

## Codensity Games for Bisimilarity

Ichiro Hasuo
Symposium on the Categorical Unity of the Sciences, 2019/03/22
National Institute of Informatics \& SOKENDAI, Tokyo, JP JST ERATO Metamathematics for Systems Design Project

Introduction and Motivations

## Bisimulation \& Bisimilarity, the First Example

## Definition (Kripke structure)

A Kripke structure is a set $\boldsymbol{X}$ equipped with functions

$$
\begin{aligned}
& c_{1}: X \longrightarrow 2^{\mathrm{AP}} \text { and } c_{2}: X \longrightarrow \mathcal{P} X, \text { that is } \\
& c:=\left\langle c_{1}, c_{2}\right\rangle: X \longrightarrow 2^{\mathrm{AP}} \times \mathcal{P} X,
\end{aligned}
$$

where $\mathbf{A P}$ is a set of atomic propositions, and $\mathcal{P} \boldsymbol{X}=\{\boldsymbol{U} \subseteq \boldsymbol{X}\}$.

## Bisimulation \& Bisimilarity, the First Example

Since Milner \& Park, bisimulation is a standard equivalence notion between systems with potential branching.

Definition (bisimulation)
$R \subseteq X$ is a bisimulation over $\boldsymbol{c}: \boldsymbol{X} \rightarrow \mathbf{2}^{\mathrm{AP}} \times \mathcal{P} \boldsymbol{X}$ if, for each $(x, y) \in R$,

- (On atomic propositions) $c_{1}(x)=c_{1}(y) \in 2^{\text {AP }}$
- (Mimicking I)

$$
x^{\prime} \in c_{2}(x) \Longrightarrow \exists y^{\prime} \cdot\left(y^{\prime} \in c_{2}(y) \wedge\left(x^{\prime}, y^{\prime}\right) \in R\right)
$$

- (Mimicking II)

$$
y^{\prime} \in c_{2}(y) \Longrightarrow \exists x^{\prime} \cdot\left(x^{\prime} \in c_{2}(x) \wedge\left(x^{\prime}, y^{\prime}\right) \in R\right)
$$

## Definition (bisimilarity)

The bisimilarity over $\boldsymbol{c}: \boldsymbol{X} \rightarrow \mathbf{2}^{\mathrm{AP}} \times \mathcal{P} \boldsymbol{X}$ is the greatest bisimulation.

Bisimulation \& Bisimilarity, the First Example

The mimicking conditions:


## Bisimulation \& Bisimilarity, via Fixed Points

## Definition (relation lifting $\Phi$ )

Let $\boldsymbol{\Phi}: 2^{X \times X} \longrightarrow 2^{\left(2^{\text {AP }} \times \mathcal{P} X\right) \times\left(2^{\mathrm{AP}} \times \mathcal{P} X\right)}$ be defined by

$$
\left.\Phi(R):=\left\{\begin{array}{l|l}
(\alpha, S), \\
(\beta, T)
\end{array}\right) \left\lvert\, \begin{array}{l}
\alpha=\beta, \\
\forall x^{\prime} \in S . \exists y^{\prime} \in T .\left(x^{\prime}, y^{\prime}\right) \in R, \\
\forall y^{\prime} \in T . \exists x^{\prime} \in S .\left(x^{\prime}, y^{\prime}\right) \in R
\end{array}\right.\right\}
$$

$\boldsymbol{\Phi}$ lifts a relation from $\boldsymbol{X}$ to $\mathbf{2}^{\mathbf{A P}} \times \mathcal{P} \boldsymbol{X}$.
Definition (pullback $c^{*}$ )
$c: X \longrightarrow 2^{A P} \times \mathcal{P} \boldsymbol{X}$ induces a function

$$
\begin{aligned}
& c^{*}: 2^{\left(2^{\mathrm{AP}} \times \mathcal{P} X\right) \times\left(2^{\mathrm{AP}} \times \mathcal{P} X\right)} \longrightarrow 2^{X \times X} \text { by } \\
& c^{*}(T):=\{(x, y) \mid(c(x), c(y)) \in T\} .
\end{aligned}
$$

## Bisimulation \& Bisimilarity, via Fixed Points

We have obtained (obviously monotone) functions

$$
2^{X \times X} \xrightarrow[\text { lifting }]{\Phi} 2^{\left(2^{\text {AP }} \times \mathcal{P} X\right) \times\left(2^{\text {AP }} \times \mathcal{P} X\right)} \underset{\text { pull back along } c}{c^{*}} 2^{X \times X} .
$$

## Proposition

$R \subseteq X$ is a bisimulation iff $R \subseteq c^{*}(\Phi(R))$.

