Coalgebras and Higher-Order Computation: a Gol Approach

Ichiro Hasuo

National Institute of Informatics Tokyo, Japan

Outline

* Categorical axiomatization

* Compilation to sequential machines

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

Categorical GoI

GoI w/
T-branching
[IH \& Hoshino, LICS'11]

Memoryful GoI
[Hoshino, Muroya \& IH, CSL-LICS'14 \& POPL'16]

* [LICS 2011] IH and Naohiko Hoshino. Semantics of Higher-Order Quantum Computation via Geometry of Interaction.
(Extended ver. Annals Pure \& Appl. Logic 2017)
* [CSL-LICS 2014]

Naohiko Hoshino, Koko Muroya and IH. Memoryful Geometry of Interaction: From Coalgebraic Components to Algebraic Effects.

* [POPL 2016] Koko Muroya, Naohiko Hoshino and IH. Memoryful Geometry of Interaction II: Recursion and Adequacy.
* [LOLA 2014]

Koko Muroya, Toshiki Kataoka, IH and Naohiko Hoshino.
Compiling Effectful Terms to Transducers: Prototype Implementation of Memoryful Geometry of Interaction (Preliminary Report).

* [Math. Str. in Comp. Sci. 2011]

IH and Bart Jacobs. Traces for Coalgebraic Components.

Geometry of Interaction (GoI)

* J.-Y. Girard, at Logic Colloquium '88
* Provides "denotational" semantics (w/ operational flavor) for linear λ-term M
* As a compilation technique
[Mackie, POPL'95] [Pinto, TLCA'01] [Ghica et al., POPL'O7, POPL'11, ICFP'11, ...]
* Two presentations:
* (Operator-) Algebraic [Girard]
* Token machines/ interaction abstract machines [Danos \& Regnier, TCS'99] [Mackie, POPL'95]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$
$=" p i p i n g "$

The GoI Animation

* Function application $\llbracket M N \rrbracket$
* by "parallel composition + hiding"

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

Categorical GoI

* Axiomatics of GoI in the categorical language
* Our main reference:
* [AHSO2] S. Abramsky, E. Haghverdi, and P. Scott, Geometry of interaction and linear combinatory algebras, Math. Str. Comp. Sci, 2002
* Especially its technical report version (Oxford CL), since it's a bit more detailed
* See also:
* IH and Naohiko Hoshino. Semantics of Higher-Order Quantum Computation via Geometry of Interaction. Annals Pure \& Applied Logic 2017. arxiv.org/abs/1605.05079

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsOz]

Linear combinatory algebra

Realizability

* Applicative str. + combinators
* Model of untyped calculus

Linear category

> Model of typed calculus

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{aligned}
j: U \otimes U & \triangleleft U: k \\
I & \triangleleft U \\
u: F U & \triangleleft U: v
\end{aligned}
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

$$
\xrightarrow[{A \xrightarrow{A \xrightarrow{f} B \quad B \xrightarrow{g} C}} C]{ }
$$

$$
\xrightarrow[{A \xrightarrow{A} B \xrightarrow{f} C \xrightarrow{g}} D]{A \otimes D}
$$

$h \circ(f \otimes g)$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{array}{rlrl}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced monoidal category

* "feedback"

$$
\frac{A \otimes C \xrightarrow{f} B \otimes C}{A \xrightarrow{\operatorname{tr}(f)} B}
$$

that is

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial
functions $\mathbb{N} \rightharpoonup \mathbb{N} \quad$ In the monoidal category (Pfn,,+ 0)

Traced Sym. Monoidal Category (Pfn,,+ 0)

* Category Pfn of partial functions
* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\overline{\boldsymbol{X}} \boldsymbol{\boldsymbol { Y } , \text { partial function }}}
$$

* is traced symmetric monoidal

Traced Sym. Monoidal Category (Pfn,,+ 0)

$$
\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in Pfn }}{X \xrightarrow{\operatorname{tr}(f)} Y \text { in Pfn }}
$$

How?

$$
f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w }\end{cases}
$$

Similar for $\boldsymbol{f}_{\boldsymbol{X} Z}, \boldsymbol{f}_{\boldsymbol{Z} \boldsymbol{Y}}, \boldsymbol{f}_{Z Z}$

* Trace operator:

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
$-\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced sym. monoidal cat.

* Where one can "feedback"

* Why for GoI?

GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
$-\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced sym. monoidal cat.
* Where one can "feedback"

* Why for GoI?

* Leading example: Pfn

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

Defn. (Retraction)
A retraction from \boldsymbol{X} to \boldsymbol{Y},

$$
f: X \triangleleft Y: g
$$

is a pair of arrows
"embedding"

such that $\boldsymbol{g} \circ f=\mathrm{id}_{\boldsymbol{X}}$.

