Trace Semantics for Coalgebras: a Generic Theory

Ichiro Hasuo

Radboud University Nijmegen

January 24, 2006

Introduction	
Introduction	
Overview	
Preliminaries I:	
trace semantics	
Preliminaries II: monads	
Preliminaries III:	-
Initial/final sequences))
Preliminaries IV: Limit-colimit coincidence	
Main technical result	
Application of the main result	
Conclusions and future work	

Trace semantics is defined for various non-det. systems:

- □ different input/output types,
- different "nondeterminism": e.g.
 classical non-det. vs. probability.
- They are instances of one categorical construction:

coinduction in a Kleisli category

Demonstrates the abstraction power of category theory, coalgebras in particular in computer science!

- □ Same mathematical principle hidden behind
- □ apparently different constructions

Introduction Introduction Overview Preliminaries I: trace semantics Preliminaries II: monads Preliminaries III: Initial/final sequences Preliminaries IV: Limit-colimit coincidence Main technical result Application of the main result Conclusions and future work

Coalgebraic modelling of a non-det. system, which is suitable for trace semantics:

 $egin{array}{c|c} TFX \\ c & in Sets, \\ X \end{array}$

- A monad T specifies the type of non-det.;
- An endofunctor F specifies the input/output type.

Here

- $\ \ \,$ the **monad structure** of T and
- \Box a distributive law $\pi: FT \Rightarrow TF$

play central roles.

Ichiro Hasuo, RU Nijmegen – 3 / 62

Introduction Introduction Overview Preliminaries I:	Cc wh	alge nich
trace semantics		
Preliminaries II: monads		T
Preliminaries III: Initial/final sequences		С
Preliminaries IV: Limit-colimit coincidence		_
Main technical result		
Application of the main result		Ar
Conclusions		
and future work		An
	He	ere

Coalgebraic modelling of a non-det. system, which is suitable for trace semantics:

- A monad T specifies the type of non-det.;
- An endofunctor F specifies the input/output type.

- $\Box \quad \text{a distributive law } \pi: FT \Rightarrow TF$

play central roles.

Ichiro Hasuo, RU Nijmegen - 3 / 62

Introduction

Overview

Preliminaries I:

trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions

and future work

Main theorem

An initial algebra in \mathbf{Sets} gives rise to

- an initial algebra, and also
- □ a final coalgebra,

in a Kleisli category $\mathcal{K}\ell(T)$.

[Under some order-theoretic assumptions]

Finality yields the finite trace map: in $\mathcal{K}\ell(T)$,

$$egin{aligned} \mathcal{K}\ell(F)(\mathsf{tr}_c)\ FX & \stackrel{----}{\longrightarrow} FA\ c &\cong ig| Jlpha^{-1}\ X &\stackrel{----}{\longrightarrow} A\ \mathsf{tr}_c &\stackrel{----}{\longrightarrow} A\ \mathsf{L}_{ ext{Lhiro Hasuo, RU Nijmegen - 4/62}} \end{aligned}$$

Introduction
Introduction
Overview
Preliminaries I:
trace semantics
Preliminaries II: monads
Preliminaries III:
Initial/final sequences
Preliminaries IV:

Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work The proof of main result (initial algebra-final coalgebra coincidence) uses:

a classic result of limit-colimit coincidence in a suitably order-enriched setting
 [Smyth & Plotkin, Siam J. Comput., '82]

IH, Bart Jacobs and Ana Sokolova.Generic Trace Theory.To appear in CMCS'06.

Introduction	
Introduction	
Overview	
Preliminaries I:	
trace semantics	
Preliminaries II: monads	
Preliminaries III:	
Initial/final sequences	5 5
Preliminaries IV:	5 5 5 6
Limit-colimit coincidence	
Main technical result	-
Application of the main result	
Conclusions and future work	. •

The result covers:

- I/O types almost all polynomial F
 - type of "nondeterminism" :
 - lift monad $\mathcal{L} = 1 + _$

systems with non-termination, exception

- powerset monad ${\cal P}$
 - (classical) non-deterministic systems

subdistribution monad ${\cal D}$ probabilistic systems

Introduction

Overview

Preliminaries I:

trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

The result is generic:

generalizing our previous papers

- \Box [IH & Jacobs, CALCO'05] $T=\mathcal{P}$

Order-enriched structure is explicitly used for the first time.