Let's recall some fixed-point theory.
Let $\boldsymbol{L}$ be a complete lattice, $\boldsymbol{f}: \boldsymbol{L} \rightarrow \boldsymbol{L}$ be monotone.

- [Knaster-Tarski]:
the greatest post-fixed point is the greatest fixed point $\boldsymbol{\nu} \boldsymbol{f}$. (Bisimilarity is a fixed point)
- [Cousot-Cousot]: the (transfinite) sequence $\top \sqsupseteq f(T) \sqsupseteq f^{2}(T) \sqsupseteq \cdots$ stabilizes to $\nu f$. (Foundation of the partition-refinement algorithm)


## The Second Example: Bisimulation Metric

## Definition (Markov chain)

A Markov chain is a set $\boldsymbol{X}$ equipped with functions

$$
\begin{aligned}
& c_{1}: X \longrightarrow 2^{\mathrm{AP}} \text { and } c_{2}: X \longrightarrow \mathcal{D} X, \text { that is } \\
& c:=\left\langle c_{1}, c_{2}\right\rangle: X \longrightarrow 2^{\mathrm{AP}} \times \mathcal{D} \boldsymbol{X},
\end{aligned}
$$

where $\mathcal{D} X=\left\{d: X \rightarrow[0,1] \mid \sum_{x \in X} d(x)=1\right\}$ is the set of probability distributions over $\boldsymbol{X}$.

Bisimulation and bisimilarity is known for MCs [Larsen \& Skou '91]. However they are too strict... $\boldsymbol{y}$ should be "closer" to $\boldsymbol{x}$ than $\boldsymbol{z}$


## The Second Example: Bisimulation Metric

Let $\left(\text { PMet }_{1}\right)_{\boldsymbol{X}}$ be the set of (1-b'dd) pseudometrics over $\boldsymbol{X}$.

## Definition (pseudometric lifting $\boldsymbol{\Phi}$ )

Let $\boldsymbol{\Phi}:\left(\mathrm{PMet}_{1}\right)_{\boldsymbol{X}} \longrightarrow\left(\mathrm{PMet}_{1}\right)_{2^{\mathrm{AP}} \times \mathcal{D} \boldsymbol{X}}$ be defined by

$$
(\Phi m)((\alpha, d),(\beta, e)):= \begin{cases}1 & \text { if } \alpha \neq \beta \\ (\mathcal{K} m)(d, e) & \text { if } \alpha=\beta\end{cases}
$$

where $\mathcal{K} \boldsymbol{m}$ is the Kantorovich metric over $\mathcal{D} \boldsymbol{X}$ by $\boldsymbol{m}$ :

$$
\begin{array}{r}
(\mathcal{K} m)(d, e):=\sup \left\{\left|\sum_{x} f(x) d(x)-\sum_{X} f(x) e(z)\right| \mid\right. \\
f:(X, m) \rightarrow([0,1], \text { Eucl. met. }) \text { is non-expansive }\}
\end{array}
$$

$\boldsymbol{\Phi}$ lifts a pseudometric.
Note the role of $f$ : we "observe" its expectations such as $\sum_{x} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d}(\boldsymbol{x})$.

## The Second Example: Bisimulation Metric

## Definition (pullback $c^{*}$ )

$c: X \longrightarrow 2^{\mathrm{AP}} \times \mathcal{D} \boldsymbol{X}$ induces a function

$$
\begin{aligned}
& c^{*}:\left(\mathrm{PMet}_{1}\right)_{2^{\mathrm{AP}} \times \mathcal{D} x} \longrightarrow\left(\mathrm{PMet}_{1}\right)_{x} \\
& c^{*}(n)(x, y):=n(c(x), c(y))
\end{aligned}
$$

Thus we have obtained functions
$\left(\mathrm{PMet}_{1}\right)_{x} \xrightarrow[\text { lifting }]{\Phi}\left(\mathrm{PMet}_{1}\right)_{2^{\text {AP }} \times \mathcal{D} X}^{\text {pull back along } c} \stackrel{c^{*}}{\left.\left(\mathrm{PMet}_{1}\right)_{x}\right)}$ that are "monotonic":

- Let $\boldsymbol{m} \sqsubseteq \boldsymbol{m}^{\prime}$ in $\left(\mathbf{P M e t}_{1}\right)_{\boldsymbol{x}}$ be defined by

$$
\forall x, y \in X . \quad m(x, y) \geq m^{\prime}(x, y)
$$

( "the indistinguishability order")

