
⌜ ⌝ of all terms and formulas in predicate logic, into natural numbers. The
precise definition of ⌜ ⌝ does not matter; it can be defined in the following way,
for example.

⌜x0⌝ := 〈0, 0〉 , ⌜x1⌝ := 〈0, 1〉 , ⌜x2⌝ := 〈0, 2〉 , . . .

⌜0⌝ := 〈1, 0〉 , ⌜s(t)⌝ := 〈2, ⌜t⌝〉 , ⌜s+ t⌝ := 〈3, ⌜s⌝, ⌜t⌝〉 , ⌜s · t⌝ := 〈4, ⌜s⌝, ⌜t⌝〉
⌜t = u⌝ := 〈5, ⌜t⌝, ⌜u⌝〉 , ⌜t < u⌝ := 〈6, ⌜t⌝, ⌜u⌝〉
⌜A ∧B⌝ := 〈7, ⌜A⌝, ⌜B⌝〉 , ⌜A ∨B⌝ := 〈8, ⌜A⌝, ⌜B⌝〉 , · · ·
⌜∀xi. A⌝ := 〈11, i, ⌜A⌝〉 , ⌜∃xi. A⌝ := 〈12, i, ⌜A⌝〉

Here Var = {x0, x1, . . . } is an enumeration of variables.

The natural number ⌜A⌝ is called the Gödel number of the formula A.

It is obvious that the concrete choice of Gödel numbers in the above deter-
mines an injective mapping

⌜ ⌝ : Termsq Fml ↪→ N ;

that is, different terms/formulas never get mapped to the same number. We
use this fact, as well as the following fact, in what follows.

9.3.4 Lemma. 1. The predicate fml ⊆ N, defined by

fml(x) holds
def⇐⇒ x = ⌜A⌝ for some formula A,

is recursive.
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2. The total functions

neg(x) :=

{
⌜¬A⌝ if x = ⌜A⌝
0 if fml(x) does not hold,

univClosure(x) :=

{
⌜∀−→x .A⌝ if x = ⌜A⌝
0 if fml(x) does not hold,

subst(x, y, z) :=


⌜A[t/u]⌝ if x = ⌜A⌝, y = ⌜t⌝ and z = ⌜u⌝

for some A ∈ Fml, t ∈ Terms and u ∈ Var;

0 otherwise,

are all recursive. Here ∀−→x .A is the universal closure of A (Exercise 5.14).

3. The number 0 ∈ N is not the Gödel number of any formula, i.e.

⌜A⌝ 6= 0 for any A ∈ Fml.

2
That is: it is effectively calculable whether a given natural number x is a

Gödel number of some formula or not.

9.3.5 Definition (Recursively axiomatized theory). A theory Φ is said to be
recursively axiomatized if the predicate axiomΦ ⊆ N, defined by

axiomΦ(x) holds
def⇐⇒ x = ⌜A⌝ for some A ∈ Φ, (9.8)

is recursive.

Note that, when axiomΦ(x) does not hold, it is either:

– x is not a Gödel number of a formula, or

– x = ⌜B⌝ with B 6∈ Φ.

9.3.6 Definition (Deductive closure). Let Φ be a theory. Its deductive closure
Φ is the theory

Φ := {A | Φ ` A} ,

where Φ ` A means derivability under the axioms from Φ (Def. 5.2.2).

Therefore Φ is the set of formulas that are derivable from the axioms in Φ.
The following result is fundamental, setting an upper bound to the “com-

plexity” of deductive systems.

9.3.7 Theorem. Let Φ be a recursively axiomatized theory. Then the predicate
thmΦ, defined by

thmΦ(x) holds
def⇐⇒ x = ⌜A⌝ for some formula A and Φ ` A, (9.9)

is recursively enumerable (RE).