Overview

Introduction	•
Introduction	•
Overview	•
Preliminaries I:	•
trace semantics	•
Preliminaries II: monads	•
Preliminaries III: Initial/final sequences	•
Preliminaries IV: Limit-colimit coincidence	•
Main technical result	•
Application of the main result	•
Conclusions and future work	•

We'd rather spend all time for preliminaries...

- various examples of trace semantics
- monads, distributive laws, Kleisli categories
- construction of
 - initial algebra via initial sequence
 - □ final coalgebra via final sequence
 - Smyth & Plotkin's limit-colimit coincidence

We go slowly, very slowly, ...

Introduction
Preliminaries I: trace semantics
Linear time-branching time spectrum
Trace semantics Another "nondeterminism" Another input/output type
Preliminaries II: monads
Preliminaries III: Initial/final sequences
Preliminaries IV: Limit-colimit coincidence
Main technical result
Application of the main

Conclusions and future work

result

Preliminaries I: trace semantics

Linear time-branching time spectrum

Introduction	Various ser
Preliminaries I: trace semantics	
Linear time-branching time spectrum	Compare tv
Trace semantics Another	
"nondeterminism" Another input/output type Summary	
Preliminaries II: monads Preliminaries III: Initial/final sequences	b↓
Preliminaries IV: Limit-colimit coincidence	
Main technical result	$m{x}$ and $m{y}$ ar
Application of the main result	differen
Conclusions and future work	

/arious semantics for non-det. systems...

Compare two non-deterministic systems.

Linear time-branching time spectrum

Introduction	Various s
Preliminaries I: trace semantics	
Linear time-branching time spectrum	Compare
Trace semantics Another "nondeterminism"	
type Summary	k
Preliminaries II: monads Preliminaries III: Initial/final sequences	
Limit-colimit coincidence	
Main technical result Application of the main	$m{x}$ and $m{y}$ a
result Conclusions	differe
and future work	equivation $\mathbf{r}(\mathbf{x})$

Various semantics for non-det. systems...

Compare two non-deterministic systems.

Trace semantics

Ichiro Hasuo, RU Nijmegen - 11 / 62

Another "nondeterminism"

Introduction	Another tv	pe of nond
Preliminaries I: trace semantics	/ mounter ty	
Linear time-branching time spectrum		
Trace semantics Another "pondeterminism"		
Another input/output type		$(a,rac{1}{3})$
Summary		(a 1)
Preliminaries II: monads		
Preliminaries III: Initial/final sequences		
Preliminaries IV: Limit-colimit coincidence	Question	: What is t
Main technical result		
Application of the main result		
Conclusions and future work		

determinism: probabilistic systems

the "trace" of x?

Another "nondeterminism"

Introduction	۸no
Preliminaries I: trace semantics	Ano
Linear time-branching time spectrum	
Trace semantics Another "pondeterminism"	
Another input/output type	
Preliminaries II: monads	
Preliminaries III: Initial/final sequences	
Preliminaries IV: Limit-colimit coincidence	Qu
Main technical result	
Application of the main result	An
Conclusions and future work	linea
	$\langle \rangle$

Another type of nondeterminism: probabilistic systems

Question : What is the "trace" of x?

Answer : the probability distribution over possible linear-time behavior

$$\langle \rangle \mapsto \frac{1}{3} \quad a \mapsto \frac{1}{3} \cdot \frac{1}{2} \quad a^2 \mapsto \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots$$

Another input/output type

Summary

Introduction	A trace of (a state of) a non-det. system is:
Preliminaries I: trace semantics Linear time-branching time spectrum	 For (classical) non-deterministic systems,
Trace semantics Another "nondeterminism" Another input/output	the set of possible linear-time behavior
Summary Preliminaries II: monads	For probabilistic systems
Preliminaries III: Initial/final sequences	
Preliminaries IV: Limit-colimit coincidence Main technical result	the probability distribution over
Application of the main result	possible linear-time benavior
Conclusions and future work	The input/output type specifies what is a "linear-time behavior".

