
Coalgebras and
Higher-Order Computation:
a GoI Approach

Ichiro Hasuo
National Institute of Informatics  
Tokyo, Japan

Supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST; Grants-in-Aid No. 15KT0012 & 15K11984, JSPS;
and JSPS-Inria Bilateral Joint Research Project “CRECOGI”

Hasuo (NII, JP)

Outline
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/  
T-branching  
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN

ÏÏf f : X ⇥ N !
T (X ⇥ N)

x 2 X

Memoryful GoI  
[Hoshino, Muroya & IH,  
CSL-LICS’14 & POPL’16]

Categorical axiomatization

Compilation to sequential machines

Hasuo (NII, JP)

References
[LICS 2011] IH and Naohiko Hoshino. Semantics of Higher-Order Quantum
Computation via Geometry of Interaction.  
(Extended ver. Annals Pure & Appl. Logic 2017)

[CSL-LICS 2014]  
Naohiko Hoshino, Koko Muroya and IH. Memoryful Geometry of Interaction:
From Coalgebraic Components to Algebraic Effects.

[POPL 2016] Koko Muroya, Naohiko Hoshino and IH.  
Memoryful Geometry of Interaction II: Recursion and Adequacy.

[LOLA 2014]  
Koko Muroya, Toshiki Kataoka, IH and Naohiko Hoshino.  
Compiling Effectful Terms to Transducers: Prototype Implementation of
Memoryful Geometry of Interaction (Preliminary Report).

[Math. Str. in Comp. Sci. 2011]  
IH and Bart Jacobs. Traces for Coalgebraic Components.

http://www2.informatik.hu-berlin.de/lics/lics11/
http://www.kurims.kyoto-u.ac.jp/%7Enaophiko
http://lics.rwth-aachen.de/csl-lics14/
http://www.kurims.kyoto-u.ac.jp/%7Enaophiko
http://www-mmm.is.s.u-tokyo.ac.jp/%7Ekoko/
http://conf.researchr.org/home/POPL-2016
http://www-mmm.is.s.u-tokyo.ac.jp/%7Ekoko/
http://www.kurims.kyoto-u.ac.jp/%7Enaophiko
http://www.easychair.org/smart-program/VSL2014/LOLA-index.html
http://www-mmm.is.s.u-tokyo.ac.jp/%7Ekoko/
http://www-mmm.is.s.u-tokyo.ac.jp/%7Etos/
http://www.kurims.kyoto-u.ac.jp/%7Enaophiko
http://www.cs.ru.nl/B.Jacobs

Hasuo (NII, JP)

Geometry of Interaction (GoI)
J.-Y. Girard, at Logic Colloquium ’88

Provides “denotational” semantics (w/ operational flavor)  
for linear λ-term M

As a compilation technique  
[Mackie, POPL’95] [Pinto, TLCA’01] [Ghica et al., POPL’07, POPL’11, ICFP’11, ...]

Two presentations:

(Operator-) Algebraic [Girard]

Token machines/ 
interaction abstract machines  
[Danos & Regnier, TCS’99] [Mackie, POPL’95]

Ï
ax

ax

(a)

ax

ax

` ⌦

`

B↵

(b)

(↵?
1 ` ↵

?
2)`

(↵3 ⌦ [])

(c)

(d)

ax ax

` ⌦

`

⌦

cut

ax

B↵
`

`

⌦

ax ax

(e)

ax ax

⌦ `

`

cut

⌦

⌦

ax

succ

zero

N

(f)

ax ax

H

` ⌦

CNOT

`

cut

⌦

⌦ ax

zero zero

Q ⌦ Q

(g)

Figure 1: Nets and Abstract Machines — Some Examples

3

ax
ax

(a)

ax

ax

` ⌦

`

B↵

(b)

(↵?
1 ` ↵

?
2)`

(↵3 ⌦ [])

(c)

(d)

ax ax

` ⌦

`

⌦

cut

ax

B↵
`

`

⌦

ax ax

(e)

ax ax

⌦ `

`

cut

⌦

⌦

ax

succ

zero

N

(f)

ax ax

H

` ⌦

CNOT

`

cut

⌦

⌦ ax

zero zero

Q ⌦ Q

(g)

Figure 1: Nets and Abstract Machines — Some Examples

3

Hasuo (NII, JP)

The GoI Animation
JMK = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

0 1 2 3

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

✖

token

Hasuo (NII, JP)

The GoI Animation
Function application

by “parallel composition + hiding”

JMNK

[| M|] [| N|]

...

... ...

...

...

...

...

...

