

Kripke Completeness of First-Order Constructive Logics with Strong Negation

Ichiro HASUO

hasuo2@is.titech.ac.jp

Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology

Overview

- Introducing Strong Negation and Nelson's Constructive Logic N
- Introducing variants of N, esp. by the Axiom of Potential Omniscience
- Completeness proofs are given by the Tree-Sequent method

Notations

- Logical Symbols:
 - \wedge , \rightarrow , \forall ,
 - \neg (Heyting's negation), \sim (strong negation)
- \lor and \exists can be defined: $A \lor B \equiv \sim (\sim A \land \sim B), \quad \exists xA \equiv \sim \forall x \sim A$
- Γ ⇒ Δ: A sequent.
 Γ and Δ are finite sets of formulas
- $A \leftrightarrow B$ is for $(A \rightarrow B) \land (B \rightarrow A)$
- GL: Gentzen-style sequent system for logic L.
 TL: Tree-sequent system for L.

Introduced by Nelson and Markov, axiomatized by:

$$A \to (\sim A \to B),$$

$$\sim (A \land B) \leftrightarrow \sim A \lor \sim B, \quad \sim (A \lor B) \leftrightarrow \sim A \land \sim B,$$

$$\sim (A \to B) \leftrightarrow A \land \sim B, \quad \sim \sim A \leftrightarrow A \quad \sim \neg A \leftrightarrow A,$$

$$\sim \forall xA \leftrightarrow \exists x \sim A, \quad \sim \exists xA \leftrightarrow \forall x \sim A.$$

Nelson's constructive logic N, is Int plus \sim .

Strong Negation vs. Heyting's One

Heyting's Negation

 $\neg A \leftrightarrow (A \rightarrow \bot)$,

Heyting's Negation

 $\neg A \leftrightarrow (A \rightarrow \bot)$,

"the compound sentences are not a product of experiment, they arise from reasoning. This concerns also negation: we see that the lemon is yellow, we do not see that it is not blue" (Grzegorczyk)

Heyting's Negation

 $\neg A \leftrightarrow (A \rightarrow \bot)$,

Negative information is reduced to positive one. "the compound sentences are not a product of experiment, they arise from reasoning. This concerns also negation: we see that the lemon is yellow, we do not see that it is not blue" (Grzegorczyk)

Strong Negation vs. Heyting's One

Heyting's Negation

 $\neg A \leftrightarrow (A \rightarrow \bot)$, Negative information is reduced to positive one.

Strong Negation

Heyting's Negation $\neg A \leftrightarrow (A \rightarrow \bot),$ Negative information is reduced to positive one.

Strong Negation

"we can not only **verify** a simple proposition such as **This door is locked.** by direct inspection, but also **falsify** it" (Kracht)

Heyting's Negation

 $\neg A \leftrightarrow (A \rightarrow \bot)$, Negative information is reduced to positive one.

Strong Negation

Negative/Positive informations are equally primitive!

Int-model:

 (M, \leq, U, I^+)

N-model:

 (M, \leq, U, I^+, I^-)

N-model:

$$(M, \leq, U, I^+, I^-)$$

- *I*⁺: **verum** interpretation
- *I*⁻: **falsum** interpretation

N-model:

$$(M, \leq, U, \boldsymbol{I^+}, \boldsymbol{I^-})$$

I⁺: **verum** interpretation extended to $a \models^+ A$ (*a* **verifies** *A*).

I⁻: **falsum** interpretation extended to $a \models A$ (*a* **falsifies** *A*).

$$a \models^{+} p(\underline{u}_{1}, \dots, \underline{u}_{m}) \iff (u_{1}, \dots, u_{m}) \in p^{I^{+}(a)};$$

$$a \models^{+} A \wedge B \iff a \models^{+} A \text{ and } a \models^{+} B;$$

$$a \models^{+} A \rightarrow B \iff \text{ for every } b \ge a, \quad b \models^{+} A \text{ implies } b \models^{+} B;$$

$$a \models^{+} \neg A \iff \text{ for every } b \ge a, \quad b \not\models^{+} A;$$

$$a \models^{+} \sim A \iff a \models^{-} A;$$

$$a \models^{+} \forall xA \iff \text{ for every } b \ge a \text{ and every } u \in U(b), \quad b \models^{+} A[\underline{u}/x];$$

$$\begin{aligned} a \models \neg p(\underline{u_1}, \dots, \underline{u_m}) &\iff (u_1, \dots, u_m) \in p^{I^-(a)}; \\ a \models \neg A \land B \iff a \models \neg A \quad \text{or} \quad a \models \neg B; \\ a \models \neg A \implies B \iff a \models \uparrow A \quad \text{and} \quad a \models \neg B; \\ a \models \neg \neg A \iff a \models \uparrow A; \\ a \models \neg \neg A \iff a \models \uparrow A; \\ a \models \neg \lor A \iff a \models \uparrow A; \end{aligned}$$

