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Overview

• Introducing Strong Negation and
Nelson’s Constructive Logic N

• Introducing variants of N,
esp. by the Axiom of Potential Omniscience

• Completeness proofs are given by the
Tree-Sequent method
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Notations

• Logical Symbols:
∧, →, ∀,
¬ (Heyting’s negation), ∼ (strong negation)

• ∨ and ∃ can be defined:
A ∨ B ≡ ∼(∼A ∧ ∼B), ∃xA ≡ ∼∀x∼A

• Γ ⇒ ∆: A sequent.
Γ and ∆ are finite sets of formulas

• A ↔ B is for (A → B) ∧ (B → A)

• GL: Gentzen-style sequent system for logic L.
TL: Tree-sequent system for L.
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Strong Negation ∼A

Introduced by Nelson and Markov, axiomatized by:

A → (∼A → B),

∼(A ∧ B) ↔ ∼A ∨ ∼B, ∼(A ∨ B) ↔ ∼A ∧ ∼B,

∼(A → B) ↔ A ∧ ∼B, ∼∼A ↔ A ∼¬A ↔ A,

∼∀xA ↔ ∃x∼A, ∼∃xA ↔ ∀x∼A.

Nelson’s constructive logic N, is Int plus ∼.
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Strong Negation vs. Heyting’s One

Heyting’s Negation
¬A ↔ (A → ⊥),
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Strong Negation vs. Heyting’s One

Heyting’s Negation
¬A ↔ (A → ⊥),

“the compound sentences are not a product of
experiment, they arise from reasoning. This concerns
also negation: we see that the lemon is yellow, we do
not see that it is not blue” (Grzegorczyk)
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Strong Negation vs. Heyting’s One

Heyting’s Negation
¬A ↔ (A → ⊥),
Negative information is reduced to positive one.
“the compound sentences are not a product of
experiment, they arise from reasoning. This concerns
also negation: we see that the lemon is yellow, we do
not see that it is not blue” (Grzegorczyk)
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Heyting’s Negation
¬A ↔ (A → ⊥),
Negative information is reduced to positive one.

Strong Negation
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Strong Negation vs. Heyting’s One

Heyting’s Negation
¬A ↔ (A → ⊥),
Negative information is reduced to positive one.

Strong Negation

“we can not only verify a simple proposition such as

This door is locked. by direct inspection, but also fal-

sify it” (Kracht)
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Strong Negation vs. Heyting’s One

Heyting’s Negation
¬A ↔ (A → ⊥),
Negative information is reduced to positive one.

Strong Negation
Negative/Positive informations are equally
primitive!
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Kripke Semantics for N

Int-model:
(M,≤, U, I+)

NASSLLI 2003 Student Session – p.6/28



Kripke Semantics for N
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Kripke Semantics for N

N-model:
(M,≤, U, I+, I−)

I+: verum interpretation

I−: falsum interpretation
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Kripke Semantics for N

N-model:
(M,≤, U, I+, I−)

I+: verum interpretation
extended to a|=+A (a verifies A).

I−: falsum interpretation
extended to a|=−A (a falsifies A).
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Kripke Semantics for N

a|=+p(u1, . . . , um) ⇐⇒ (u1, . . . , um) ∈ pI+(a) ;

a|=+A ∧ B ⇐⇒ a|=+A and a|=+B ;

a|=+A → B ⇐⇒ for every b ≥ a, b|=+A implies b|=+B ;

a|=+¬A ⇐⇒ for every b ≥ a, b � |=+A ;

a|=+∼A ⇐⇒ a|=−A ;

a|=+∀xA ⇐⇒ for every b ≥ a and every u ∈ U(b), b|=+A[u/x] ;
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Kripke Semantics for N

a|=−p(u1, . . . , um) ⇐⇒ (u1, . . . , um) ∈ pI−(a) ;

a|=−A ∧ B ⇐⇒ a|=−A or a|=−B ;

a|=−A → B ⇐⇒ a|=+A and a|=−B ;

a|=−¬A ⇐⇒ a|=+A ;

a|=−∼A ⇐⇒ a|=+A ;

a|=−∀xA ⇐⇒ for some u ∈ U(a), a|=−A[u/x] .
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Kripke Semantics for N

verified formulas

Int-model
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Kripke Semantics for N

verified formulas

falsified formulas

N-model
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Sequent System GN ∼-free part