- Then $\boldsymbol{m} \sqsubseteq \boldsymbol{m}^{\prime}$ implies $\boldsymbol{c}^{*}(\boldsymbol{\Phi}(\boldsymbol{m})) \sqsubseteq \boldsymbol{c}^{*}\left(\boldsymbol{\Phi}\left(\boldsymbol{m}^{\prime}\right)\right)$


## The Second Example: Bisimulation Metric

$\left.\left(\mathrm{PMet}_{1}\right)_{X} \xrightarrow[\text { lifting }]{\Phi}\left(\mathrm{PMet}_{1}\right)_{2^{\text {AP }} \times \mathcal{D} x}^{\text {pull back along } c} \stackrel{c^{*}}{\left(\mathrm{PMet}_{1}\right)}\right)_{X}$
Definition (bisimulation metric [Desharamis, Gupta, Jagadeesan, Pananggaden "o4])
The bisimulation metric $\boldsymbol{m}_{(\boldsymbol{X}, \boldsymbol{c})}$ is the greatest fixed point of $\boldsymbol{c}^{*} \circ \boldsymbol{\Phi}$.

- Observation-respecting: distinguishes $x, y$ such that $\exists p .(x \vDash p \wedge y \not \vDash p)$
- Transition-invariant:
makes $c: X \rightarrow 2^{\text {AP }} \times \mathcal{D} X$ non-expansive
- The least distinguishing among the above



## A Scenario in Common

$2^{X \times X} \underset{\text { lifting }}{\Phi} 2^{\left(2^{\mathrm{AP}} \times \mathcal{P} X\right) \times\left(2^{\mathrm{AP}} \times \mathcal{P} X\right)} \underset{\text { pull back along } c}{c^{*}} 2^{X \times X}$
$\left(\mathrm{PMet}_{1}\right)_{X} \xrightarrow[\text { lifting }]{\Phi}\left(\mathrm{PMet}_{1}\right)_{2^{\mathrm{AP}} \times \mathcal{D} X}^{\text {pull back along } c} \stackrel{c^{*}}{\left(\mathrm{PMet}_{1}\right)_{X}}$

1. Identify an indistinguishability structure (IS) $\mathbb{E}$

- Binary relations, pseudometrics, ...

2. Lift a functor $\boldsymbol{F}$ to $\boldsymbol{\Phi}: \mathbb{E}_{\boldsymbol{X}} \rightarrow \mathbb{E}_{\boldsymbol{F} \boldsymbol{X}}$

- Given $F$, not always unique, although often there's a canonical one

3. Pull back along the dynamics $\boldsymbol{c}: \boldsymbol{X} \rightarrow \boldsymbol{F} \boldsymbol{X}$
4. Bisimulation is a post-fixed point $P \sqsubseteq \boldsymbol{c}^{*}(\Phi(P))$ Bisimilarity is the greatest fixed point

- wrt. the indistinguishability order $\sqsubseteq$
$\Longrightarrow$ we strive for categorical formalization!

Fibration for
Indistinguishability Structures and
Decent Maps

## The Categorical Setting



- The usual coalgebra business [Rutten, Jacobs, ...]
- $F: \mathbb{C} \rightarrow \mathbb{C}$, a behavior type functor
- $\boldsymbol{X} \in \mathbb{C}$, a state space
- $\boldsymbol{c}: \boldsymbol{X} \rightarrow \boldsymbol{F X}$, a coalgebra (describing dynamics)
- A CLat ${ }_{\square}$-fibration $\underset{\mathbb{C}}{\stackrel{\mathbb{E}}{\downarrow} p}$
- $P \in \mathbb{E}_{X}$, an indistinguishability predicate over $\boldsymbol{X}$ binary relation, pseudo-metric, preorder, $\sigma$-field, topology, ...
- $\mathbb{E}_{X}$ is a complete lattice, wrt. the indistinguishability order $\sqsubseteq$
- $f: X \rightarrow Y($ in $\mathbb{C})$ induces a "pullback" map $c^{*}: \mathbb{E}_{Y} \rightarrow \mathbb{E}_{X}$ that is $\Pi$-preserving