Proof. (Sketch)
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– We assign Gödel numbers also to proofs. This can be done in a straight-
forward manner: for example, we can define the Gödel number of the
proof

Π =


.... Π′

Γ ⇒ ∆, C

.... Π′′

Γ ⇒ ∆, D

Γ ⇒ ∆, C ∧D
(∧-R)


(where Γ ≡ A0, . . . , Am−1 and ∆ ≡ B0, . . . , Bn−1) to be

⌜Π⌝ :=

〈2, 〈⌜A0⌝, . . . , ⌜Am−1⌝〉, 〈⌜B0⌝, . . . , ⌜Bn−1⌝, ⌜C ∧D⌝〉, ⌜Π′⌝, ⌜Π′′⌝〉 .

Here the first component “2” is the label for the (∧-R) rule.

– Much like the function comp (in fact much easier), we can show that the
predicate prfΦ ⊆ N2, defined by

prfΦ(x, y) holds
def⇐⇒(
x = ⌜A⌝; y = ⌜Π⌝; Π is a proof in LK with
axioms from Φ; and the root of Π is ⇒ A,

)
is recursive. Here it is crucial that Φ is recursive axiomatized.

– Then we have

thmΦ(x) holds ⇐⇒ prfΦ(x, y) holds for some y.

This proves that thmΦ is RE. 2
Here is an intuitive reading of the above result. To check if a given formula

A is derivable under Φ (i.e. if Φ ` A), we can “proof search,” by checking if any
of

prfΦ(⌜A⌝, 0), prfΦ(⌜A⌝, 1), prfΦ(⌜A⌝, 2), . . .
is true, in the one-by-one manner. If Φ ` A then this proof search procedure
stops eventually so we know Φ ` A; if Φ 6` A then we wait forever.

9.3.8 Remark. Thm. 9.3.7 does not prohibit thmΦ from being recursive. It
is indeed recursive for some theories Φ: a notable class of examples is given
by Thm. 9.3.9; another important example is the theory of real closed fields
(see [6]) which has an important application (namely quantifier elimination) in
automated theorem proving.

However there are also theories Φ for which thmΦ is not recursive (but is
RE). In fact, for a slightly complicated language (i.e. the choice of FnSymb
and PdSymb), the predicate thm∅ is not recursive.

9.3.9 Theorem. Let Φ be a theory that is recursively axiomatized and complete
(Def. 9.3.1). Then the predicate thmΦ in (9.9) is recursive.

Proof. The strategy is as follows. We know that the predicate thmΦ is RE; we
shall show that N\ thmΦ is also RE. Then by Thm. 8.4.4 we conclude that thmΦ

is recursive.
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Thus we are set out to show that N \ thmΦ is RE. We have the following
equivalences, for any x ∈ N.

thmΦ(x) does not hold (9.10)

⇐⇒ fml(x) does not hold, or x = ⌜A⌝ with Φ 6` A (9.11)

(∗)⇐⇒ fml(x) does not hold, or x = ⌜A⌝ with Φ 6` ∀−→x .A (9.12)

(†)⇐⇒ fml(x) does not hold, or x = ⌜A⌝ with Φ ` ¬∀−→x .A (9.13)

(‡)⇐⇒ fml(x) does not hold, or thmΦ(neg(univClosure(x))) holds. (9.14)

Here fml is from Lem. 9.3.4; ∀−→x .A is the universal closure of the formula A
(Exercise 5.14); and the functions neg and univClosure are from Lem. 9.3.4. The
equivalence (∗) is due to Exercise 9.2; (†) is because Φ is complete (Def. 9.3.1;
note that ∀−→x .A is a closed formula). Now we have

– the predicate fml is recursive (Lem. 9.3.4); and

– the predicate

λx. thmΦ(neg(univClosure(x)))

is RE, because thmΦ is RE (Thm. 9.3.7) and neg, univClosure are recursive
(Lem. 9.3.4, Exercise 8.7).