A ⇒ A
(Identity)

Γ ⇒ ∆
Σ,Γ ⇒ ∆,Π

(Weakening)
Γ ⇒ ∆, A A,Γ ⇒ ∆

Γ ⇒ ∆
(Cut)

A,B,Γ ⇒ ∆
A ∧ B,Γ ⇒ ∆

(∧L)
Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧ B
(∧R)

Γ ⇒ ∆, A B,Γ ⇒ ∆
A → B,Γ ⇒ ∆

(→L)
A,Γ ⇒ B

Γ ⇒ A → B
(→R)S

Γ ⇒ ∆, A

¬A,Γ ⇒ ∆
(¬L)

A,Γ ⇒
Γ ⇒ ¬A

(¬R)S

A[y/x],Γ ⇒ ∆
∀xA,Γ ⇒ ∆

(∀L)
Γ ⇒ A[z/x]
Γ ⇒ ∀xA

(∀R)S, VC

(Equal to Maehara’s LJ′) NASSLLI 2003 Student Session – p.10/28



Sequent System GN Introducing ∼

A,∼A ⇒ (Ex Falso)

∼A,Γ ⇒ ∆ ∼B,Γ ⇒ ∆
∼(A ∧ B),Γ ⇒ ∆

(∼∧L)
Γ ⇒ ∆,∼A,∼B

Γ ⇒ ∆,∼(A ∧ B)
(∼∧R)

A,∼B,Γ ⇒ ∆
∼(A → B),Γ ⇒ ∆

(∼→L)
Γ ⇒ ∆, A Γ ⇒ ∆,∼B

Γ ⇒ ∆,∼(A → B)
(∼→R)

A,Γ ⇒ ∆
∼¬A,Γ ⇒ ∆

(∼¬L)
Γ ⇒ ∆, A

Γ ⇒ ∆,∼¬A
(∼¬R)

A,Γ ⇒ ∆
∼∼A,Γ ⇒ ∆

(∼∼L)
Γ ⇒ ∆, A

Γ ⇒ ∆,∼∼A
(∼∼R)

∼A[z/x],Γ ⇒ ∆
∼∀xA,Γ ⇒ ∆

(∼∀L)VC
Γ ⇒ ∆,∼A[y/x]
Γ ⇒ ∆,∼∀xA

(∼∀R)
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The Axiom of Potential Omniscience

Extensions of intermediate logics by ∼ have been
considered,
but,
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The Axiom of Potential Omniscience

Extensions of intermediate logics by ∼ have been
considered,
but,
axioms unique to N (with both ¬ and ∼) have not!
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The Axiom of Potential Omniscience

Extensions of intermediate logics by ∼ have been
considered,
but,
axioms unique to N (with both ¬ and ∼) have not!

The axiom of potential omniscience

¬¬(A ∨ ∼A)
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The Axiom of Potential Omniscience

Extensions of intermediate logics by ∼ have been
considered,
but,
axioms unique to N (with both ¬ and ∼) have not!

The axiom of potential omniscience

¬¬(A ∨ ∼A)

Introduced by Hasuo, interpreted as:

We can eventually either verify or falsify a
statement, with proper additional information.
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Variants of N

N: Int plus ∼.

D: Add ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, the axiom of
constant domain
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Variants of N

N: Int plus ∼.

D: Add ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, the axiom of
constant domain ⇒ contant domain models
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Variants of N

N: Int plus ∼.