## Examples: CLat $\boldsymbol{\Pi}^{-}$-Fibration

|  | indist. pred. $\boldsymbol{P} \in \mathbb{E}_{\boldsymbol{X}}$ | $P \sqsubseteq Q$ | $\Pi P_{i}$ |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline \text { Top } \\ \downarrow \\ \text { Set } \end{gathered}$ | $\mathcal{O} \subseteq \mathcal{P} \boldsymbol{X}$ <br> topology | $\boldsymbol{P} \supseteq \boldsymbol{Q}$ | gen. from $\bigcup P_{i}$ |
| $\begin{gathered} \text { Meas } \\ \downarrow \\ \text { Set } \end{gathered}$ | $\begin{aligned} & \mathcal{B} \subseteq \mathcal{P} \boldsymbol{X}, \\ & \sigma \text {-field } \end{aligned}$ | $\boldsymbol{P} \supseteq \boldsymbol{Q}$ | gen. from $\bigcup P_{i}$ |
| $\begin{gathered} \text { PMet }_{1} \\ \downarrow \downarrow \\ \text { Set } \end{gathered}$ | $m: X \times X \rightarrow[0,1]$ <br> pseudometric | $P(x, y) \geq Q(x, y)$ | $\sup _{i} P_{i}(x, y)$ |
| $\begin{gathered} \text { ERel } \\ \downarrow \downarrow \\ \text { Set } \end{gathered}$ | $R \subseteq X \times X$ <br> endorelation | $\boldsymbol{P} \subseteq \mathbf{Q}$ | $\bigcap P_{i}$ |
| $\begin{gathered} \hline \text { Pre } \\ \downarrow \\ \text { Set } \end{gathered}$ | $\preceq \subseteq X \times X$ <br> preorder | $\boldsymbol{P} \subseteq \mathbf{Q}$ | $\bigcap P_{i}$ |
| $\begin{gathered} \text { EqReI } \\ \downarrow \\ \text { Set } \end{gathered}$ | $R \subseteq X \times X$ <br> equiv. rel. | $\boldsymbol{P} \subseteq \mathbf{Q}$ | $\bigcap P_{i}$ |

Examples: CLat ${ }_{\square}$-Fibration


Examples: CLat ${ }_{\square}$-Fibration


Examples: CLat ${ }_{\square}$-Fibration

EqRd


Bor


## CLat ${ }_{\square}$-Fibration and Decent Maps

$\underset{\mathbb{C}}{\stackrel{\mathbb{E}}{\downarrow} \boldsymbol{p}}:$ a CLat $_{\square}{ }^{- \text {fibration }}$

- $\boldsymbol{X} \in \mathbb{C}$ comes with $\mathbb{E}_{\boldsymbol{X}}$, the set of indistinguishability predicates
- What is the category $\mathbb{E}$ ?
$\Longrightarrow$ a "patch up" of $\left(\mathbb{E}_{\boldsymbol{X}}\right)_{\boldsymbol{x} \in \mathbb{C}}$ (the Grothendieck construction)
- object: $(X, P)$ where $X \in \mathbb{C}$ and $P \in \mathbb{E}_{\boldsymbol{X}}$
- arrow:

Definition (decent map)
$\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ is decent wrt. $\boldsymbol{P} \in \mathbb{E}_{\boldsymbol{X}}, \boldsymbol{Q} \in \mathbb{E}_{\boldsymbol{Y}}$ if $P \sqsubseteq f^{*} Q$.
Instances: continuity, measurability, non-expansiveness, relation-preservation, monotonicity, ...

Examples: decent maps


$$
\begin{aligned}
& \Leftrightarrow \theta_{x} \geq f^{\neq}\left(\theta_{Y}\right) \\
& \Leftrightarrow \forall \nabla \in \theta_{Y} . f^{-1}(\nabla) \in \theta_{x}
\end{aligned}
$$

$\leftrightarrow f$ is cont!.

Examples: decent maps

$$
\begin{aligned}
& \text { IPMer1 } f^{\prime}(d y): x \times x \rightarrow T_{0,1]} f^{f^{*}} d y: Y_{x} Y \\
& \rightarrow[0,1] \\
& \downarrow \\
& \text { Ser } \\
& \Leftrightarrow \forall x, x^{\prime} . \quad d\left(x, x^{\prime}\right) \geq\left(\begin{array}{c}
f^{*}(d r)
\end{array}\right)\left(x, x^{\prime}\right. \\
& d_{r}\left(f(x), f\left(x^{\prime}\right) .\right.
\end{aligned}
$$

