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Outline
Coalgebra meets higher-order computation


in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/  
T-branching  
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN

ÏÏf f : X ⇥ N !
T (X ⇥ N)

x 2 X

Memoryful GoI  
[Hoshino, Muroya & IH,  
CSL-LICS’14 & POPL’16]

Categorical axiomatization

Compilation to sequential machines
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Geometry of Interaction (GoI)
J.-Y. Girard, at Logic Colloquium ’88


Provides “denotational” semantics (w/ operational flavor)       
for linear λ-term M 

As a compilation technique  
[Mackie, POPL’95] [Pinto, TLCA’01] [Ghica et al., POPL’07, POPL’11, ICFP’11, ...]  

Two presentations:


(Operator-) Algebraic [Girard]


Token machines/ 
interaction abstract machines  
[Danos & Regnier, TCS’99] [Mackie, POPL’95]
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Figure 1: Nets and Abstract Machines — Some Examples
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The GoI Animation
JMK = (N � N, a partial function )

= “piping”

[|  M|]

...    (countably many)

...

0 1 2 3

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

✖

token
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The GoI Animation
Function application 


by “parallel composition + hiding”

JMNK



[|  M|] [|  N|]

...

... ...

...

...

...

...

...

[|  MN|]

JMNK
=

“parallel composition + hiding”

(cf. AJM games)



[|  M|] [|  N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

➜
➜
➜

[|  MN|]
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Outline
Coalgebra meets higher-order computation


in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]
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Categorical GoI
Axiomatics of GoI in the categorical language

Our main reference:


[AHS02]  S. Abramsky, E. Haghverdi, and P. Scott, 
Geometry of interaction and linear combinatory 
algebras, Math. Str. Comp. Sci, 2002

Especially its technical report version (Oxford CL),  
since it’s a bit more detailed


See also: 


IH and Naohiko Hoshino. Semantics of Higher-Order 
Quantum Computation via Geometry of Interaction. 
Annals Pure & Applied Logic 2017.  
arxiv.org/abs/1605.05079

http://www.kurims.kyoto-u.ac.jp/%7Enaophiko
http://arxiv.org/abs/1605.05079
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The Categorical GoI 
Workflow

Traced monoidal category C

+ other constructs ➜ “GoI situation” [AHS02]


Categorical GoI [AHS02]

Linear combinatory algebra


tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category


Applicative str. + combinators


Model of untyped calculus


Model of typed calculus

PER, ω-set, assembly, ...


“Programming in untyped λ”
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GoI situation
What we use (ingredient)

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v
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GoI situation
Monoidal category


String diagrams

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

(C,⌦, I)

A
f�! B B

g�! C

A
g�f�! C

A

B

C

g

f

gf

h

h � (f ⌦ g)

A

B

C
gf

D

A
f�! B C

g�! D

A ⌦ C
f⌦g�! B ⌦ D
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GoI situation
Traced monoidal category


“feedback”


that is

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

A ⌦ C
f�! B ⌦ C

A
tr(f)�! B

tr7�!f
A

B

C

C

A

B

tr(f)
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Pipe diagram

I use two ways of depicting partial 
functions

String Diagram vs. 
“Pipe Diagram”

N * N

String diagram

JMK

N

N

In the monoidal category
(Pfn,+, 0)
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Traced Sym. Monoidal Category   

Category Pfn of partial functions


Obj.  A set X


Arr.  A partial function


is traced symmetric monoidal

X ! Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)
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Traced Sym. Monoidal Category   

                             How?


 


Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY t
 
a

n2N
fZY � (fZZ)

n � fXZ

!

Execution formula (Girard)


Partiality is essential (infinite 

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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GoI situation
Traced sym. monoidal cat.


Where one can “feedback”


Why for GoI?

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)



[|  M|] [|  N|]

...

... ...

...

...

...

JMNK
=

[|  MN|]

 in string diagramJMK JNK
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GoI situation
Traced sym. monoidal cat.


Where one can “feedback”


Why for GoI?


