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Overview
]

* Introducing Strong Negation and
Nelson’s Constructive Logic N

* Introducing variants of N,
esp. by the Axiom of Potential Omniscience

» Completeness proofs are given by the
Tree-Sequent method
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Notations

* Logical Symbols:
/\! _>J \v/!
- (Heyting’s negation), ~ (strong negation)

* v and 3 can be defined:
AVB=~(~AN~B), drA=~Vi~A

 I' = A: A sequent.
[ and A are finite sets of formulas

* A« Bisfor (A— B)A (B — A)

* GL: Gentzen-style sequent system for logic L.
TL: Tree-sequent system for L.
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Strong Negation ~ A
|

Introduced by Nelson and Markov, axiomatized by:

A— (~A— B),

~(ANB) - ~AV~B, ~(AVB)+ ~AAN~B,
~(A— B)— AN~B, ~~A— A ~—A o A,
~VrA — de~A,  ~drA — Ve~ A.

Nelson’s constructive logic N, is Int plus ~.
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Strong Negation vs. Heyting’s One
e ———

Heyting's Negation
—A— (A— 1),
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Strong Negation vs. Heyting’s One
L

Heyting’s Negation
—A — (A — J_),

“the compound sentences are not a product of
experiment, they arise from reasoning. This concerns
also negation: we see that the lemon is yellow, we do
not see that it is not blue” (Grzegorczyk)
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Strong Negation vs. Heyting’s One
T

Heyting’s Negation

—A— (A— 1),

Negative information is reduced to positive one.
“the compound sentences are not a product of
experiment, they arise from reasoning. This concerns
also negation: we see that the lemon is yellow, we do
not see that it is not blue” (Grzegorczyk)
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Strong Negation vs. Heyting’s One
e ——————

Heyting's Negation

—A— (A— 1),
Negative information is reduced to positive one.

Strong Negation
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Strong Negation vs. Heyting’s One
L

Heyting's Negation

—A— (A— 1),
Negative information is reduced to positive one.

Strong Negation

“we can not only verify a simple proposition such as
This door is locked. by direct inspection, but also fal-
sify it” (Kracht)
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Strong Negation vs. Heyting’s One
L

Heyting's Negation

—A— (A— 1),

Negative information is reduced to positive one.
Strong Negation

Negative/Positive informations are equally
primitive!
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Kripke Semantics for N

Int-model:
(M, <, U, IT")
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Kripke Semantics for N

N-model:
(M, <, U, I, 17)
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Kripke Semantics for N

N-model:

(M, <, U, I, 17)
[T: verum interpretation

[~ falsum interpretation
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Kripke Semantics for N

N-model:
(M, <, U, I, 17)

[T: verum interpretation

extended to a="A (a verifies A).
[~ falsum interpretation

extended to a=""A (« falsifies A).
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Kripke Semantics for N

Tplur, . um) = (UL, U Epﬁ(a) ;

TAANB <<= a="A and a="B;

"A—-B <= foreveryb>a, b="A implies b="B:
T—A & foreveryb>a, b/TA;

TvA = aE"A;

VxA <= foreveryb>aandeveryucU(b), b="Alu/z|;
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Kripke Semantics for N

aE="p(ul, .. Uy) = (ut, ..., um) €p’ @
a="ANB <+ aF= A or a= B;
a="A—B <= aF"A and a= B;
a="—mA = a=TA;

a="~A = a=TA;

a="VrA <= forsomewueU(a), aF= Alu/z].
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Kripke Semantics for N
o ——

Q\/erified formulas

Int-model
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Kripke Semantics for N
o ———

verified formulas

falsified formulas

N-model
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Sequent System GN ~-free part
T

1= A (ldentity)
= A . I'=AA AIl'=A
ST = Al (Weakening) oA (Cut)
A B, I'= A I'=AA I'=A,B
ANBT = A WY roaanp MR
I'=AA BI=A L Al =B (R)
A— BT=A (—L) r=A—->B"* /S
I'=AA ATl =
Ar=a 't =g Hs
Aly/x],T = A ['= Alz/x]
) VR
VzA,T = A (VL) [ = VzA ("R)s, vo