(Equal to Maehara's LJ')

$$\begin{split} \overline{A,\sim A\Rightarrow} & (\mathsf{Ex}\ \mathsf{Falso}) \\ \\ \frac{\sim A,\Gamma\Rightarrow\Delta}{\sim (A\wedge B),\Gamma\Rightarrow\Delta} & (\sim\wedge\mathsf{L}) & \frac{\Gamma\Rightarrow\Delta,\sim A,\sim B}{\Gamma\Rightarrow\Delta,\sim (A\wedge B)} \; (\sim\wedge\mathsf{R}) \\ \\ \frac{A,\sim B,\Gamma\Rightarrow\Delta}{\sim (A\to B),\Gamma\Rightarrow\Delta} & (\sim\to\mathsf{L}) & \frac{\Gamma\Rightarrow\Delta,A\quad\Gamma\Rightarrow\Delta,\sim B}{\Gamma\Rightarrow\Delta,\sim (A\to B)} \; (\sim\to\mathsf{R}) \\ \\ \frac{A,\Gamma\Rightarrow\Delta}{\sim\neg A,\Gamma\Rightarrow\Delta} & (\sim\to\mathsf{L}) & \frac{\Gamma\Rightarrow\Delta,A}{\Gamma\Rightarrow\Delta,\sim\neg A} \; (\sim\to\mathsf{R}) \\ \\ \frac{A,\Gamma\Rightarrow\Delta}{\sim\sim A,\Gamma\Rightarrow\Delta} & (\sim\sim\mathsf{L}) & \frac{\Gamma\Rightarrow\Delta,A}{\Gamma\Rightarrow\Delta,\sim\sim A} \; (\sim\sim\mathsf{R}) \\ \\ \frac{\sim A[z/x],\Gamma\Rightarrow\Delta}{\sim\forall xA,\Gamma\Rightarrow\Delta} \; (\sim\forall\mathsf{L})_{\mathsf{VC}} & \frac{\Gamma\Rightarrow\Delta,\sim A[y/x]}{\Gamma\Rightarrow\Delta,\sim\forall xA} \; (\sim\forall\mathsf{R}) \end{split}$$

The Axiom of Potential Omniscience

Extensions of intermediate logics by \sim have been considered, but,

The Axiom of Potential Omniscience

Extensions of intermediate logics by \sim have been considered, but, axioms unique to N (with both \neg and \sim) have not!

Extensions of intermediate logics by \sim have been considered, but, axioms unique to N (with both \neg and \sim) have not!

The axiom of potential omniscience

 $\neg\neg(A \lor \sim A)$

Extensions of intermediate logics by \sim have been considered, but, axioms unique to N (with both \neg and \sim) have not!

The axiom of potential omniscience

 $\neg\neg(A \lor \sim A)$

Introduced by Hasuo, interpreted as:

We can eventually either verify or falsify a statement, with proper additional information.

N: Int plus \sim .

D: Add $\forall x(A(x) \lor B) \rightarrow \forall xA(x) \lor B$, the axiom of **constant domain**

N: Int plus \sim .

D: Add $\forall x(A(x) \lor B) \rightarrow \forall xA(x) \lor B$, the axiom of **constant domain** \Rightarrow contant domain models

N: Int plus \sim .

D: Add $\forall x(A(x) \lor B) \rightarrow \forall xA(x) \lor B$, the axiom of **constant domain** \Rightarrow **contant domain models**

L:
$$(A \to B) \lor (B \to A)$$

N: Int plus \sim .

D: Add $\forall x(A(x) \lor B) \rightarrow \forall xA(x) \lor B$, the axiom of **constant domain** \Rightarrow contant domain models

L:
$$(A \rightarrow B) \lor (B \rightarrow A) \Rightarrow$$
 linearly ordered models

N: Int plus \sim .