$\Leftrightarrow \quad f$ is hou-expansive

## Summary: Indistinguishability Structures and Decent Maps

- In a CLat $\Pi^{\text {-fibration }} \underset{\mathbb{C}}{\stackrel{\mathbb{E}}{\downarrow} p \text {, }}$
- the fiber $\mathbb{E}_{\boldsymbol{X}}$ consists of indistinguishability predicates $P, Q, \ldots$
- the indistinguishability order:
$P \sqsubseteq Q$ iff " $P$ is more discriminative than $Q$."
- An arrow $\boldsymbol{f}: \boldsymbol{X} \longrightarrow \boldsymbol{Y}$ in $\mathbb{C}$ is a decent map

$$
f:(X, P) \xrightarrow{\cdot}(Y, Q) \quad \text { in } \mathbb{E}
$$

iff $P \sqsubseteq f^{*}(Q)$.

- " $f$ maps similar elements (wrt. P) to similar elements (wrt. $\boldsymbol{Q}$ )"


# Codensity Lifting and <br> Codensity Bisimilarity 

[Katsumata, Sato, Sprunger, Dubut, Komorida, H., ...]

## Codensity Lifting

## The common scenario (recap)

1. Identify an indistinguishability structure (IS) $\mathbb{E}$
2. Lift a functor $\boldsymbol{F}$ to $\boldsymbol{\Phi}: \mathbb{E}_{\boldsymbol{X}} \rightarrow \mathbb{E}_{F X} \quad$ ??
3. Pull back along the dynamics $\boldsymbol{c}: \boldsymbol{X} \rightarrow \boldsymbol{F X}$
4. Bisimulation is a post-fixed point $P \sqsubseteq c^{*}(\Phi(P))$ Bisimilarity is the greatest fixed point


- generic (uniformly defined)
- comprehensive (covering known bisimilarity-like notions)
- intuitive ((in)distinguishability, observability, ...)

Codensity lifting [Katsumata \& Sato, CALCO'15] is an answer.
It derives from TT-lifting [Lindley, Stark, Abadi, ...].

## Codensity Lifting

Definition (codensity lifting [Katsumata \& Sato, CALCO'15])

- $\underset{\mathbb{C}}{\mathbb{E}} \boldsymbol{p}$ be a CLat $_{\square}{ }^{-}$-fibration,
- $F: \mathbb{C} \longrightarrow \mathbb{C}$,
- (modality) $\tau: F \Omega \rightarrow \Omega$ be an algebra in $\mathbb{C}$, and
- (observation indistinguishability) $\underline{\Omega} \in \mathbb{E}_{\Omega}$.

The codensity lifting $\boldsymbol{F}^{\mathbf{\Omega}, \tau}: \mathbb{E} \rightarrow \mathbb{E}$ is defined by

$$
F^{\underline{\Omega}, \tau} P=\prod_{k \in \mathbb{E}(P, \underline{\Omega})}(\tau \circ F(p(k)))^{*} \underline{\Omega} .
$$



## Codensity Lifting

## Definition (codensity lifting [Katsumata \& Sato, CALCO'15])

- $\underset{\mathbb{C}}{\mathbb{E}} \boldsymbol{p}$ be a CLat $_{\square}{ }^{-}$-fibration,
- $F: \mathbb{C} \longrightarrow \mathbb{C}$,
- (modality) $\tau: F \Omega \rightarrow \Omega$ be an algebra in $\mathbb{C}$, and
- (observation indistinguishability) $\underline{\Omega} \in \mathbb{E}_{\Omega}$.

The codensity lifting $\boldsymbol{F}^{\mathbf{\Omega}, \tau}: \mathbb{E} \rightarrow \mathbb{E}$ is defined by

$$
\boldsymbol{F}^{\boldsymbol{\Omega}, \tau} \boldsymbol{P}=\prod_{\boldsymbol{k} \in \mathbb{E}(P, \underline{\Omega})}(\tau \circ \boldsymbol{F}(\boldsymbol{p}(\boldsymbol{k})))^{*} \underline{\mathbf{\Omega}} .
$$

- Least distinguishability s.t. every 1-step observation is decent
- "1-step observation": satisfaction of modal formulas of depth 1
- here modality is $\tau: F \Omega \rightarrow \Omega$, and
a prop. fml . is $\boldsymbol{k}:(\boldsymbol{X}, \boldsymbol{P}) \longrightarrow(\Omega, \underline{\Omega})$, decent


## Codensity Bisimulation

The common scenario (recap)

1. Identify an indistinguishability structure (IS) $\mathbb{E}$
2. Lift a functor $\boldsymbol{F}$ to $\boldsymbol{\Phi}: \mathbb{E}_{\boldsymbol{X}} \rightarrow \mathbb{E}_{\boldsymbol{F} X}$
3. Pull back along the dynamics $\boldsymbol{c}: \boldsymbol{X} \rightarrow \boldsymbol{F X}$
4. Bisimulation is a post-fixed point $P \sqsubseteq c^{*}(\Phi(P))$ Bisimilarity is the greatest fixed point

## Definition (codensity bisimulation) <br> Let $\boldsymbol{c}: \boldsymbol{X} \rightarrow \boldsymbol{F X}$ be a $\boldsymbol{F}$-coalgebra.