Thus the predicate (9.14) is RE, from which we conclude that N \ thmΦ is RE.2
This theorem (Thm. 9.3.9) is what is meant by “the classification (9.7) is

necessarily simple.” More precisely: if a recursively axiomatized theory Φ were
to satisfy (9.5), then Φ is complete by Lem. 9.3.2; but then Thm. 9.3.9 yields
that thmΦ—i.e. if a given formula is derivable from Φ or not—is recursive.

9.4 The Arithmetic Truth is Undecidable

In this section we prove that the arithmetic truth is beyond the complexity
of any recursively axiomatized theory. That is, the predicate arithTruth ⊆ N,
defined by

arithTruth(x) holds
def⇐⇒ x = ⌜A⌝ for some formula A and N |= A,

(9.15)

is undecidable. This will conclude the proof of Gödel’s incompleteness theorem.
The undecidability proof is, as before, by the diagonal method (i.e. self-reference
plus a negative twist).

We fix sets of function and predicate symbols to be the ones FnSymba,PdSymba

for arithmetic (from (9.4)).

9.4.1 Definition (Numeral). For each x ∈ N, we define the numeral kx to be
the following term.

kx :≡ s(s(. . . s(0))) with x-many s’s.
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The following fact is the key to our diagonal proof. It means: arguments on
recursive functions can be “simulated” in predicate logic (using FnSymba and
PdSymba). We do not present its proof (which is again like “programming in
first-order logic”); an interested reader is referred to textbooks like [6].

9.4.2 Theorem (Representability). Any recursive predicate P ⊆ N can be
represented by a predicate formula over FnSymba and PdSymba. This means:
for any given u ∈ Var, there exists a formula A with FV(A) = {u} such that,
for all x ∈ N, we have

P (x) holds ⇐⇒ N |= A[kx/u] . 2
9.4.3 Theorem. The predicate arithTruth is not recursive.

Proof. By contradiction. Consider the following predicate (⊆ N2):

λx.λy. arithTruth(subst(x, ⌜ky⌝, ⌜u⌝))

where subst is the recursive function from Lem. 9.3.4—recall that we have
subst(⌜A⌝, ⌜ky⌝, ⌜u⌝) = ⌜A[ky/u]⌝.

Now we take its diagonal, and twist that. Specifically, consider the following
predicate (⊆ N).

λx. ¬arithTruth(subst(x, ⌜kx⌝, ⌜u⌝)) (9.16)

If arithTruth is recursive, so is this predicate, due to Exercise 8.6 and the fact
that subst is total and recursive.

By Thm. 9.4.2, there is a formula A with FV(A) = {u} that represents the
predicate (9.16). That is, for all x ∈ N,

¬arithTruth(subst(x, ⌜kx⌝, ⌜u⌝))
⇐⇒ N |= A[kx/u] since A represents the predicate

⇐⇒ arithTruth(⌜A[kx/u]⌝) by def. (9.15) of arithTruth

⇐⇒ arithTruth(subst(⌜A⌝, ⌜kx⌝, ⌜u⌝)) .

Take x = ⌜A⌝; then

¬arithTruth(subst(⌜A⌝, ⌜k⌜A⌝⌝, ⌜u⌝))
⇐⇒ arithTruth(subst(⌜A⌝, ⌜k⌜A⌝⌝, ⌜u⌝)) .

This is a contradiction. 2
Finally we answer (negatively) the question (9.5).