Leading example: Pfn

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)

M N M

N

M

N

= = tr[ ]
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GoI situation

Functor F 

For obtaining  ! : A → A

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Defn. (Retraction)

A retraction from X to Y ,

f : X C Y : g ,

is a pair of arrows

Xid 99

f
((
Y

g
hh

such that g � f = idX .

“embedding”

“projection”
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GoI situation
The reflexive object U 

 Retr. 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

U ⌦ U

j
))U

k

hh

          ,         with


                 =  id

j k

j

k
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GoI situation
The reflexive object U 

Why for GoI? 


Example in Pfn: 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k M N

N ⇥ Pfn, with

N + N �= N,
N · N �= N
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Categorical axiomatics of 
the “GoI animation” 


Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)

· · · · · ·

· · ·
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Categorical GoI: 
Constr. of an LCA

 

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅


! operator


Combinators B, C, I, ...


f
U

U

2 C(U,U)

g f=

g · f
:= tr

�
(U � f) ⇥ k ⇥ g ⇥ j

�

=
f

g
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Summary:  
Categorical GoI

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v
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Outline
Coalgebra meets higher-order computation


in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/  
T-branching  
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN
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Why Categorical Generalization?: 
Examples Other Than Pfn [AHS02]

Pfn  (partial functions)

Rel  (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and                 
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Kl(T) for different branching 
monads T  
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Different Branching in 
The GoI Animation

...   

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

✖

Pfn  (partial 
functions)

Pipes can be stuck

Rel  (relations)

Pipes can branch

DSRel

Pipes can branch 
probabilistically

➜

➜

➜

✖✖ 1

3

2

3

11
1
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Thm. ([Jacobs,CMCS10])
Given a “branching monad” T on Sets, the
monoidal category

(K`(T ),+, 0)

is

• a unique decomposition category

[Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor.�
(K`(T ),+, 0), N · , N

�
is a GoI situation.

Branching Monad: Source of 
Particle-Style GoI Situations

Monads in 
[Hasuo,Jacobs&Sokolova07]


Kl(T) is Cpo⊥-
enriched


Particle-style: trace via 
the execution formula

tr(f) =

fXY t
 
a

n2N
fZY � (fZZ)

n � fXZ

!
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The Categorical GoI Workflow

Traced monoidal category C

+ other constructs ➜ “GoI situation” [AHS02]


Categorical GoI [AHS02]

Linear combinatory algebra


Realizability

Linear category


Coalgebraic trace semantics

Branching monad B


Model of fancy

language

Fancy

LCA

Fancy

TSMC

Fancy

monad
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The Categorical GoI Workflow

Traced monoidal category C

+ other constructs ➜ “GoI situation” [AHS02]


Categorical GoI [AHS02]

Linear combinatory algebra


Realizability

Linear category


Coalgebraic trace semantics

Branching monad B


Model of fancy

language

Fancy

LCA

Fancy

TSMC

Fancy

monad

Model for (a variant of) the 
Selinger-Valiron  
quantum λ-calculus  
(linear λ + prep./Unitary/meas.) 
[Hasuo & Hoshino, LICS’11 & APAL’16]

via the quantum branching monad

... with considerable complication :(  

where
J� ` M : ⌧ K : J�K �! (J⌧ K ( R) ( R

R =

⇢

•

•

•
...

•
...

p1 q1•

•
...

•
...

p0 q0

p" q"
���� p↵, q↵ 2 [0, 1]

�

Records measurement 
outcomes


R as a suitable final 
coalgebra in the 
realizability category




Challenge: Memorizing Effects
Already w/ 

nondeterminism!




J(�x. x + x)(3 t 5)K

...

... ...

...

...

J�x. x + xK J3 t 5K

• Query (�x. x + x)(3 t 5)
• Query x

• Answer 3 or 5
• Query x

• Answer 3 or 5
• Answer 3 + 3, 3 + 5, 5 + 3 or 5 + 5

... Challenge: Memorizing Effects

(�x. x + x)(3 t 5)

�!CBV 6 or 10 ??