D: Add ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, the axiom of
constant domain ⇒ contant domain models

L: (A → B) ∨ (B → A)
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Variants of N

N: Int plus ∼.

D: Add ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, the axiom of
constant domain ⇒ contant domain models

L: (A → B) ∨ (B → A) ⇒ linearly ordered models

O: Add ¬¬(A ∨ ∼A), the axiom of potential
omniscience

for a ∈ M and A (closed formula),
∃b ≥ a s.t. b|=+A or b|=−A.
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Variants of N

N: Int plus ∼.

D: Add ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, the axiom of
constant domain ⇒ contant domain models

L: (A → B) ∨ (B → A) ⇒ linearly ordered models

O: Add ¬¬(A ∨ ∼A), the axiom of potential
omniscience

for a ∈ M and A (closed formula),
∃b ≥ a s.t. b|=+A or b|=−A.

P: Omit the axiom A → (∼A → B).
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Variants of N

N: Int plus ∼.

D: Add ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, the axiom of
constant domain ⇒ contant domain models

L: (A → B) ∨ (B → A) ⇒ linearly ordered models

O: Add ¬¬(A ∨ ∼A), the axiom of potential
omniscience

for a ∈ M and A (closed formula),
∃b ≥ a s.t. b|=+A or b|=−A.

P: Omit the axiom A → (∼A → B).
I+ and I− are not disjoint ⇒ paraconsistency!
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Corresponding Kripke Models

Int N ND NL

NO NLO NP
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Logics in Consideration –
The N-family

Those without P:

NLO � NDLO

NL �

� �

NDL

�

NO � NDO

�

N

+L

�

+D
�

+O�

ND

�

�

For the enclosed , completeness is shown.
N: van Dalen (1986), ND: Thomason (1969)
The others: Hasuo NASSLLI 2003 Student Session – p.15/28



Logics in Consideration –
The N-family

Those with P:
NLOP � NDLOP

NLP �

� �

NDLP

�

NOP � NDOP

�

NP

+L

�

+D
�

+O �

NDP

�

�

For the enclosed , completeness is shown.
N: van Dalen (1986), ND: Thomason (1969)
The others: Hasuo NASSLLI 2003 Student Session – p.15/28



Completeness Proofs
for Logics without O

The Tree-Sequent method (Kashima) gives unified
proofs for N[D][L][P]
(also for Int and intermediate logics e.g. CD, LC).

Sloppily, the tree-sequent (TS) method is

a kind of semantic tableaux.
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Tree-Sequent and its Counter Model

Γ
α⇒ ∆

Σ
β⇒ Π Φ

γ⇒ Ψ
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Tree-Sequent and its Counter Model

verified

falsified

Γ
α⇒ ∆

Σ
β⇒ Π Φ

γ⇒ Ψ

Formulas in LHS are verified,
those in RHS are not verified. NASSLLI 2003 Student Session – p.17/28



Outline of the Tree-Sequent method

For logic L,
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Outline of the Tree-Sequent method

For logic L,
1. Define the TS system TL.
A TS of TN is a tree of sequents, since N-models are
trees.
Accordingly a TS of TNL is a sequence of sequents.
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Outline of the Tree-Sequent method

For logic L,
1. Define the TS system TL.

2. Completeness of the TS system, i.e.
TL �� T ⇒ T has a counter model
is easy.
Extend T into a saturated TS, which induces a
counter model.
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Outline of the Tree-Sequent method

For logic L,
1. Define the TS system TL.

2. Completeness of the TS system, i.e.
TL �� T ⇒ T has a counter model
is easy.

3. Define formulaic translation T f of a TS,
and prove TL � T ⇒ GL � T f

e.g. in TN,

Γ
α⇒ ∆

T 1
· · · T k

f�→ ∀−→α
(

(
∧

Γ) → (
∨

∆) ∨ T f
1 ∨ · · · ∨ T f

k

)
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Outline of the Tree-Sequent method

For logic L,
1. Define the TS system TL.