9.4.4 Theorem (Incompleteness). There is no recursively axiomatized theory
Φ that characterizes the arithmetic truth, that is,

Φ ` A ⇐⇒ N |= A . (9.17)

Proof. By contradiction; assume there is such Φ. Then by Def. 9.3.1, Φ is
complete (see also Lem. 9.3.2). This and the assumption that Φ is recursively
axiomatized yield that the predicate thmΦ is recursive (Thm. 9.3.9). However
this contradicts Thm. 9.4.3, since (9.17) immediately yields thmΦ = arithTruth.2
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Exercises

9.1. Show that a complete theory Φ (Def. 9.3.1) is necessarily consistent (Def. 5.2.4).
(Hint: use the (Weakening) rules)

9.2. Let A be a formula, and Φ be a theory. Show that, for its universal closure

∀x0. ∀x1. . . . ∀xm−1. A

(where FV(A) = {x0, . . . , xm−1}, cf. Exercise 5.14), we have

Φ ` A ⇐⇒ Φ ` ∀x0. ∀x1. . . . ∀xm−1. A .

(Hint: use the (∀-R) rule)
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CNF, see conjunctive normal form
codomain, see range
combinator, 47
combinatory logic, 47
Compactness, 72
compactness, 74
complement

of a literal, 78
complete

theory, 130
complete lattice, 17
completeness, 36
composition

of functions, 10
of primitive recursive functions, 96
of recursive functions, 101
of relations, 12

conditional equality, 31
congruence rule, 30
conjunction, 46
conjunctive normal form, 56
consistent, 52, 73
constant, 27
coproduct, see disjoint union
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counter model, 39, 52
Curry-Howard correspondence, 46
currying, 11
cut formula, 71

de Bruijn index, 61
de Morgan law, 52, 66
decidable

predicate, 103
semi –, 120

deductive closure, 132
denotation, 33, 50, 52, 65
derivable, 31, 49
derivation rule, 30
derivation tree, see proof
diagonal relation, 13
direct sum, see disjoint union
disjoint union, 8
disjunction, 46
disjunctive normal form, 56
DNF, see disjunctive normal form
domain, 9, 65

emptyset, 8
equality

of sets, 7
equational formula, 29
equivalence class, 14
equivalence closure, 16
equivalence relation, 14
existential quantification, 59

formula, 29, 45, 60
free

algebra, 40
variable, 27, 46, 61
variable occurrence, 60

function, 9
space, 10
symbol, 59

functionally complete, 56

Gödel’s completeness theorem, 68
Gödel’s incompleteness theorem, 36, 68
Gödel number, 110, 131

halting problem, 116
Hasse diagram, 21
Herbrand’s theorem, 84
Horn clause, 31, 78

identity function, 10, 96
implication, 46
incompleteness, 68, 129, 135
inconsistent, 73
individual, 59
infimum, see meet
injective

function, 10
interpretation, 32, 65
isomorphic, 10

join, 8, 17

kernel, 15
Kleene equality, 102
Kleene’s normal form, 112

λ-notation, 95
lattice, 17
lexicographic order, 20
linear logic, 47
literal, 56, 78
LK, 48, 63
logical axiom, 72
logical connectives, 45
logical equivalence, 51, 66

maximally consistent pair, 53
maximum, 17
meet, 8, 17
metamathematics, 32
metatheorem, 26
metavariable, 25
minimization, 101
minimum, 17
model, 32, 64, 76
most general unifier (mgu), 85

naive set theory, 7
n-ary operation, 26
negation, 46
negation theorem, 122
nominal set, 61
non-logical axiom, 72
nonstandard structure, 69
normal form

Kleene’s –, 112
normalized

while program, 109
numeral, 134
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order, see partial order

partial function, 11
partial order, 16
pattern matching, 27
Peirce’s law, 56
poset, 16
powerset, 9
PR, see primitive recursive
predecessor function, 96
predicate, 98

decidable –, 103
primitive recursive –, 98
recursive –, 103
recursively enumerable –, 120
symbol, 59

prenex normal form, 86
preorder, 16
presheaf category, 61
primitive recursion, 96
primitive recursive

function, 95
predicate, 98

program extraction, 46
proj, 95
projection, see quotient map, 95
proof, 30, 48

theory, 47
proof normalization, 72
proof tree, see proof
propositional

formula, 45
propositional variable, 45
provable, see derivable
PVar, 45

quantifier elimination, 133
quotient

map, 14
of an equivalence relation, 14

range, 9
recursive

function, 101
predicate, 103

recursive function
total –, 102

recursively axiomatized theory, 129, 132
recursively enumerable predicate, 120
reflexive