(Equal to Maehara’s LJ’)
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Sequent System GN  Introducing ~
T ——————————————

1A= (Ex Falso)

~ATl'=A ~B I =A I'= A, ~A ~B

~J ~J R
~ArB =AW oA A R
A ~B,I'= A I'=AA I'=A,~B
(~—L) (~—R)
~(A— B),'= A ['= A, ~(A— B)
AT = A I'=AA
~—A,T = A ~=b = A, ~—A (~=R)
AT = A I'=AA
~~A T = A (~~L) ['= A, ~~A (~~R)
~Alz/x], T = A I'= A, ~Aly/x]
~VzA, T = A (~"Lve [ = A, ~VzA (~VR)
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The Axiom of Potential Omniscience

Extensions of intermediate logics by ~ have been
considered,
but,
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The Axiom of Potential Omniscience

Extensions of intermediate logics by ~ have been

considered,

but,
axioms unique to N (with both - and ~) have not!
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The Axiom of Potential Omniscience

Extensions of intermediate logics by ~ have been

considered,

but,
axioms unique to N (with both - and ~) have not!

The axiom of potential omniscience

~—(AV ~A)
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The Axiom of Potential Omniscience

Extensions of intermediate logics by ~ have been

considered,

but,
axioms unique to N (with both - and ~) have not!

The axiom of potential omniscience
——(AV ~A)

Introduced by Hasuo, interpreted as:

We can eventually either verify or falsify a
statement, with proper additional information.
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Variants of N

N: Int plus ~.
D: Add Vz(A(z)V B) — VzA(z) V B, the axiom of
constant domain
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Variants of N

N: Int plus ~.
D: Add Vz(A(x)V B) — VxA(x) vV B, the axiom of
constant domain |= contant domain models
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Variants of N

N: Int plus ~.
D: Add Vz(A(x)V B) — VxA(x) vV B, the axiom of
constant domain |= contant domain models

L: (A—-B)V(B— A)
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Variants of N

N: Int plus ~.
D: Add Vz(A(x)V B) — VxA(x) vV B, the axiom of
constant domain |= contant domain models

L: (A— B)V (B — A) |= linearly ordered models
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Variants of N
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Variants of N

N: Int plus ~.
D: Add Vz(A(z)V B) — VzA(x) v B, the axiom of
constant domain |= contant domain models

L: (A— B)V (B — A) |= linearly ordered models

O: Add —-—(AV ~A), the axiom of potential
omniscience

for a € M and A (closed formula),
db>a St bETAoOrb="A.
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Variants of N

N: Int plus ~.
D: Add Vz(A(z)V B) — VzA(x) v B, the axiom of
constant domain |= contant domain models

L: (A— B)V (B — A) |= linearly ordered models

O: Add —-—(AV ~A), the axiom of potential
omniscience

for a € M and A (closed formula),
db>a St bETAoOrb="A.

P: Omit the axiom A — (~A — B).
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Variants of N

N: Int plus ~.
D: Add Vz(A(z)V B) — VzA(x) v B, the axiom of
constant domain |= contant domain models

L: (A— B)V (B — A) |= linearly ordered models

O: Add —-—(AV ~A), the axiom of potential
omniscience

for a € M and A (closed formula),
db>a St bETAoOrb="A.

P: Omit the axiom A — (~A — B).
I and I~ are not disjoint = paraconsistency!
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Corresponding Kripke Models
e ——————

~c2fell

Int N ND NL

NO NLO NP
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Logics in Consideration —

The N-family
|

Those without P:

NLO ~ |NDLO
NL ‘ ~ [ NDL
+L o NO ~ | NDO
g e
N ~ [ND
+D

For the |enclosed

, completeness is shown.