Ichiro Hasuo, RU Nijmegen – 14 / 62

Preliminaries I: trace semantics

Preliminaries II: monads

Non-Det. systems as coalgebras

Monads

Kleisli categories

Distributive laws

Summary

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

Preliminaries II: monads, distributive laws, Kleisli categories

Ichiro Hasuo, RU Nijmegen - 15 / 62

Introduction Preliminaries I: trace semantics Preliminaries II: monads Non-Det. systems as coalgebras Monads Kleisli categories **Distributive laws** Summary Preliminaries III: Initial/final sequences Preliminaries IV: Limit-colimit coincidence Main technical result Application of the main result Conclusions

and future work

A non-det. system is modelled as a coalgebra

A monad T specifies the type of nondeterminism; An endofunctor F specifies the input/output type.

Ichiro Hasuo, RU Nijmegen – 17 / 62

Introduction A non-det. system is modelled as a coalgebra Preliminaries I: trace semantics Preliminaries II: monads TFX Non-Det. systems as coalgebras in Sets Monads Kleisli categories **Distributive laws** Summary Preliminaries III: A monad T specifies the type of nondeterminism; Initial/final sequences **Preliminaries IV:** An endofunctor F specifies the input/output type. Limit-colimit coincidence Main technical result Application of the main result

Conclusions and future work

Ichiro Hasuo, RU Nijmegen – 18 / 62

Introduction
Preliminaries I:
trace semantics
Preliminaries II: monads
Non-Det. systems as
coalgebras

- Monads
- Kleisli categories
- Distributive laws
- Summary
- Preliminaries III: Initial/final sequences
- Preliminaries IV: Limit-colimit coincidence
- Main technical result
- Application of the main result

Conclusions and future work

A non-det. system is modelled as a coalgebra

A monad T specifies the type of nondeterminism; An endofunctor F specifies the input/output type.

"Nondeterminism" is modelled due to

- the monad structure of $oldsymbol{T}$, and
- a distributive law $\pi:FT\Rightarrow TF$.

Introduction
Preliminaries I:
trace semantics
Preliminaries II: monads
Non-Det. systems as
coalgebras

- Monads
- Kleisli categories
- Distributive laws
- Summary
- Preliminaries III: Initial/final sequences
- Preliminaries IV: Limit-colimit coincidence
- Main technical result
- Application of the main result

Conclusions and future work

A non-det. system is modelled as a coalgebra

A monad T specifies the type of nondeterminism; An endofunctor F specifies the input/output type.

"Nondeterminism" is modelled due to

- the monad structure of $oldsymbol{T}$, and
- a distributive law $\pi:FT\Rightarrow TF$.

The Kleisli category $\mathcal{K}\ell(T)$ of T turns out to be an appropriate base category.

Introduction
Preliminaries I:
trace semantics
Preliminaries II: monads
Non-Det. systems as
coalgebras

Monads

Kleisli categories

Distributive laws

Summary

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

A non-det. system is modelled as a coalgebra

A monad T specifies the type of nondeterminism; An endofunctor F specifies the input/output type.

"Nondeterminism" is modelled due to

- the monad structure of $oldsymbol{T}$, and
- a distributive law $\pi: FT \Rightarrow TF$.

The Kleisli category $\mathcal{K}\ell(T)$ of T turns out to be an appropriate base category.

Introduction

Preliminaries I: trace semantics

Preliminaries II: monads Non-Det. systems as coalgebras

Monads

Kleisli categories

Distributive laws

Summary

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

A monad

unit law

 $T:\mathbb{C}\to\mathbb{C}$

is an endofunctor with additional structures: for each object X,

TX

Preliminaries I: trace semantics

Introduction

Preliminaries II: monads Non-Det. systems as coalgebras

Monads

Kleisli categories

Distributive laws

Summary

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

Generalization of notion of monoids.

Examples of our interest: (details on blackboard) \Box Lift monad $\mathcal{L}X = 1 + X$

Powerset monad

 $\mathcal{P}X = \{X' \mid X' \subseteq X\}$

Subdistribution monad

 $\mathcal{D}X = \{d: X
ightarrow [0,1] \mid \sum d(x) \leq 1\}$ $x \in X$

Ichiro Hasuo, RU Nijmegen - 20 / 62

Introduction Preliminaries I: trace semantics

Preliminaries II: monads Non-Det. systems as coalgebras

Monads

Kleisli categories

Distributive laws

Summary

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

More generally, an adjunction $L(\mathcal{A})R$ yields a \mathbb{C}

```
monad RL:\mathbb{C}	o\mathbb{C}.
```

Hence a functor $X \mapsto \begin{bmatrix} \text{Free ("term") algebra} \\ \text{with variables from } X \end{bmatrix}$ comes with a monad structure.