[| MN|]

JMNK
=

“parallel composition + hiding”

(cf. AJM games)

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

➜
➜
➜

[| MN|]

Hasuo (NII, JP)

Outline
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

Hasuo (NII, JP)

Categorical GoI
Axiomatics of GoI in the categorical language

Our main reference:

[AHS02] S. Abramsky, E. Haghverdi, and P. Scott,
Geometry of interaction and linear combinatory
algebras, Math. Str. Comp. Sci, 2002

Especially its technical report version (Oxford CL),  
since it’s a bit more detailed

See also:

IH and Naohiko Hoshino. Semantics of Higher-Order
Quantum Computation via Geometry of Interaction.
Annals Pure & Applied Logic 2017.  
arxiv.org/abs/1605.05079

http://www.kurims.kyoto-u.ac.jp/%7Enaophiko
http://arxiv.org/abs/1605.05079

Hasuo (NII, JP)

The Categorical GoI
Workflow

Traced monoidal category C

+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

PER, ω-set, assembly, ...

“Programming in untyped λ”

Hasuo (NII, JP)

GoI situation
What we use (ingredient)

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Hasuo (NII, JP)

GoI situation
Monoidal category

String diagrams

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

(C,⌦, I)

A
f�! B B

g�! C

A
g�f�! C

A

B

C

g

f

gf

h

h � (f ⌦ g)

A

B

C
gf

D

A
f�! B C

g�! D

A ⌦ C
f⌦g�! B ⌦ D

Hasuo (NII, JP)

GoI situation
Traced monoidal category

“feedback”

that is

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

A ⌦ C
f�! B ⌦ C

A
tr(f)�! B

tr7�!f
A

B

C

C

A

B

tr(f)

Hasuo (NII, JP)
Pipe diagram

I use two ways of depicting partial
functions

String Diagram vs.
“Pipe Diagram”

N * N

String diagram

JMK

N

N

In the monoidal category
(Pfn,+, 0)

Hasuo (NII, JP)

Traced Sym. Monoidal Category

Category Pfn of partial functions

Obj. A set X

Arr. A partial function

is traced symmetric monoidal

X ! Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)

Hasuo (NII, JP)

Traced Sym. Monoidal Category

 How?

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY t

a

n2N
fZY � (fZZ)

n � fXZ

!

Execution formula (Girard)

Partiality is essential (infinite

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn

Hasuo (NII, JP)

GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

[| MN|]

 in string diagramJMK JNK

Hasuo (NII, JP)

GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Leading example: Pfn

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)

M N M

N

M

N

= = tr[]

Hasuo (NII, JP)

GoI situation

Functor F

For obtaining ! : A → A

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Defn. (Retraction)

A retraction from X to Y ,

f : X C Y : g ,

is a pair of arrows

Xid 99

f
((
Y

g
hh

such that g � f = idX .

“embedding”

“projection”

Hasuo (NII, JP)

GoI situation
The reflexive object U

 Retr.

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

U ⌦ U

j
))U

k

hh

 , with

 = id

j k

j

k

Hasuo (NII, JP)

GoI situation
The reflexive object U

Why for GoI?

Example in Pfn:

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

 , j k M N

N ⇥ Pfn, with

N + N �= N,
N · N �= N

Hasuo (NII, JP)

Categorical axiomatics of
the “GoI animation”

Example:

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

 , j k

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)

· · · · · ·

· · ·

Hasuo (NII, JP)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)

g f=

g · f
:= tr

�
(U � f) ⇥ k ⇥ g ⇥ j

�

=
f

g

Hasuo (NII, JP)

Summary:
Categorical GoI

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Hasuo (NII, JP)

Outline
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/  
T-branching  
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN

Hasuo (NII, JP)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn (partial functions)

Rel (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Kl(T) for different branching
monads T

Hasuo (NII, JP)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

✖

Pfn (partial
functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

➜

➜

➜

✖✖ 1

3

2

3

11
1

Hasuo (NII, JP)

Thm. ([Jacobs,CMCS10])
Given a “branching monad” T on Sets, the
monoidal category

(K`(T),+, 0)

is

• a unique decomposition category

[Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor.�
(K`(T),+, 0), N · , N

�
is a GoI situation.

Branching Monad: Source of
Particle-Style GoI Situations

Monads in
[Hasuo,Jacobs&Sokolova07]

Kl(T) is Cpo⊥-
enriched

Particle-style: trace via
the execution formula

tr(f) =

fXY t

a

n2N
fZY � (fZZ)

n � fXZ

!