D: Add $\forall x(A(x) \lor B) \rightarrow \forall xA(x) \lor B$, the axiom of **constant domain** \Rightarrow **contant domain models**

L:
$$(A \to B) \lor (B \to A) \Rightarrow \Box$$

$$\Rightarrow$$
 linearly ordered models

O: Add $\neg \neg (A \lor \sim A)$, the axiom of **potential omniscience**

N: Int plus \sim .

D: Add $\forall x(A(x) \lor B) \rightarrow \forall xA(x) \lor B$, the axiom of **constant domain** \Rightarrow **contant domain models**

L:
$$(A \to B) \lor (B \to A) \Rightarrow$$
 linearly ordered models

O: Add $\neg \neg (A \lor \sim A)$, the axiom of **potential omniscience**

for $a \in M$ and A (closed formula),

$$\exists b \ge a$$
 s.t. $b \models^+ A$ or $b \models^- A$.

N: Int plus \sim .

D: Add $\forall x(A(x) \lor B) \rightarrow \forall xA(x) \lor B$, the axiom of **constant domain** \Rightarrow **contant domain models**

L:
$$(A \to B) \lor (B \to A) \Rightarrow$$
 linearly ordered models

O: Add $\neg \neg (A \lor \sim A)$, the axiom of **potential <u>omniscience</u>**

for $a \in M$ and A (closed formula), $\exists b \ge a \quad \text{s.t.} \quad b \models^+ A \text{ or } b \models^- A.$

P: Omit the axiom $A \to (\sim A \to B)$.

N: Int plus \sim .

D: Add $\forall x(A(x) \lor B) \rightarrow \forall xA(x) \lor B$, the axiom of **constant domain** \Rightarrow **contant domain models**

L:
$$(A \to B) \lor (B \to A) \Rightarrow$$
 linearly ordered models

O: Add $\neg \neg (A \lor \sim A)$, the axiom of **potential <u>omniscience</u>**

for $a \in M$ and A (closed formula), $\exists b \ge a \quad \text{s.t.} \quad b \models^+ A \text{ or } b \models^- A.$

P: Omit the axiom $A \to (\sim A \to B)$.

 I^+ and I^- are not disjoint \Rightarrow paraconsistency!

Corresponding Kripke Models

Logics in Consideration – The N-family

Those without P:

For the enclosed, completeness is shown. N: van Dalen (1986), ND: Thomason (1969) The others: Hasuo

NASSLLI 2003 Student Session - p.15/28

Logics in Consideration – The N-family Those with P: NLOP NDLOP **NLP NDLP** NOF $+\mathbf{I}$ NDOP NP NDP +DFor the enclosed, completeness is shown. N: van Dalen (1986), ND: Thomason (1969) The others: Hasuo

Completeness Proofs for Logics without O

The **Tree-Sequent** method (Kashima) gives unified proofs for N[D][L][P] (also for Int and intermediate logics e.g. CD, LC).

Sloppily, the tree-sequent (TS) method is a kind of semantic tableaux.

For logic L,

For logic L, **1. Define the TS system TL**.

A TS of TN is a tree of sequents, since N-models are trees.

Accordingly a TS of TNL is a sequence of sequents.

For logic L,

- 1. Define the TS system $\mathbf{T}\mathsf{L}$.
- 2. Completeness of the TS system, i.e.

 $\mathbf{TL} \not\vdash \mathcal{T} \quad \Rightarrow \quad \mathcal{T} \text{ has a counter model}$

is easy.

Extend \mathcal{T} into a **saturated** TS, which induces a counter model.

NASSLLI 2003 Student Session - p.18/28

For logic L,

- **1. Define the TS system TL.**
- 2. Completeness of the TS system, i.e.

TL $\not\vdash \mathcal{T} \Rightarrow \mathcal{T}$ has a counter model

is easy.

3. Define formulaic translation \mathcal{T}^{f} of a TS, and prove $\mathbf{T} \vdash \mathcal{T} \Rightarrow \mathbf{G} \vdash \mathcal{T}^{f}$

4. Let $\operatorname{GL} \not\vdash A$. Then $\operatorname{TL} \not\vdash \stackrel{\alpha}{\Longrightarrow} A$ by 3, hence *A* has a counter model by 2.

NASSLLI 2003 Student Session - p.20/28

(Again) O is for the axiom of potential omniscience.