Already w/ 
nondeterminism!
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Outline
Coalgebra meets higher-order computation


in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/  
T-branching  
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN

ÏÏf f : X ⇥ N !
T (X ⇥ N)

x 2 X

Memoryful GoI  
[Hoshino, Muroya & IH,  
CSL-LICS’14 & POPL’16]
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Equip piping with 
internal states, or memory


not 
 
but a transducer (Mealy machine)


Not a new idea: 


Slices in GoI for additives [Laurent, TLCA’01]


Resumption GoI [Abramsky, CONCUR’96]

Memoryful GoI

J3 t 5K : N �! PN , q 7�! {3, 5}

J3 t 5K : X ⇥ N �! P(X ⇥ N) , slq/3
88

s0
q/3
oo

✏✏ q/5
// sr q/5
gg

s
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We introduce memory in a structured manner...  
➜  
the “traced monoidal category” of transducers


with operations  
like

Memoryful GoI

Trans(T ) Objects: sets A,B, . . .

Arrows:
A �! B in Trans(T )

�
X, X ⇥ A

c! T (X ⇥ B), x0 2 X

�
, T -transducer

(X,c,x)

A

B

(Y,d,y)

C composition ◦

(X,c,x)

A

B

(Y,d,y)

C

D

tensor ⊗ 

CA

B C

(X,c,x)

trace 
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Trans(T) by Coalgebraic 
Component Calculus 
[Barbosa ’03][IH & Jacobs ’11] Trans(T ) Objects: sets A,B, . . .

Arrows:
A �! B in Trans(T )

�
X, X ⇥ A

c! T (X ⇥ B), x0 2 X

�
, T -transducer

0

BBBBBBBBBBBBBBB@

X ⇥ Y,

(X ⇥ Y ) ⇥ A

⇠=�! (X ⇥ A) ⇥ Y

c⇥Y�! T (X ⇥ B) ⇥ Y

str0�! T

�
(X ⇥ B) ⇥ Y

�
⇠=�! T

�
X ⇥ (Y ⇥ B)

�

T (X⇥d)�! T

�
X ⇥ T (Y ⇥ C)

�

T str�! TT

�
X ⇥ (Y ⇥ C)

�

µT

�! T

�
X ⇥ (Y ⇥ C)

�
⇠=�! T

�
(X ⇥ Y ) ⇥ C

�

, (x, y)

1

CCCCCCCCCCCCCCCA

CA

B C

(X,c,x)

trace 

(X,c,x)

A

B

(Y,d,y)

C composition ◦

(X,c,x)

A

B

(Y,d,y)

C

D

tensor ⊗ 
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Given:


a monad T on Sets,  
s.t. Kl(T) is Cppo-enriched

an alg. signature Σ with  
algebraic operations on T  
[Plotkin & Power]


For the calculus: λc + (alg. opr. from Σ) + (co)products + arith.


We give  
 
 

The Memoryful GoI Framework

n

↵A,B : (A ) TB)|↵| �! (A ) TB)
o

A2Sets,B2K`(T )

• Exception 1 + E + ( )

– with 0-ary opr. raise

e

(e 2 E)

• Nondeterminism P
– with binary opr. t

• Probability D, where

DX = {d : X ! [0, 1] |
P

x

d(x)  1}
– with binary opr. t

p

(p 2 [0, 1])

• Global state (1 + S ⇥ )

S

– with |V |-ary lookup

l

and unary update

l,v

� ` M1 : ⌧ · · · � ` M|↵| : ⌧

� ` ↵(M1, . . . ,M|↵|) : ⌧
↵ 2 ⌃

|�|

N N N

N N N

...