Introduction Preliminaries I: trace semantics

Preliminaries II: monads Non-Det. systems as coalgebras

Monads

Kleisli categories

Distributive laws

Summary

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

More generally, an adjunction $L(\mathcal{A})R$ yields a \mathbb{C}

monad $RL:\mathbb{C} o\mathbb{C}.$

Hence a functor $X \mapsto \begin{bmatrix} \text{Free ("term") algebra} \\ \text{with variables from } X \end{bmatrix}$ comes with a monad structure.

- The converse is also true: every monad arises from an adjunction
 - Eilenberg-Moore construction (biggest, final)
 - □ Kleisli construction (smallest, initial) Ichiro Hasuo, RU Nijmegen – 21 / 62

Kleisli categories

Kleisli categories

Introduction Preliminaries I: trace semantics

Preliminaries II: monads Non-Det. systems as coalgebras

Monads

Kleisli categories

Distributive laws

Summary

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work Examples: $T = \mathcal{L}, \mathcal{P}, \mathcal{D}$. On the blackboard. There is an **adjunction**:

which yields the monad T.

Moreover, this Kleisli adjunction is the initial one among those which yield T.

Introduction

Preliminaries I: trace semantics

Preliminaries II: monads Non-Det. systems as coalgebras

Monads

Kleisli categories

Distributive laws

Summary

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

A distributive law is a natural transformation

$$\pi:FT\Rightarrow TF$$

which is compatible with the monad structure of $oldsymbol{T}$.

- It **swaps** T over F.
- The direction is opposite in [Bartels, PhD thesis], since:
 - □ Here the base category is Kleisli,
 - In [Bartels, PhD thesis] the base category is Eilenberg-Moore.
 - □ Duality in a suitable 2-categorical sense.

Introduction Preliminaries I: trace semantics Preliminaries II: monads Non-Det. systems as coalgebras Monads Kleisli categories Distributive laws Summary Preliminaries III: Initial/final sequences **Preliminaries IV:** Limit-colimit coincidence Main technical result Application of the main result

Conclusions and future work

Construction on the blackboard. Example: $T=\mathcal{P}$ and $F=1+\Sigma imes$

Ichiro Hasuo, RU Nijmegen – 26 / 62

Summary

Preliminaries I: trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Overview

Initial sequence

Initial sequence, in **Sets**

Final sequence

Summary

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

Preliminaries III: Initial/final sequences
Introduction Preliminaries I: trace semantics Preliminaries II: monads Preliminaries III: Initial/final sequences Overview Initial sequence Initial sequence, in Sets **Final sequence** Summary Preliminaries IV: Limit-colimit coincidence Main technical result Application of the main result Conclusions

and future work

We sketch: generic construction of

initial F-algebra via initial sequence
 final F-coalgebra via final sequence

for $F:\mathbb{C}
ightarrow \mathbb{C}.$

Assumptions are categorical. For initial sequence construction,

- existence of initial object $0 \in \mathbb{C}$;
- \Box existence of certain colimits in \mathbb{C} ;
- \Box **F** preserves such colimits.
- For illustration the example is $\mathbb{C} = \text{Sets}$. Later applied to $\mathbb{C} = \mathcal{K}\ell(T)$.

Ichiro Hasuo, RU Nijmegen – 31 / 62

Assume: F preserves the upper colimit.

Assume: F preserves the upper colimit.

 $\alpha: FA \xrightarrow{\cong} A$ is an initial algebra.

Ichiro Hasuo, RU Nijmegen - 31 / 62

 β_2

 β_3

 β_0

(5

X

Initial sequence, in Sets

 $F = 1 + \Sigma \times _$, where $1 = \{\checkmark\}$ and $\Sigma = \{a\}$. Question What is an initial algebra?

Initial sequence, in Sets

$$F = 1 + \Sigma imes _$$
, where $1 = \{\checkmark\}$ and $\Sigma = \{a\}$.