(Again) O is for **the axiom of potential omniscience**. How can we obtain **omniscient worlds** (where every closed formula is either verified or falsified)?

(Again) O is for the axiom of potential omniscience.

How can we obtain **omniscient worlds** (where every closed formula is either verified or falsified)?

One of our proofs – Utilizes an embedding of LK

(Again) O is for the axiom of potential omniscience.

How can we obtain **omniscient worlds** (where every closed formula is either verified or falsified)?

One of our proofs – Utilizes an embedding of LK

Replacing an arbitrary number of \neg by \sim , we obtain $A_{\sim \neg}$ from A.

[Lemma] (Embedding) $\mathbf{L}\mathbf{K} \vdash \Gamma \Rightarrow \Delta \quad iff \quad \mathbf{GN}[\mathsf{D}][\mathsf{L}]\mathsf{O} \vdash \Gamma_{\sim\neg}, \sim \Delta_{\sim\neg} \Rightarrow$

The second sequent is **guardian**, a seed of an omniscient world.

NASSLLI 2003 Student Session - p.24/28

NASSLLI 2003 Student Session - p.25/28

Problem (1): Logics with Both O and P

Two methods here, embedding of LK, tree-sequent with guardians cannot be applied.

Double Negation Shift (DNS), $\forall x \neg \neg A \rightarrow \neg \neg \forall xA$

Double Negation Shift (DNS), $\forall x \neg \neg A \rightarrow \neg \neg \forall xA$

NOP \nvdash (DNS), since we have a counter model.

Double Negation Shift (DNS), $\forall x \neg \neg A \rightarrow \neg \neg \forall xA$

NOP \nvdash (DNS), since we have a counter model.

[Gabbay, 1981] MH (= Int plus (DNS)) is characterized by the frames s.t.

for $\forall a \in M, \exists b \geq a$ s.t. *b* is maximal.

Double Negation Shift (DNS), $\forall x \neg \neg A \rightarrow \neg \neg \forall xA$

NOP \nvdash (DNS), since we have a counter model.

[Gabbay, 1981] MH (= Int plus (DNS)) is characterized by the frames s.t.

for $\forall a \in M, \exists b \geq a$ s.t. *b* is maximal.

Counter models by our methods satisfy the above property! (Omniscient worlds are maximal)

Problem (2): Completeness of (NO plus $\neg A \lor \neg \neg A$)

prop-Int plus $\neg A \lor \neg \neg A$ (**The weak law of excluded middle**) is characterized by frames with their maximums.

Problem (2): Completeness of (NO plus $\neg A \lor \neg \neg A$)

prop-Int plus $\neg A \lor \neg \neg A$

is characterized by frames with their maximums.

[Question] (Quantified) Is (NO plus $\neg A \lor \neg \neg A$) characterized by N-models with its maximum omniscient? **Problem (2): Completeness of** (NO plus $\neg A \lor \neg \neg A$)

prop-Int plus $\neg A \lor \neg \neg A$

is characterized by frames with their maximums.

[Question] (Quantified) Is (NO plus $\neg A \lor \neg \neg A$) characterized by N-models with its maximum omniscient?

Problem (2): Completeness of (NO plus $\neg A \lor \neg \neg A$)

[Corsi and Ghilardi, 1989]

KC (= Int plus $\neg A \lor \neg \neg A$) is characterized by directed frames,

i.e.

$$a \leq b, a \leq c \Rightarrow \exists d$$
 s.t. $b \leq d, c \leq d$.

(Existence of the maximum is too strong!)

Problem (2): Completeness of (NO plus $\neg A \lor \neg \neg A$)

[Corsi and Ghilardi, 1989]

KC (= Int plus $\neg A \lor \neg \neg A$) is characterized by directed frames, (Existence of the maximum is too strong!)

[Fact] NO ⊢ (DNS).

Problem (2): Completeness of (NO plus $\neg A \lor \neg \neg A$)

[Corsi and Ghilardi, 1989]

KC (= Int plus $\neg A \lor \neg \neg A$) is characterized by directed frames, (Existence of the maximum is too strong!)

```
[Fact] NO \vdash (DNS).
```

[Ono, 1987]

 $\mathsf{Int} + \neg A \lor \neg \neg A + \forall x \neg \neg A \to \neg \neg \forall x A \text{ (DNS)}$

+ (the axiom of constant domain)

characterized by constant domain frames with the maximum.

IS

Thank You for Your Attention