2. Completeness of the TS system, i.e.
TL �� T ⇒ T has a counter model
is easy.

3. Define formulaic translation T f of a TS,
and prove TL � T ⇒ GL � T f

4. Let GL �� A.
Then TL ��

�

�

�

�
α⇒ A by 3,

hence A has a counter model by 2.
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TN – TS system for logic N

...

Γ
α⇒ ∆, A

· · · · · ·

...

B,Γ
α⇒ ∆

· · · · · ·

(→L)
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TN – TS system for logic N

...

Γ
α⇒ ∆, A

· · · · · ·

...

B,Γ
α⇒ ∆

· · · · · ·

...

A → B,Γ
α⇒ ∆

· · · · · · (→L)
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TN – TS system for logic N

...

Γ
α⇒ ∆

· · · A,Σ
β⇒ Π

· · · · · ·

(Drop)
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TN – TS system for logic N

...

Γ
α⇒ ∆

· · · A,Σ
β⇒ Π

· · · · · ·

...

A,Γ
α⇒ ∆

· · · Σ
β⇒ Π

· · · · · · (Drop)
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TN – TS system for logic N

...

Γ
α⇒ ∆

· · · A
∅⇒ B

(→R)
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TN – TS system for logic N

...

Γ
α⇒ ∆

· · · A
∅⇒ B

...

Γ
α⇒ ∆, A → B

· · · (trimmed!)
(→R)

NASSLLI 2003 Student Session – p.21/28



Completeness Proofs
for Logics with O (1)

(Again) O is for the axiom of potential omniscience.
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Completeness Proofs
for Logics with O (1)

(Again) O is for the axiom of potential omniscience.

How can we obtain omniscient worlds
(where every closed formula is either verified or
falsified)?

· · ·

a

...

ag
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Completeness Proofs
for Logics with O (1)

(Again) O is for the axiom of potential omniscience.

How can we obtain omniscient worlds
(where every closed formula is either verified or
falsified)?

One of our proofs
– Utilizes an embedding of LK
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Completeness Proofs
for Logics with O (1)

(Again) O is for the axiom of potential omniscience.

How can we obtain omniscient worlds
(where every closed formula is either verified or
falsified)?

One of our proofs
– Utilizes an embedding of LK

Replacing an arbitrary number of ¬ by ∼,
we obtain A∼¬ from A.

[Lemma] (Embedding)
LK � Γ ⇒ ∆ iff GN[D][L]O � Γ∼¬,∼∆∼¬ ⇒
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Completeness Proofs
for Logics with O (1)

T∞
· · ·

a : Γa
αa⇒ ∆a

...

M′ · · ·

a

...

M · · ·

a

...

ag

LK �� (Γa)¬ ⇒

counter Cl-model omniscient world

induces

Completeness induces

GNO �� Γa ⇒ ∆a

Embedding

NASSLLI 2003 Student Session – p.23/28



Completeness Proofs
for Logics with O (2)

The other proof is By Tree-Sequents with Guardians.
· · ·

a : Γa
αa⇒ ∆a ↑ Σa

βa⇒ Πa

...

The second sequent is guardian, a seed of an
omniscient world.
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Completeness Proofs
for Logics with O (2)

The other proof is By Tree-Sequents with Guardians.
· · ·

a : Γa
αa⇒ ∆a ↑ Σa

βa⇒ Πa

...

The second sequent is guardian, a seed of an
omniscient world.

· · · ag : Σa
βa⇒ Πa

a : Γa
αa⇒ ∆a

...
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Completeness Proofs
for Logics with O (2)

The other proof is By Tree-Sequents with Guardians.
· · ·

a : Γa
αa⇒ ∆a ↑ Σa

βa⇒ Πa

...

The second sequent is guardian, a seed of an
omniscient world.

· · · ag : Σa
βa⇒ Πa

a : Γa
αa⇒ ∆a

...