Initial sequence, in Sets

$$F = 1 + \Sigma \times _, \quad \text{where } 1 = \{\checkmark\} \text{ and } \Sigma = \{a\}.$$

$$\stackrel{\text{initial obj.}}{0 \longrightarrow} F_{0} \xrightarrow{F^{2}} F_{2}^{2} \xrightarrow{F^{2}} F_{3}^{3} \xrightarrow{F^{3}} \cdots$$

$$\stackrel{\parallel}{1} \qquad 1 + \Sigma \qquad 1 + \Sigma^{\parallel} + \Sigma^{2}$$

$$\checkmark \longmapsto \checkmark \checkmark \longmapsto \checkmark \checkmark$$

$$a \longmapsto a \longmapsto \cdots$$

$$aa \longmapsto \cdots$$

Initial sequence, in Sets

$$F = 1 + \Sigma imes _$$
, where $1 = \{\checkmark\}$ and $\Sigma = \{a\}$.

Initial sequence, in Sets

$$F = 1 + \Sigma \times _$$
, where $1 = \{\checkmark\}$ and $\Sigma = \{a\}$.

Initial sequence, in Sets

$$F^n 0 = \{ ext{terms with depth} \leq n\}$$

Dual of initial sequence...

Dual of initial sequence...

Dual of initial sequence...

Summary

Introduction Preliminaries I: trace semantics Preliminaries II: monads Preliminaries III: Initial/final sequences Overview Initial sequence Initial sequence, in Sets **Final sequence** Summary **Preliminaries IV:** Limit-colimit coincidence Main technical result Application of the main result

Conclusions and future work

- Initial sequence and final sequence.
- In Sets the constructions coincide with familiar structural (co)induction.
- However, the constructions are purely categorical.
 - They work also in other categories!
 - Later applied in $\mathcal{K}\ell(T)$.
- Too much time left? Final sequence in Sets.

Introduction Preliminaries I:

trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Overview

DCpo-enriched categories

Embedding-projection pairs

O-colimits

O-limits

Limit-colimit

coincidence

Summary

Main technical result

Application of the main result

Conclusions and future work

Preliminaries IV: Limit-colimit coincidence

Introduction Preliminaries I: trace semantics Preliminaries II: monads Preliminaries III: Initial/final sequences **Preliminaries IV:** Limit-colimit coincidence Overview $\mathbf{DCpo}\text{-enriched}$ categories Embedding-projection pairs **O**-colimits **O**-limits Limit-colimit coincidence Summary Main technical result Application of the main result

Conclusions and future work

Taking colimit of initial sequence seems

taking union of an increasing chain

Introduction

Preliminaries I: trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Overview

DCpo-enriched categories

Embedding-projection pairs

O-colimits

O-limits

Limit-colimit

coincidence

Summary

Main technical result

Application of the main result

Conclusions and future work

Taking colimit of initial sequence seems

taking union of an increasing chain

In a certain setting it is!

O-limits (order-theoretic notion) coincide with limits;

O-colimits coincide with colimits.

O-limit obvious duality, coincidence O-colimit limit colimit

Introduction

Preliminaries I: trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Overview

DCpo-enriched categories

Embedding-projection pairs

O-colimits

O-limits

Limit-colimit

coincidence

Summary

Main technical result

Application of the main result

Conclusions and future work

Taking colimit of initial sequence seems

taking union of an increasing chain

In a certain setting it is!

O-limits (order-theoretic notion) coincide with limits;

O-colimits coincide with colimits.

O-limit _____O-colimit imit ______Iimit _____O-colimit coincidence [Smyth & Plotkin, SIAM J. Comp., 1982]

Ichiro Hasuo, RU Nijmegen - 37 / 62

DCpo-enriched categories

Embedding-projection pairs

Introduction Preliminaries I: trace semantics	In a DCpo-enriched category,
Preliminaries II: monads Preliminaries III: Initial/final sequences Preliminaries IV:	$X \xrightarrow{e} p Y$ s.t. $\begin{cases} p \circ e = \text{id} \text{ and} \\ e \circ p \sqsubseteq \text{id} \end{cases}$
Limit-colimit coincidence Overview DCpo-enriched categories Embedding-projection pairs O-colimits	Diagramatically, $X \xrightarrow{e} Y$ $\downarrow p$ $\downarrow d$ $\downarrow d$ $\downarrow p$ $\downarrow d$ $X \xrightarrow{e} Y$
O-limits Limit-colimit coincidence	e is mono and p is epi. Both are split.
Summary <u>Main technical result</u> Application of the main result Conclusions and future work	$\begin{cases} p \text{ is the smallest left-inverse of } e \\ e \text{ is the smallest right-inverse of } p \\ \text{Hence corresponding emb./proj. is unique:} \\ (e, e^P) \text{ and } (p^E, p). \end{cases}$
	Intuition?