- A codensity bisimulation is $P \in \mathbb{E}_{X}$ s.t. $P \sqsubseteq c^{*}\left(F^{\Omega}, \tau(P)\right)$.
- A codensity bisimilarity is the greatest fixed point of $c^{*} \circ F^{\Omega}, \tau$.


## Codensity Bisimulation

Definition (codensity bisimulation)
Let $\boldsymbol{c}: \boldsymbol{X} \rightarrow \boldsymbol{F X}$ be a $\boldsymbol{F}$-coalgebra.

- A codensity bisimulation is $P \in \mathbb{E}_{X}$ s.t. $P \sqsubseteq c^{*}\left(F^{\Omega}, \tau(P)\right)$.
- A codensity bisimilarity is the greatest fixed point $\boldsymbol{\nu}\left(c^{*} \circ \boldsymbol{F} \underline{\Omega}, \tau\right)$.

Examples: (relational) bisimulation for Kripke structures, bisimulation metric for Markov chains, those for a wide class of coalgebras, bisimulation topology, etc.

Signifies the roles of observations, predicates and distinguishability in bisimulation-like notions

## Codensity Games

## (Untrimmed) Codensity Games

A uniform game notion that characterizes codensity bisimulation (and hence many known bisimulation-like notions)

| position | pl. | possible moves |
| :--- | :--- | :--- |
| $\boldsymbol{P} \in \mathbb{E}_{\boldsymbol{X}}$ | S | $\boldsymbol{k} \in \mathbb{C}(\boldsymbol{X}, \boldsymbol{\Omega})$ s.t. $\boldsymbol{\tau} \circ \boldsymbol{F}(\boldsymbol{p}(\boldsymbol{k})) \circ \boldsymbol{c} \notin \mathbb{E}(\boldsymbol{P}, \underline{\boldsymbol{\Omega}})$ |
| $\boldsymbol{k} \in \mathbb{C}(\boldsymbol{X}, \boldsymbol{\Omega})$ | D | $\boldsymbol{P}^{\prime} \in \mathbb{E} \boldsymbol{X}$ s.t. $\boldsymbol{k} \notin \mathbb{E}\left(\boldsymbol{P}^{\prime}, \underline{\boldsymbol{\Omega}}\right)$ |

- Played by Spoiler and Duplicator
- Safety game, in that an infinite play is won by Duplicator


## Theorem

The following are equivalent

- Duplicator wins at $\boldsymbol{P} \in \mathbb{E}_{\boldsymbol{X}}$
- $\boldsymbol{P}$ is below bisimilarity, that is, $\mathbf{P} \sqsubseteq \nu\left(c^{*} \circ \boldsymbol{F}, \boldsymbol{\Omega}^{\prime}\right)$


## Trimming the Arena

| position | pl. | possible moves |
| :--- | :--- | :--- |
| $\boldsymbol{P} \in \mathbb{E}_{\boldsymbol{X}}$ | S | $\boldsymbol{k} \in \mathbb{C}(\boldsymbol{X}, \boldsymbol{\Omega})$ s.t. $\boldsymbol{\tau} \circ \boldsymbol{F}(\boldsymbol{p}(\boldsymbol{k})) \circ \boldsymbol{c} \notin \mathbb{E}(\boldsymbol{P}, \underline{\underline{\Omega}})$ |
| $\boldsymbol{k} \in \mathbb{C}(\boldsymbol{X}, \boldsymbol{\Omega})$ | D | $\boldsymbol{P}^{\prime} \in \mathbb{E}_{\boldsymbol{X}}$ s.t. $\boldsymbol{k} \notin \mathbb{E}\left(\boldsymbol{P}^{\prime}, \underline{\boldsymbol{\Omega}}\right)$ |

This untrimmed game tends to have big arenas...
... we can restrict to generators in a fiber
Definition (generator)
$\mathcal{G} \subseteq\left|\mathbb{E}_{\boldsymbol{X}}\right|$ is a generator of $\mathbb{E}_{\boldsymbol{X}}$ if, for any $\boldsymbol{P} \in \mathbb{E}_{\boldsymbol{X}}$, there is $\mathcal{P} \subseteq \mathcal{G}$ s.t. $\bigsqcup_{Q \in \mathcal{P}} \boldsymbol{Q}=\boldsymbol{P}$.