relation, 13
reflexive and transitive closure, 15
refutation-based reasoning, 80
representability, 135
resolution tree, 79, 83
resolvent, 78
rule

instance, 30
scheme, 30

satisfiability, 51, 66, 73
scoping, 60
second-order predicate logic, 63
semantics, 32
semi-decidable, 120
sequent, 47, 63
Σ-algebra, 32
(Σ, E)-algebra, 35
Σ-term, 27
signature, 26
Skolemization, 84, 86
s-m-n theorem, 117
soundness, 36
∗-closure, 13
strong completeness, 74, 127
structure, 64, 75
subformula, 71
subformula property, 71
subset, 9
substitution, 28
substitution-closed, 31
succ, 95
successor function, 95
supremum, see join
surjective

function, 10
symmetric

relation, 13
syntactic equality, 29

tautology, 51
term, 27, 60
total

order, 16
recursive function, 102

totally ordered, 75
transitive

relation, 13
truth table, 51

unification, 85
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unifier, 85
universal algebra, 25
universal closure, 89
universal quantification, 59
universal recursive function, 115
universe, 65

validity, 34, 35, 52, 66, 127
valuation, 32, 50, 65
Var, 26, 60
variable, 26, 60

binder, 27
variable binder, 60

well-defined, 41
well-founded set, 38
well-ordered set, 75
while program, 107

normalized –, 109

zero, 95
zero function, 95
Zorn’s lemma, 57


	I Logic
	Set Theory Primer
	Basic Constructions on Sets
	Function
	Binary Relation
	Equivalence Relation
	Order


	Equational Logic as a Showcase
	First Examples
	Polynomials
	Group
	Equational Logic as a Common Platform
	Variables vs. Meta-Variables

	Equational Logic: Term
	Substitution

	Equational Logic: Axiom and Derivation Rule
	Equational Formula
	Axiom and Derivation Rule

	Equational Logic: Derivation
	Equational Logic: Semantics
	Model I: -algebra
	Denotation
	Truth Value of a Formula
	Model II: (,E)-algebra

	Equational Logic: Syntax vs. Semantics
	Soundness
	Completeness

	What is Logic?

	Propositional Logic
	Propositional Logic: Formula
	Propositional Logic: Derivation Rule
	Propositional Logic: Semantics
	Propositional Logic: Syntax vs. Semantics

	Predicate Logic
	Predicate Logic: Term and Formula
	Predicate Logic: Derivation Rule
	Predicate Logic: Semantics
	Predicate Logic: Syntax vs. Semantics

	Some More Meta-Theorems
	Cut Elimination
	Theory and Compactness
	Axiomatizable Class of Structures—Consequence of Compactness
	Well-Ordered Set
	Model
	Non-Axiomatizable Class of Structures

	The Resolution Principle: Propositional Case
	The Resolution Principle: Predicate Case
	Prenex Normal Form and Skolemization



	II Computability
	Recursive Function
	Primitive Recursive Function
	Definition
	Some Examples
	Primitive Recursive Predicate

	Recursive Function
	Definition
	Recursive Predicate


	Recursive Function and While Program
	While Program
	The Gödel Numbering of Sequences
	Normalizing While Programs
	Kleene's Normal Form Theorem

	Church's Thesis

	Further on Recursive Functions/Predicates
	Universal Recursive Function
	The Halting Problem is Undecidable
	Recursion Theorem
	Recursively Enumerable Predicate

	Gödel's Incompleteness Theorem
	Theory in Predicate Logic
	Introduction to Incompleteness
	Complexity of Theories
	The Arithmetic Truth is Undecidable

	Bibliography
	Index