DCpo-enriched. Each e_n is an embedding.

DCpo-enriched. Each e_n is an embedding.

Each α_n is also an embedding.

DCpo-enriched. Each e_n is an embedding.

Each α_n is also an embedding. $\{A \xrightarrow{\alpha_n^P} X_n \xrightarrow{\alpha_n} A\}_{n < \omega}$ is increasing.

DCpo-enriched. Each e_n is an embedding.

Each α_n is also an embedding.
{ $A \xrightarrow{\alpha_n^P} X_n \xrightarrow{\alpha_n} A$ }_n > $A \xrightarrow{\alpha_n} A$ }_n < $A \xrightarrow{\alpha_n} A$. Ichiro Hasuo

DCpo-enriched. Each e_n is an embedding.

Introduction

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Overview

DCpo-enriched categories

Embedding-projection pairs

\mathbf{O} -colimits

O-limits

Limit-colimit

coincidence

Summary

Main technical result

Application of the main result

Conclusions and future work

Theorem [Smyth & Plotkin]

An O-colimit is a colimit. Conversely, a colimit of $X_0 \xrightarrow{e_0} X_1 \xrightarrow{e_1} \cdots$ is an O-colimit.

O-limits


```
Preliminaries I:
trace semantics
```

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Overview

DCpo-enriched categories

Embedding-projection pairs

O-colimits

 \mathbf{O} -limits

Limit-colimit coincidence

Summary

Main technical result

Application of the main result

Conclusions and future work

Theorem [Smyth & Plotkin]

An O-limit is a limit. Conversely, a limit of $X_0 \stackrel{p_0}{\leftarrow} X_1 \stackrel{p_1}{\leftarrow} \cdots$ is an O-limit.

Limit-colimit coincidence

Theorem [Smyth & Plotkin]

DCpo-enriched. Each e_n is an embedding.

if and only if...

Limit-colimit coincidence

Theorem [Smyth & Plotkin]

DCpo-enriched. Each e_n is an embedding.

Proof: Limit-colimit coincidence

DCpo-enriched. Each e_n is an embedding.

DCpo-enriched. Each e_n is an embedding.

Colimit of ω -chain of embeddings consists of embeddings.

DCpo-enriched. Each e_n is an embedding.

Ichiro Hasuo, RU Nijmegen - 44 / 62

Summary

Conclusions and future work

- The chain will be initial/final sequences.
- Implies initial alg.-final coalg. coincidence!

Introduction

Preliminaries I: trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Initial algebra-final coalgebra coincidence

Proof: sketch

Proof: in detail

Application of the main result

Conclusions and future work

Main technical result

Initial algebra-final coalgebra coincidence

Initial algebra-final coalgebra coincidence

Assumptions

Introduction Preliminaries I:

trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result Initial algebra-final coalgebra coincidence

Proof: sketch

Proof: in detail

Application of the main result

Conclusions and future work

Distributive law $FT \Rightarrow TF$.

Available for

"shapely" functors F,

 $F,G,F_i:=\mathrm{id}\mid \Sigma\mid F imes G\mid \coprod_{i\in I}F_i\;,$ and commutative monads T.

Ichiro Hasuo, RU Nijmegen - 48 / 62

Assumptions


```
Each homset has the minimum:
                                  X
                                          \cdot X, Y
```

Composition in $\mathcal{K}\ell(T)$ is left-strict:

f

True for $T = \mathcal{L}, \mathcal{P}, \mathcal{D}$.

$$X \overset{f}{\longrightarrow} Y \overset{\perp_{Y,Z}}{\longrightarrow} Z \;=\; X \overset{\perp_{X,Z}}{\longrightarrow} Z$$

FX

Lifted $\mathcal{K}\ell(F): \mathcal{K}\ell(T) \to \mathcal{K}\ell(T)$ is monotonic: $\mathcal{K}\ell(F)(g)$ \boldsymbol{g}

 $\mathcal{K}\ell(F)(f)$

 $\mathbf{F} oldsymbol{F} oldsymbol{F}$

- We used Limit-colimit coincidence! We show:
 - \Box The sequence is the final sequence:
 - The upper cone is mapped by $\mathcal{K}\ell(F)$ to the lower one.