N: van Dalen (1986), ND: Thomason (1969)
The others: Hasuo

ession — p.15/28




Logics in Consideration —

The N-family
|

Those with P:

Pe

NLOP

NL

A

+L O

NOP

=

\ 4

NDLP

~ NDLOP

T

NP

For the |enclosed

+D

\ 4

NDP

~ NDOP

/

, completeness is shown.

N: van Dalen (1986), ND: Thomason (1969)
The others: Hasuo
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Completeness Proofs

for Logics without O

The Tree-Sequent method (Kashima) gives unified
proofs for N[D][L][P]

(also for Int and intermediate logics e.g. CD, LC).

Sloppily, the tree-sequent (TS) method is
a kind of semantic tableaux.
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Tree-Sequent and its Counter Model
L —————————————————————————
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Tree-Sequent and its Counter Model
I —————————————

verified

falsified

Formulas in LHS are verified,
those in RHS are not verified.



Outline of the Tree-Sequent method
T —————

For logic L,
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Outline of the Tree-Sequent method
e —

For logic L,
1. Define the TS system TL.
A TS of TN is a tree of sequents, since N-models are

trees.
Accordingly a TS of TNL is a sequence of sequents.
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Outline of the Tree-Sequent method
I —

For logic L,

1. Define the TS system TL.
2. Completeness of the TS system, i.e.
TL7T = 7T has a counter model

IS easy.
Extend 7 into a saturated TS, which induces a
counter model.
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Outline of the Tree-Sequent method
I ————————

For logic L,
1. Define the TS system TL.

2. Completeness of the TS system, i.e.

TL¥ 7T = T has acounter model

IS easy.

3. Define formulaic translation 7/ of a TS,
dprove | TLF7 = GL+T/

Loova(AD) = (\/a) v v -vT])

EUN
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Outline of the Tree-Sequent method
.

For logic L,
1. Define the TS system TL.

2. Completeness of the TS system, i.e.
TL7T = 7T has a counter model
IS easy.

3. Define formulaic translation 7/ of a TS,
and prove | TL-7 = GL+7T/

4. Let GL I/ A.

Then TL t/ by 3,

hence A has a counter model by 2.
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TN — TS system for logic N
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TN — TS system for logic N
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TN — TS system for logic N

(Drop)
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TN — TS system for logic N
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TN — TS system for logic N
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TN — TS system for logic N

< ats

[P%A]

(:trimmed!) (=R)
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- Completeness Proofs
for Logics with O (1)
T

(Again) O is for the axiom of potential omniscience.
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Completeness Proofs
for Logics with O (1)
T

(Again) O is for the axiom of potential omniscience.

How can we obtain omniscient worlds
(where every closed formula is either verified or
falsified)?
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Completeness Proofs
for Logics with O (1)

(Again) O is for the axiom of potential omniscience.

How can we obtain omniscient worlds
(where every closed formula is either verified or

falsified)?

One of our proofs
— Utilizes an embedding of LK
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Completeness Proofs
for Logics with O (1)

(Again) O is for the axiom of potential omniscience.

How can we obtain omniscient worlds
(where every closed formula is either verified or

falsified)?

One of our proofs
— Utilizes an embedding of LK

Replacing an arbitrary number of - by ~,
we obtain A.- from A.

[Lemma] (Embedding)
LKFI'=A iff GNDJLIOFT ., ~A - =
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- Completeness Proofs
for Logics with O (1)
T

= . ‘ T

induces

— a

‘a:Fa%Aa

GNO /T, = A,
Embedding

LK I/ (I',)- = Completeness induces
— —

counter Cl-model omniscient world
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Completeness Proofs
for Logics with O (2)
T

The other proof is By Tree-Sequents with Guardians.

0T, %A, 18, %)

/

The second sequent is guardian, a seed of an
omniscient world.
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Completeness Proofs
for Logics with O (2)
T

The other proof is By Tree-Sequents with Guardians.