...
in Trans(T)L� ` M : ⌧ M
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Missing Ingredient II: Recursion

Muroya (U. Tokyo)

Component Calculus for Recursion

15

Girard style 
fixed point operator

Mackie style 
fixed point operator

c

A

A

N×A

N×A

c c c . . . c

c̃
∗

A

c̃′
∗

A

d̃′
∗

A

d̃
∗

A

ẽ
∗

A

ẽ′
∗

A

A

A

N × A

N × A

N × A

N × A

N × N × A

N × N × A

N × A

N × A

Obviously a fixed point

Fixed-point induction

Finitary string diagram

Theorem  The two coincide. (for any suitable T!)
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Given:


a monad T on Sets,  
s.t. Kl(T) is Cppo-enriched

an alg. signature Σ with  
algebraic operations on T  
[Plotkin & Power]


For the calculus: λc + (alg. opr. from Σ) + (co)products


We give  
 
 

The Memoryful GoI Framework

n

↵A,B : (A ) TB)|↵| �! (A ) TB)
o

A2Sets,B2K`(T )

• Exception 1 + E + ( )

– with 0-ary opr. raise

e

(e 2 E)

• Nondeterminism P
– with binary opr. t

• Probability D, where

DX = {d : X ! [0, 1] |
P

x

d(x)  1}
– with binary opr. t

p

(p 2 [0, 1])

• Global state (1 + S ⇥ )

S

– with |V |-ary lookup

l

and unary update

l,v

|�|

N N N

N N N

...

...
in Trans(T)

� ` M1 : ⌧ · · · � ` M|↵| : ⌧

� ` ↵(M1, . . . ,M|↵|) : ⌧
↵ 2 ⌃

L� ` M : ⌧ M

Theorem  (Adequacy)


Let ` M : nat. Then, as elem. of T (N),
 !†

=
r
|M |

z
.

N

N
L` M : nat M

feeding a query 
and observing 
the outcome

Opr. sem.:  
Plotkin-Power 
effect-value. E.g.
�� 3 t (5 t div)

�� =

t

t

?5

3

Interpretation


(exploiting free conti. Σ-alg.)
J K : E↵Val⌃N �! T (N)
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Our Tool TtT
Developed by Koko Muroya
http://koko-m.github.io/TtT/

http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/
http://koko-m.github.io/TtT/


Hasuo (NII, JP)

Summary
Coalgebra meets higher-order computation


in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI  
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/  
T-branching  
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN

ÏÏf f : X ⇥ N !
T (X ⇥ N)

x 2 X

Memoryful GoI  
[Hoshino, Muroya & IH,  
CSL-LICS’14 & POPL’16]
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Retracing some paths in Process Algebra

Samson Abramsky
Laboratory for the Foundations of Computer Science

University of Edinburgh

1 Introduction

The very existence of the concur conference bears witness to the fact that
“concurrency theory” has developed into a subject unto itself, with substan-
tially different emphases and techniques to those prominent elsewhere in the
semantics of computation.

Whatever the past merits of this separate development, it seems timely
to look for some convergence and unification. In addressing these issues, I
have found it instructive to trace some of the received ideas in concurrency
back to their origins in the early 1970’s. In particular, I want to focus on
a seminal paper by Robin Milner [Mil75]1, which led in a fairly direct line
to his enormously influential work on ccs [Mil80, Mil89]. I will take (to the
extreme) the liberty of of applying hindsight, and show how some different
paths could have been taken, which, it can be argued, lead to a more unified
approach to the semantics of computation, and moreover one which may
be better suited to modelling today’s concurrent, object-oriented languages,
and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner’s starting point was the classical automata-theoretic notion of trans-
ducers, i.e. structures

(Q,X, Y, q0, δ)

where Q is a set of states, q0 ∈ Q the initial state, X the set of inputs, Y
the set of outputs, and

δ : Q×X ⇀ Y ×Q

1Similar ideas appeared independently in the work of Hans Bekić [Bek71].

1

CONCUR’96

Thank you for your attention!
Ichiro Hasuo (NII, Japan)

http://group-mmm.org/~ichiro/

We’re hiring!  
Max 3.5 yrs, PD & senior researchers 
logic + automata + categories + machine 
learning + software engineering  
➜ CPS, automated driving