* Functor F

* For obtaining ! : $A \rightarrow A$

GoI situation

Defn. (Got situation [AHS02])
A GoV situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{aligned}
j: U \otimes U & \triangleleft U: k \\
I & \triangleleft U \\
u: F U & \triangleleft U: v
\end{aligned}
$$

* The reflexive object U

$\frac{1}{j}$

 with

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functo

- $U \in \mathbb{C}$ is an object (called reflexiv fject), equipped with the following retractions.

$$
\begin{gathered}
\boldsymbol{j}: \boldsymbol{U} \otimes \boldsymbol{U} \triangleleft \boldsymbol{U}: \boldsymbol{k} \\
\boldsymbol{I} \triangleleft \boldsymbol{U} \\
\boldsymbol{u}: \boldsymbol{F} \boldsymbol{U} \triangleleft \boldsymbol{U}: \boldsymbol{v}
\end{gathered}
$$

* The reflexive object U
* Why for GoI?

* Example in Pfn:

$\mathbb{N} \in \mathbf{P f n}$, with
$\mathbb{N}+\mathbb{N} \cong \mathbb{N}$,
$\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the ${ }^{11}$ owing retractions (which are monoidal natural transformations

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \operatorname{id} \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

* Categorical axiomatics of the "GoI animation"

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive obs the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Example:

$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

* Applicative str.
* ! operator
* Combinators B, C, I, ...
* $g \cdot f$
$:=\operatorname{tr}((U \otimes f) \circ k \circ g \circ j)$

Summary:

 Categorical GoI

 Categorical GoI}

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U
\end{gathered}
$$

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, Lc'88]
"GoI Animation"

$$
\frac{\ddots}{\square}
$$

Categorical GoI
[Abramsky, Haghverdi \& Scott, MSCS'02]

Why Categd $K l(T)$ for different branching monads T
Examples

* Pfn (partial functions)
(Potential) non-termination

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\overline{\boldsymbol{X} \rightharpoonup \boldsymbol{Y}, \text { partial function }}}} \text { X } \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets } \quad \text { where } \mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)

Non-determinism
$\frac{\underset{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}{\underset{\boldsymbol{X} \rightarrow \boldsymbol{P} \boldsymbol{Y} \text { in Sets }}{ }}$ where \mathcal{P} is the powerset monad

* DSRel
$\xlongequal[X \rightarrow \boldsymbol{Y} \text { in DSRel }]{\boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Different Branching in The GoI Animation

Pfn (partial functions)

* Pipes can be stuck

Rel (relations)

* Pipes can branch DSRel
* Pipes can branch probabilistically

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad" \boldsymbol{T} on Sets, the monoidal category

$$
(\mathcal{K} \ell(T),+, 0)
$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(T),+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$ is a GoI situation.

Monads in
[Hasuo,Jacobs\&Sokolova07]

* $\mathrm{Kl}(\mathrm{T})$ is $\mathrm{CPO}_{\perp}-$ enriched

Particle-style: trace via the execution formula

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSO2]

Linear combinatory algebra

Realizability

Linear category

Fancy monad

Fancy
TSMC

Fancy

LCA

Model of fancy
language

* Model for (a variant of) the Selinger-Valiron

Workflow

 quantum λ-calculus (linear $\lambda+$ prep./Unitary/meas.)[Hasuo \& Hoshino, LICS'11 \& APAL'16]

* via the quantum branching monad ... with considerable complication:(

$$
\llbracket \Gamma \vdash M: \tau \rrbracket: \llbracket \Gamma \rrbracket \longrightarrow(\llbracket \tau \rrbracket \multimap R) \multimap R
$$

where

$$
R=\left\{p_{0} \sim_{\bullet}^{p_{\varepsilon}} p_{0}^{\bullet} q_{\varepsilon}\right.
$$

Fancy monad

* Records measurement outcomes
* $\quad \boldsymbol{R}$ as a suitable final coalgebra in the realizability category

Fancy

LCA

Realizability

Linear category

Model of fancy
language

Challenge: Memorizing Effects

Already w/ nondeterminism!

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

$\llbracket \lambda x . x+x \rrbracket$
【3 $\sqcup 5 \rrbracket$ $(\lambda x . x+x)(3 \sqcup 5)$

$\longrightarrow{ }_{\mathrm{CBV}} \mathbf{6}$ or $\mathbf{1 0}$??