0T, %A, 18, %)

/

The second sequent is guardian, a seed of an
omniscient warld.

[a:Fa%Aa}
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Completeness Proofs
for Logics with O (2)

The other proof is By Tree-Sequents with Guardians.

0T, %A, 18, %)

/

The second sequent is guardian, a seed of an
omniscient warld.

[a:Fa%Aa}

Proofs are just like in the TS method.
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- Problem (1):
Logics with Both O and P
|

Those without P:

NLO - NDLO
NL ‘ - [ND
+L o NO - NDO
e 7
N ~ ND
+D
logic |: completeness by TS

logic |: completeness by embedding or TSg
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- Problem (1):
Logics with Both O and P
|

Those with P:

NHQP =ND%OP
///, ////'
NL ~ |NDLP
+L ‘jg/yOP ///:uDOP
NP ~ |NDP

+D

logic |: completeness by TS
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- Problem (1):
Logics with Both O and P
|

Two methods here,
embedding of LK,
tree-sequent with guardians
cannot be applied.
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- Problem (1):
Logics with Both O and P
|

Two methods here,
cannot be applied.

Double Negation Shift (DNS), Vz——A — —=Vz A
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- Problem (1):

Logics with Both O and P
|

Two methods here,
cannot be applied.

Double Negation Shift (DNS), Vz——A — —=Vz A
NOP t/ (DNS), since we have a counter model.
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Problem (1):

Logics with Both O and P

Two methods here,
cannot be applied.

Double Negation Shift (DNS), Vz——A — —=Vz A

NOP t/ (DNS), since we have a counter model.

[Gabbay, 1981] MH (= Int plus (DNS)) is characterized
by the frames s.t.

forVvae M,3b>a s.t. bis maximal.
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Problem (1):

Logics with Both O and P

Two methods here,
cannot be applied.

Double Negation Shift (DNS), Vz——A — —=Vz A
NOP t/ (DNS), since we have a counter model.

[Gabbay, 1981] MH (= Int plus (DNS)) is characterized
by the frames s.t.

forVvae M,3b>a s.t. bis maximal.

Counter models by our methods satisfy the above
property! (Omniscient worlds are maximal)
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- Problem (2): Completeness of
(NO plus —A vV ——A)
|

prop-Int plus =A Vv ——A
(The weak law of excluded middle) is characterized
by frames with their maximumes.
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Problem (2): Completeness of
(NO plus —AV ——A)
|

prop-Int plus =A Vv ——A
IS characterized by frames with their maximumes.

[Question] (Quantified)
Is (NO plus —A v ——A) characterized by N-models
with its maximum omniscient?
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Problem (2): Completeness of
(NO plus —AV ——A)
|

prop-Int plus =A Vv ——A
IS characterized by frames with their maximumes.

[Question] (Quantified)
Is (NO plus —A v ——A) characterized by N-models
with its maximum omniscient?

@
Ny
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Problem (2): Completeness of
(NO plus —AV ——A)
|

[Corsi and Ghilardi, 1989]
KC (= Int plus —=A v =—A) Is characterized by directed
frames,
l.e.

a<ba<c=4dd S.t. b<d, c<d.

(Existence of the maximum is too strong!)
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Problem (2): Completeness of
(NO plus —AV ——A)
|

[Corsi and Ghilardi, 1989]

KC (= Int plus —=A v =—A) Is characterized by directed
frames,

(Existence of the maximum is too strong!)

[Fact] NO - (DNS).
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Problem (2): Completeness of
(NO plus —AV ——A)

[Corsi and Ghilardi, 1989]

KC (= Int plus —=A v =—A) Is characterized by directed
frames,

(Existence of the maximum is too strong!)

[Fact] NO - (DNS).
[Ono, 1987]

Int + "AV ——A + Vz——A — —=VzA (DNS)
+ (the axiom of constant domain)

1S

characterized by constant domain frames with the
maximum.
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Thank You for Your Attention
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