Hasuo (NII, JP)

The Categorical GoI Workflow

Traced monoidal category C

+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy

language

Fancy

LCA

Fancy

TSMC

Fancy

monad

Hasuo (NII, JP)

The Categorical GoI Workflow

Traced monoidal category C

+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy

language

Fancy

LCA

Fancy

TSMC

Fancy

monad

Model for (a variant of) the
Selinger-Valiron  
quantum λ-calculus  
(linear λ + prep./Unitary/meas.) 
[Hasuo & Hoshino, LICS’11 & APAL’16]

via the quantum branching monad

... with considerable complication :( 

where
J� ` M : ⌧ K : J�K �! (J⌧ K (R) (R

R =

⇢

•

•

•
...

•
...

p1 q1•

•
...

•
...

p0 q0

p" q"
���� p↵, q↵ 2 [0, 1]

�

Records measurement
outcomes

R as a suitable final
coalgebra in the
realizability category

Challenge: Memorizing Effects
Already w/

nondeterminism!

J(�x. x + x)(3 t 5)K

...

... ...

...

...

J�x. x + xK J3 t 5K

• Query (�x. x + x)(3 t 5)
• Query x

• Answer 3 or 5
• Query x

• Answer 3 or 5
• Answer 3 + 3, 3 + 5, 5 + 3 or 5 + 5

... Challenge: Memorizing Effects

(�x. x + x)(3 t 5)

�!CBV 6 or 10 ??

Already w/
nondeterminism!

Hasuo (NII, JP)

Outline
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/  
T-branching  
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN

ÏÏf f : X ⇥ N !
T (X ⇥ N)

x 2 X

Memoryful GoI  
[Hoshino, Muroya & IH,  
CSL-LICS’14 & POPL’16]

Hasuo (NII, JP)

Equip piping with 
internal states, or memory

not 
 
but a transducer (Mealy machine)

Not a new idea:

Slices in GoI for additives [Laurent, TLCA’01]

Resumption GoI [Abramsky, CONCUR’96]

Memoryful GoI

J3 t 5K : N �! PN , q 7�! {3, 5}

J3 t 5K : X ⇥ N �! P(X ⇥ N) , slq/3
88

s0
q/3
oo

✏✏ q/5
// sr q/5
gg

s

Hasuo (NII, JP)

We introduce memory in a structured manner...  
➜  
the “traced monoidal category” of transducers

with operations  
like

Memoryful GoI

Trans(T) Objects: sets A,B, . . .

Arrows:
A �! B in Trans(T)

�
X, X ⇥ A

c! T (X ⇥ B), x0 2 X

�
, T -transducer

(X,c,x)

A

B

(Y,d,y)

C composition ◦

(X,c,x)

A

B

(Y,d,y)

C

D

tensor ⊗

CA

B C

(X,c,x)

trace

Hasuo (NII, JP)

Trans(T) by Coalgebraic
Component Calculus
[Barbosa ’03][IH & Jacobs ’11] Trans(T) Objects: sets A,B, . . .

Arrows:
A �! B in Trans(T)

�
X, X ⇥ A

c! T (X ⇥ B), x0 2 X

�
, T -transducer

0

BBBBBBBBBBBBBBB@

X ⇥ Y,

(X ⇥ Y) ⇥ A

⇠=�! (X ⇥ A) ⇥ Y

c⇥Y�! T (X ⇥ B) ⇥ Y

str0�! T

�
(X ⇥ B) ⇥ Y

�
⇠=�! T

�
X ⇥ (Y ⇥ B)

�

T (X⇥d)�! T

�
X ⇥ T (Y ⇥ C)

�

T str�! TT

�
X ⇥ (Y ⇥ C)

�

µT

�! T

�
X ⇥ (Y ⇥ C)

�
⇠=�! T

�
(X ⇥ Y) ⇥ C

�

, (x, y)

1

CCCCCCCCCCCCCCCA

CA

B C

(X,c,x)

trace

(X,c,x)

A

B

(Y,d,y)

C composition ◦

(X,c,x)

A

B

(Y,d,y)

C

D

tensor ⊗

Hasuo (NII, JP)

Given:

a monad T on Sets,  
s.t. Kl(T) is Cppo-enriched

an alg. signature Σ with  
algebraic operations on T  
[Plotkin & Power]

For the calculus: λc + (alg. opr. from Σ) + (co)products + arith.

We give  
 
 

The Memoryful GoI Framework

n

↵A,B : (A) TB)|↵| �! (A) TB)
o

A2Sets,B2K`(T)

• Exception 1 + E + ()

– with 0-ary opr. raise

e

(e 2 E)

• Nondeterminism P
– with binary opr. t

• Probability D, where

DX = {d : X ! [0, 1] |
P

x

d(x) 1}
– with binary opr. t

p

(p 2 [0, 1])

• Global state (1 + S ⇥)

S

– with |V |-ary lookup

l

and unary update

l,v

� ` M1 : ⌧ · · · � ` M|↵| : ⌧

� ` ↵(M1, . . . ,M|↵|) : ⌧
↵ 2 ⌃

|�|

N N N

N N N

...