Definition (trimmed codensity game)

| position | pl. | possible moves |
| :--- | :--- | :--- |
| $\boldsymbol{P} \in \mathcal{G}$ | S | $\boldsymbol{k} \in \mathbb{C}(\boldsymbol{X}, \boldsymbol{\Omega})$ s.t. $\tau \circ \boldsymbol{F}(\boldsymbol{p}(\boldsymbol{k})) \circ \boldsymbol{c} \notin \mathbb{E}(\boldsymbol{P}, \underline{\boldsymbol{\Omega}})$ |
| $\boldsymbol{k} \in \mathbb{C}(\boldsymbol{X}, \Omega)$ | D | $\boldsymbol{P}^{\prime} \in \mathbb{E}_{\boldsymbol{X}}$ s.t. $\boldsymbol{k} \notin \mathbb{E}\left(\boldsymbol{P}^{\prime}, \underline{\boldsymbol{\Omega}}\right)$ |

## Trimming the Arena

## Definition (generator)

$\mathcal{G} \subseteq\left|\mathbb{E}_{\boldsymbol{X}}\right|$ is a generator of $\mathbb{E}_{\boldsymbol{X}}$ if, for any $\boldsymbol{P} \in \mathbb{E}_{\boldsymbol{X}}$, there is $\mathcal{P} \subseteq \mathcal{G}$ s.t. $\bigsqcup_{Q \in \mathcal{P}} Q=P$.

Definition (trimmed codensity game)

| position | pl. | possible moves |
| :--- | :--- | :--- |
| $\boldsymbol{P} \in \mathcal{G}$ | S | $k \in \mathbb{C}(X, \Omega)$ s.t. $\tau \circ F(p(k)) \circ c \notin \mathbb{E}(P, \underline{\boldsymbol{\Omega}})$ |
| $k \in \mathbb{C}(X, \Omega)$ | D | $\boldsymbol{P}^{\prime} \in \mathbb{E} X$ s.t. $k \notin \mathbb{E}\left(\boldsymbol{P}^{\prime}, \underline{\boldsymbol{\Omega}}\right)$ |

A recipe for generators:

- $\boldsymbol{S} \in \mathbb{C}$ is a fibered separator if, for any $\boldsymbol{X} \in \mathbb{C}$ and $\boldsymbol{P}, \boldsymbol{Q} \in \mathbb{E}_{\boldsymbol{X}}$, $\left(\forall f \in \mathbb{C}(S, X) . f^{*} P=f^{*} Q\right) \Longrightarrow P=Q$.
- Let $\mathcal{G}_{\boldsymbol{S}}$ be a generator of $\mathbb{E}_{\boldsymbol{S}}$. Then, for each $\boldsymbol{X} \in \mathbb{C}$, $\left\{\boldsymbol{f}_{*} \boldsymbol{P} \mid \boldsymbol{P} \in \mathcal{G}_{\boldsymbol{S}}, \boldsymbol{f} \in \mathbb{C}(\boldsymbol{S}, \boldsymbol{X})\right\}$ is a generator of $\mathbb{E}_{\boldsymbol{X}}$.


## Trimming the Arena

A recipe for generators:

- $\boldsymbol{S} \in \mathbb{C}$ is a fibered separator if, for any $\boldsymbol{X} \in \mathbb{C}$ and $\boldsymbol{P}, \boldsymbol{Q} \in \mathbb{E}_{\boldsymbol{X}}$, $\left(\forall f \in \mathbb{C}(S, X) . f^{*} P=f^{*} Q\right) \Longrightarrow P=Q$.
- Let $\mathcal{G}_{\boldsymbol{s}}$ be a generator of $\mathbb{E}_{\boldsymbol{s}}$. Then, for each $\boldsymbol{X} \in \mathbb{C}$, $\left\{\boldsymbol{f}_{*} \boldsymbol{P} \mid \boldsymbol{P} \in \mathcal{G}_{\boldsymbol{S}}, \boldsymbol{f} \in \mathbb{C}(\boldsymbol{S}, \boldsymbol{X})\right\}$ is a generator of $\mathbb{E}_{\boldsymbol{X}}$.