Proofs are just like in the TS method.
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Problem (1):
Logics with Both O and P

Those without P:

NLO � NDLO

NL �

� �

NDL

�

NO � NDO

�

N

+L

�

+D
�

+O�

ND

�

�

logic : completeness by TS

logic : completeness by embedding or TSg
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Problem (1):
Logics with Both O and P

Those with P:
NLOP � NDLOP

NLP �

� �

NDLP

�

NOP � NDOP

�

NP

+L

�

+D
�

+O �

NDP

�

�

logic : completeness by TS
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Problem (1):
Logics with Both O and P

Two methods here,
embedding of LK,
tree-sequent with guardians
cannot be applied.
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Problem (1):
Logics with Both O and P

Two methods here,
cannot be applied.

Double Negation Shift (DNS), ∀x¬¬A → ¬¬∀xA
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Problem (1):
Logics with Both O and P

Two methods here,
cannot be applied.

Double Negation Shift (DNS), ∀x¬¬A → ¬¬∀xA

NOP �� (DNS), since we have a counter model.
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Problem (1):
Logics with Both O and P

Two methods here,
cannot be applied.

Double Negation Shift (DNS), ∀x¬¬A → ¬¬∀xA

NOP �� (DNS), since we have a counter model.

[Gabbay, 1981] MH (= Int plus (DNS)) is characterized
by the frames s.t.

for ∀a ∈ M , ∃b ≥ a s.t. b is maximal.
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Problem (1):
Logics with Both O and P

Two methods here,
cannot be applied.

Double Negation Shift (DNS), ∀x¬¬A → ¬¬∀xA

NOP �� (DNS), since we have a counter model.

[Gabbay, 1981] MH (= Int plus (DNS)) is characterized
by the frames s.t.

for ∀a ∈ M , ∃b ≥ a s.t. b is maximal.

Counter models by our methods satisfy the above
property! (Omniscient worlds are maximal)
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Problem (2): Completeness of
(NO plus ¬A ∨ ¬¬A)

prop-Int plus ¬A ∨ ¬¬A
(The weak law of excluded middle) is characterized
by frames with their maximums.
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Problem (2): Completeness of
(NO plus ¬A ∨ ¬¬A)

prop-Int plus ¬A ∨ ¬¬A
is characterized by frames with their maximums.

[Question] (Quantified)
Is (NO plus ¬A ∨ ¬¬A) characterized by N-models
with its maximum omniscient?
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Problem (2): Completeness of
(NO plus ¬A ∨ ¬¬A)

prop-Int plus ¬A ∨ ¬¬A
is characterized by frames with their maximums.

[Question] (Quantified)
Is (NO plus ¬A ∨ ¬¬A) characterized by N-models
with its maximum omniscient?

. . .

. . .
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Problem (2): Completeness of
(NO plus ¬A ∨ ¬¬A)

[Corsi and Ghilardi, 1989]
KC (= Int plus ¬A ∨ ¬¬A) is characterized by directed
frames,
i.e.

a ≤ b, a ≤ c ⇒ ∃d s.t. b ≤ d, c ≤ d.

(Existence of the maximum is too strong!)
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Problem (2): Completeness of
(NO plus ¬A ∨ ¬¬A)

[Corsi and Ghilardi, 1989]
KC (= Int plus ¬A ∨ ¬¬A) is characterized by directed
frames,
(Existence of the maximum is too strong!)

[Fact] NO � (DNS).
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Problem (2): Completeness of
(NO plus ¬A ∨ ¬¬A)

[Corsi and Ghilardi, 1989]
KC (= Int plus ¬A ∨ ¬¬A) is characterized by directed
frames,
(Existence of the maximum is too strong!)

[Fact] NO � (DNS).

[Ono, 1987]
Int + ¬A ∨ ¬¬A + ∀x¬¬A → ¬¬∀xA (DNS)
+ (the axiom of constant domain)

is

characterized by constant domain frames with the
maximum.
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Thank You for Your Attention
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