...
in Trans(T)L� ` M : ⌧ M

Hasuo (NII, JP)

Missing Ingredient II: Recursion

Muroya (U. Tokyo)

Component Calculus for Recursion

15

Girard style
fixed point operator

Mackie style
fixed point operator

c

A

A

N×A

N×A

c c c . . . c

c̃
∗

A

c̃′
∗

A

d̃′
∗

A

d̃
∗

A

ẽ
∗

A

ẽ′
∗

A

A

A

N × A

N × A

N × A

N × A

N × N × A

N × N × A

N × A

N × A

Obviously a fixed point

Fixed-point induction

Finitary string diagram

Theorem The two coincide. (for any suitable T!)

Hasuo (NII, JP)

Given:

a monad T on Sets,  
s.t. Kl(T) is Cppo-enriched

an alg. signature Σ with  
algebraic operations on T  
[Plotkin & Power]

For the calculus: λc + (alg. opr. from Σ) + (co)products

We give  
 
 

The Memoryful GoI Framework

n

↵A,B : (A) TB)|↵| �! (A) TB)
o

A2Sets,B2K`(T)

• Exception 1 + E + ()

– with 0-ary opr. raise

e

(e 2 E)

• Nondeterminism P
– with binary opr. t

• Probability D, where

DX = {d : X ! [0, 1] |
P

x

d(x) 1}
– with binary opr. t

p

(p 2 [0, 1])

• Global state (1 + S ⇥)

S

– with |V |-ary lookup

l

and unary update

l,v

|�|

N N N

N N N

...

...
in Trans(T)

� ` M1 : ⌧ · · · � ` M|↵| : ⌧

� ` ↵(M1, . . . ,M|↵|) : ⌧
↵ 2 ⌃

L� ` M : ⌧ M

Theorem (Adequacy)

Let ` M : nat. Then, as elem. of T (N),
 !†

=
r
|M |

z
.

N

N
L` M : nat M

feeding a query
and observing
the outcome

Opr. sem.:  
Plotkin-Power
effect-value. E.g.
�� 3 t (5 t div)

�� =

t

t

?5

3

Interpretation

(exploiting free conti. Σ-alg.)
J K : E↵Val⌃N �! T (N)

Hasuo (NII, JP)

Our Tool TtT
Developed by Koko Muroya
http://koko-m.github.io/TtT/

http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/

Hasuo (NII, JP)

Summary
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/  
T-branching  
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN

ÏÏf f : X ⇥ N !
T (X ⇥ N)

x 2 X

Memoryful GoI  
[Hoshino, Muroya & IH,  
CSL-LICS’14 & POPL’16]

Hasuo (NII, JP)

Ï

ar
X

iv
:1

40
1.

51
13

v1
 [

cs
.L

O
]

20
 Ja

n
20

14

Retracing some paths in Process Algebra

Samson Abramsky
Laboratory for the Foundations of Computer Science

University of Edinburgh

1 Introduction

The very existence of the concur conference bears witness to the fact that
“concurrency theory” has developed into a subject unto itself, with substan-
tially different emphases and techniques to those prominent elsewhere in the
semantics of computation.

Whatever the past merits of this separate development, it seems timely
to look for some convergence and unification. In addressing these issues, I
have found it instructive to trace some of the received ideas in concurrency
back to their origins in the early 1970’s. In particular, I want to focus on
a seminal paper by Robin Milner [Mil75]1, which led in a fairly direct line
to his enormously influential work on ccs [Mil80, Mil89]. I will take (to the
extreme) the liberty of of applying hindsight, and show how some different
paths could have been taken, which, it can be argued, lead to a more unified
approach to the semantics of computation, and moreover one which may
be better suited to modelling today’s concurrent, object-oriented languages,
and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner’s starting point was the classical automata-theoretic notion of trans-
ducers, i.e. structures

(Q,X, Y, q0, δ)

where Q is a set of states, q0 ∈ Q the initial state, X the set of inputs, Y
the set of outputs, and

δ : Q×X ⇀ Y ×Q

1Similar ideas appeared independently in the work of Hans Bekić [Bek71].

1

CONCUR’96

Thank you for your attention!
Ichiro Hasuo (NII, Japan)

http://group-mmm.org/~ichiro/

We’re hiring!  
Max 3.5 yrs, PD & senior researchers 
logic + automata + categories + machine
learning + software engineering  
➜ CPS, automated driving