Fibered separator $\{$


## Trimming the Arena

A recipe for generators:

- $\boldsymbol{S} \in \mathbb{C}$ is a fibered separator if, for any $\boldsymbol{X} \in \mathbb{C}$ and $\boldsymbol{P}, \boldsymbol{Q} \in \mathbb{E}_{\boldsymbol{X}}$, $\left(\forall f \in \mathbb{C}(S, X) . f^{*} P=f^{*} Q\right) \Longrightarrow P=Q$.
- Let $\mathcal{G}_{\boldsymbol{s}}$ be a generator of $\mathbb{E}_{\boldsymbol{s}}$. Then, for each $\boldsymbol{X} \in \mathbb{C}$, $\left\{\boldsymbol{f}_{*} \boldsymbol{P} \mid \boldsymbol{P} \in \mathcal{G}_{\boldsymbol{S}}, \boldsymbol{f} \in \mathbb{C}(\boldsymbol{S}, \boldsymbol{X})\right\}$ is a generator of $\mathbb{E}_{\boldsymbol{X}}$.



## Examples

Table 1: Codensity Bisimilarity Game for Conventional Bisimilarity

| position | pl. | possible moves |
| :--- | :--- | :--- |
| $(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{X} \times \boldsymbol{X}$ | S | $\boldsymbol{k} \in \operatorname{Set}(\boldsymbol{X}, \mathbf{2})$ <br> s.t. $\exists \boldsymbol{x}^{\prime} \in \boldsymbol{c}(\boldsymbol{x}) \cdot \boldsymbol{k}\left(\boldsymbol{x}^{\prime}\right)=\top$ <br> $\Leftrightarrow$ |
| $\boldsymbol{k} \in \operatorname{Set}(\boldsymbol{X}, \mathbf{2})$ | D | $\left(\boldsymbol{x}^{\prime \prime}, \boldsymbol{y ^ { \prime \prime }}\right)$ s.t. $\left.\left.\boldsymbol{y}\right) \cdot \boldsymbol{k}\left(\boldsymbol{x}^{\prime \prime}\right) \neq \boldsymbol{y ^ { \prime }}\right)=\top$ not satisfied |

## Examples

Table 2: Codensity Bisimilarity Game for Deterministic Automata and Their Language Equivalence

| position | pl. | possible moves |
| :---: | :---: | :---: |
| $(x, y) \in X \times X$ | S | $\begin{aligned} & \text { If } \pi_{1}(x) \neq \pi_{1}(y) \text { then } S \text { wins } \\ & \text { If } \pi_{1}(x)=\pi_{1}(y) \text { then } \\ & a \in \Sigma \text { and } k \in \operatorname{Set}(X, 2) \\ & \text { s.t. } k\left(\pi_{2}(x)(a)\right) \neq k\left(\pi_{2}(y)(a)\right) \end{aligned}$ |
| $\begin{aligned} & a \in \boldsymbol{\Sigma} \text { and } \\ & k \in \operatorname{Set}(X, 2) \end{aligned}$ | D | $\left(x^{\prime \prime}, y^{\prime \prime}\right) \in X \times X$ s.t. $k\left(x^{\prime \prime}\right) \neq k\left(y^{\prime \prime}\right)$ |

## Examples

Table 3: Codensity Bisimilarity Game for Deterministic Automata and Bisimulation Topology

| position | pl. | possible moves |
| :--- | :--- | :--- |
| $\mathcal{O} \in \operatorname{Top}_{X}$ | S | $\boldsymbol{a} \in\{\epsilon\} \cup \boldsymbol{\Sigma}$ and $\boldsymbol{k} \in \operatorname{Set}(\boldsymbol{X}, \mathbf{2})$ <br> s.t. $\tau_{A} \circ\left(\boldsymbol{A}_{\Sigma} k\right) \circ \boldsymbol{c} \notin \operatorname{Top}(\mathcal{O}, \underline{\boldsymbol{\Omega}}(a))$ |
| $\boldsymbol{a} \in\{\epsilon\} \cup \boldsymbol{\Sigma}$ <br> and $\boldsymbol{k} \in \operatorname{Set}(\boldsymbol{X}, \mathbf{2})$ | D | $\mathcal{O}^{\prime} \in \operatorname{Top}_{X}$ s.t. $\boldsymbol{k} \notin \operatorname{Top}\left(\mathcal{O}^{\prime}, \underline{\boldsymbol{\Omega}}(\boldsymbol{a})\right)$ |
|  |  |  |