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $3+3,3+5,5+3$ or $5+5$

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

Categorical GoI

GoI w/

T-branching

[IH \& Hoshino, LICS'11]

Memoryful GoI
[Hoshino, Muroya \& IH,
CSL-LICS'14 \& POPL'16]

Memoryful GoI

* Equip piping with internal states, or memory
* not $\llbracket 3 \sqcup 5 \rrbracket: \mathbb{N} \longrightarrow \mathcal{P} \mathbb{N}, \quad q \longmapsto\{3,5\}$
but a transducer (Mealy machine)

* Not a new idea:
* Slices in GoI for additives [Laurent, tlcáou]
* Resumption GoI [Abramsky, concur'96]

Memoryful GoI

* We introduce memory in a structured manner...
\rightarrow
the "traced monoidal category" of transducers
$\operatorname{Trans}(\boldsymbol{T})$ Objects: sets $\boldsymbol{A}, \boldsymbol{B}, \ldots$

$$
\text { Arrows: } \frac{A \longrightarrow B \text { in Trans }(T)}{\overline{\left(X, X \times A \xrightarrow{c} T(X \times B), x_{0} \in X\right), T \text {-transducer }}}
$$

* with operations
like

The Memoryful GoI Framework

- Exception $1+\boldsymbol{E}+\left(_\right)$
- with $\mathbf{0}$-ary opr. raise $_{\boldsymbol{e}}(\boldsymbol{e} \in \boldsymbol{E})$
- Nondeterminism \mathcal{P}
- with binary opr. \sqcup
- Probability \mathcal{D}, where
$\mathcal{D} X=\left\{d: X \rightarrow[0,1] \mid \sum_{x} d(x) \leq 1\right\}$
- with binary opr. $\sqcup_{p}(\boldsymbol{p} \in[0,1])$
- Global state $(1+S \times)^{S}$
- with $|\boldsymbol{V}|$-ary lookup $_{l}$ and unary update $_{l, v}$ algebraic operations on T
[Plotkin \& Power]

$$
\left\{\alpha_{A, B}:(A \Rightarrow T B)^{|\alpha|} \longrightarrow(A \Rightarrow T B)\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K} \ell(T)}
$$

For the calculus: $\lambda_{c}+($ alg. opr. from $\Sigma)+(c o)$ products + arith.

* We give

$$
|\Gamma|
$$

$$
\frac{\Gamma \vdash M_{1}: \tau \quad \cdots \quad \Gamma \vdash M_{|\alpha|}: \tau}{\Gamma \vdash \alpha\left(M_{1}, \ldots, M_{|\alpha|}\right): \tau} \alpha \in \Sigma
$$

Missing Ingredient II: Recursion

Girard style fixed point operator

Obviously a fixed point Fixed-point induction

Theorem The two coincide. (for any suitable T!)

Interpretation

$\llbracket _\rrbracket: \mathrm{EffVal}_{\mathbb{N}}^{\Sigma} \longrightarrow T(\mathbb{N})$
Theorem (Adequacy) (exploiting free conti. Σ-alg.) Let $\vdash M$: nat. Then, as elem of $\boldsymbol{T}(\mathbb{N})$,
feeding a query and observing the outcome

Opr. sem.:
Plotkin-Power effect-value. E.g.

Developed by Koko Muroya http://koko-m.github.io/TtT/

TtT (Terms to Transducers)

- Enter a term, or type ";ex" to select one from 13 examples. [read documents]

Summary

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, Lc'88]
"GoI Animation"

$$
\frac{\square}{\square} \times \frac{\square}{N}=\frac{1}{N}
$$

Categorical GoI

GoI w/

T-branching

[IH \& Hoshino, LICS'11]

Memoryful GoI
[Hoshino, Muroya \& IH,
CSL-LICS'14 \& POPL'16]

Retracing some paths in Process Algebra

Samson Abramsky
Laboratory for the Foundations of Computer Science
University of Edinburgh

1 Introduction

$$
\begin{aligned}
& \text { Thank you for your attention! } \\
& \text { Ichiro Hasuo (NII, Japan) } \\
& \text { http://group-mmm.org/~ichiro/ }
\end{aligned}
$$

The very existence of the CONCUR conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75] ${ }^{1}$, which led in a fairly diy to his enormously influential work on CCS [Mil80, Mil89]. I will tak extreme) the liberty of of applying hindsight, and show how some paths could have been taken, which, it can be argued, lead to a mor approach to the semantics of computation, and moreover one wh be better suited to modelling today's concurrent, object-oriented la and the type systems and logics required to support such languages

We're hiring!

Max 3.5 yrs, PD \& senior researchers logic + automata + categories + machine learning + software engineering \rightarrow CPS, automated driving

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of transducers, i.e. structures

$$
\left(Q, X, Y, q_{0}, \delta\right)
$$

CONCUR’96