 \mathbf{K} .

Let's map by $oldsymbol{J}$ in $oldsymbol{J} \left(egin{array}{c} - \end{array}
ight)$

Sets

Left adjoint preserves colimits.

 $J \text{ (left-adjoint) preserves initial object 0.} \\ \mathcal{K}\ell(T) \xrightarrow{\mathcal{K}\ell(F)} \mathcal{K}\ell(T) \\ J \uparrow \qquad \uparrow J \\ \text{Sets} \xrightarrow{} F \text{Sets}$

Arrows in the initial sequence are embeddings.

- Hence arrows in colimits are also embeddings.
- Colimits are O-colimits.
- Let's take the corresponding projections...

We need to show:

- \Box The sequence is the final sequence:
- $\ \ \square$ The upper cone is mapped by $\mathcal{K}\!\ell(F)$ to the lower one.

0 is also final in $\mathcal{K}\ell(T).$

```
\Box \quad \text{Existence} \quad X \stackrel{\perp}{\longrightarrow} 0 \quad .\Box \quad \text{Uniqueness} \quad X \stackrel{f}{\longrightarrow} 0 \quad = \quad X \stackrel{f}{\longrightarrow} 0 \stackrel{\text{id}}{\longrightarrow} 0 \quad = \quad X \stackrel{f}{\longrightarrow} 0 \stackrel{\perp}{\longrightarrow} 0= \quad X \stackrel{\perp}{\longrightarrow} 0 \quad .
```


Introduction

Preliminaries I: trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Corollary

Finite traces

Conclusions

and future work

Application of the main result

Corollary

Introduction

Preliminaries I: trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Corollary

Finite traces

Conclusions and future work

The diagram of finality

amounts to

 $\exists \hspace{0.1 cm} \langle
angle \in \mathsf{tr}_c(x) \hspace{0.1 cm} ext{iff} \hspace{0.1 cm} \checkmark \in c(x)$

 $egin{array}{rcl} & a \cdot s \in {\sf tr}_c(x) & {
m iff} \ & \exists x' \in X. \ & (a,x') \in c(x) \ & \wedge \ s \in {\sf tr}_c(x') \end{array}$

Ichiro Hasuo, RU Nijmegen - 55 / 62

Introduction
Preliminaries I:
trace semantics
Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Corollary

Finite traces

Conclusions and future work

$$\mathsf{tr}(y) \;=\; b^* = \{\langle\rangle, \, b, \, bb, \, bbb, \, \ldots \,\}$$

 $\mathsf{tr}(y)$ does **not** include infinite words like b^ω .

Introduction Preliminaries I: trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

Conclusions

Future work

Conclusions and future work

Ichiro Hasuo, RU Nijmegen - 60 / 62
Conclusions

Introduction

Preliminaries I: trace semantics

Preliminaries II: monads

Preliminaries III: Initial/final sequences

Preliminaries IV: Limit-colimit coincidence

Main technical result

Application of the main result

Conclusions and future work

Conclusions

Future work

Generic trace semantics: coinduction

Initial algebra-final coalgebra coincidence in a order-enriched settings

Power of categorical/coalgebraic methods in computer science.

Ichiro Hasuo, RU Nijmegen - 61 / 62

Future work

Introduction Another nondeterminism type: Preliminaries I: trace semantics Preliminaries II: monads combination of Preliminaries III: Initial/final sequences Preliminaries IV: Limit-colimit coincidence Main technical result Application of the main result Conclusions and future work Conclusions Future work

classical non-det. probability

Important for system verification: [Vardi, FOCS'85] [Segala, PhD Thesis]

Suitable monad/order structure is yet to be found. Cf. [Varacca & Winskel, MSCS to appear]

Yet another nondeterminism type: monad \mathcal{PP} in [Kupke & Venema, LICS'05].

Thank you for your attention!

Contact: www.cs.ru.nl/~ichiro asuo. RU Niimegen – 62 / 62