Provable Anonymity

Epistemic Logic for Anonymizing Protocols

Ichiro Hasuo

Radboud University Nijmegen The Netherlands

Introduction

Example: onion routing

Semantics of epistemic operators

Verification examples

Conclusion

Introduction

Concern about **on-line privacy** is growing...

ISPs in EU might soon start logging all the URLs you browse

A number of **anonymizing protocols** have been introduced Chaum Mix, Onion Routing, Crowds,...

Introduction

Example: onion routing

Semantics of epistemic operators

Verification examples

Conclusion

A lot of work in formal verification of **authentication** protocols (e.g. Needham-Schroeder, Otway-Rees, ...) but

Formulation and verification of anonymity is still quite immature

Our work is first to

Introduction

 comprehensively formulate competing notions for "anonymity", and

actually verify real protocols,

using crypto-conscious epistemic logic

Coauthors

Introduction

Introduction

Example: onion routing

Semantics of epistemic operators

Verification examples

Conclusion

Peter va? Rossum

Wolt?r Pieters

?lavio D. Garcia

Coauthors

Introduction

Introduction

Example: onion routing

Semantics of epistemic operators

Verification examples

Conclusion

Peter va? Rossum

?lavio D. Garcia

Full paper available:

Provable Anonymity.F. Garcia, I. Hasuo, W. Pieters, and P. van Rossum.To appear in FMSE 2005.

Example: onion routing

• Epistemic logic

 "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

Motivating example: onion routing

Introduced by [Chaum, '81] and [Goldschlag, Reed, Syverson, '96]

Practical implementation available as TOR (The Onion Router), http://tor.eff.org

Example: onion routing

- Epistemic logic
- "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

Motivating example: onion routing

A tries to send a message m to B anonymously

 $\{-\}_X$: public-key encryption n_i : nonce

 $(m) = \{\!\{m\}\!\}_B$ $((m)) = \{\!\{n_1, B, (m)\}\!\}_{R_2}$ $(((m))) = \{\!\{n_0, R_2, ((m))\}\!\}_{R_1}$

Onion routing

actual run

Introduction

Examp	le:	oni	ion	rout	ing	ļ
-------	-----	-----	-----	------	-----	---

- Epistemic logic
- "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verific	ation	exami	oles
VEIIIIC	alion	Crain	0163

```
Conclusion
```


where $((\circ)) = \{ n, X, (\circ) \}_R$

Onion routing

where $((\circ)) = \{n, X, (\circ)\}_R$

This is "anonymous" because the counter run is equally possible, so adversary is not sure whether A sent something to B or C

Introduction

Examp	le:	onion	routi	ng
	10.	0111011	iouti	''y

- Epistemic logic
- "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

```
Conclusion
```

Onion routing

where $((\circ)) = \{n, X, (\circ)\}_R$

Anonymity fails when:

private key of *R* is compromised

- we omit nonces, $((\circ)) = \{ X, (\circ) \}_R$
- not enough padding, e.g. C is absent

Introduction

Example: onion routing

- Epistemic logic
- "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

```
Conclusion
```


Example: onion routing

- Epistemic logic
- "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

Anonymity, Unobservability, Pseudonymity, and Identity Management – A Proposal for Terminology (Ongoing draft from July 2000)

Various "anonymity"

A number of proposals and objections...

http://dud.inf.tu-dresden.de/Literatur_V1.shtml

Example: onion routing

Epistemic logic

 "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

Various "anonymity"

A number of proposals and objections...

Anonymity, Unobservability, Pseudonymity, and Identity Management – A Proposal for Terminology (Ongoing draft from July 2000) http://dud.inf.tu-dresden.de/Literatur_V1.shtml

With **epistemic language** we can formulate and verify competing notions in a uniform manner! [Halpern, O'Neill]

Epistemic logic

Introduction

Example: onion routing

• Epistemic logic

 "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

 $\Box_A \varphi \qquad \qquad A \text{ knows } \varphi$ $\diamond_A \varphi \quad (:= \neg \Box_A \neg \varphi) \qquad A \text{ suspects } \varphi$

Semantics $(W, \{\cong_A | A : agent\})$ **W**: set of possible worlds

• \cong_A : observational equivalence for A

$$egin{array}{lll} x \models \Box_A arphi & \stackrel{ ext{def}}{\Longrightarrow} & orall y \cong_A x. & y \models arphi \ x \models \diamond_A arphi & \stackrel{ ext{def}}{\Longrightarrow} & \exists y \cong_A x. & y \models arphi \end{array}$$

Example: onion routing

Epistemic logic

• "Anonymity" expressed with

epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

"Anonymity" expressed with epistemic logic

Sender anonymity

Given: B receives message (containing) m.

Not sure if A sent m

Anonymity set $\{A_1, \ldots, A_n\}$ m >anonymizer $\overline{m} B$ Each A_i is suspected as sender

Example: onion routing

Epistemic logic

• "Anonymity" expressed with

epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

"Anonymity" expressed with epistemic logic

Sender anonymity

Given: *B* receives message (containing) *m*.

Example: onion routing

• Epistemic logic

 "Anonymity" expressed with epistemic logic

Semantics of epistemic

operators

Verification examples

Conclusion

"Anonymity" expressed with epistemic logic

Unlinkability

Adversary is not sure if A sent something to B.

Example: onion routing

Epistemic logic

 "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

"Anonymity" expressed with epistemic logic

Unlinkability

Adversary is not sure if A sent something to B.

 $\neg \square_{spy} \exists m. (A \text{ Sends } m \land B \text{ Receives } m)$

Example: onion routing

Epistemic logic

 "Anonymity" expressed with epistemic logic

Semantics of epistemic operators

Verification examples

Conclusion

"Anonymity" expressed with epistemic logic

Plausible deniability

R can claim it is not aware of content m"I relayed something, but don't know what it was!"

 $(m) = \{m\}_B$ $((m)) = \{n_1, B, (m)\}_R$

Example: onion routing

Epistemic logic

 "Anonymity" expressed with epistemic logic

Semantics of epistemic

operators

Verification examples

Conclusion

"Anonymity" expressed with epistemic logic

Plausible deniability

R can claim it is not aware of content m"I relayed something, but don't know what it was!"

 $(m) = \{ m \}_B$ $((m)) = \{ n_1, B, (m) \}_R$

 $\forall m. \neg \square_R (R \text{ Sends } m)$

Example: onion routing

Semantics of epistemic operators

 Semantics of epistemic operators

Reinterpretation of messages

Observational equivalence

Verification examples

Conclusion

Semantics of epistemic operators

Possible world = a **run**, or **trace** of protocol

Two aspects of observational equivalence ≅_A:
Not every event is observed by an agent (However we assume global eavesdropper as adversary)

Use of cryptographic operation

Encryptions/hashes makes messages look random junk! (Mauw, Verschuren, de Vink)

Example: onion routing

Semantics of epistemic operators

 Semantics of epistemic operators

Reinterpretation of messages

Observational equivalence

Verification examples

Conclusion

Semantics of epistemic operators

However, two random junks

 $\{m\}_A$ and $\{\{m\}_A\}_B$

should be related.

That is, mapping all undecryptable messages to single \perp is not fine enough.

Our approach is finer than preceeding work, taking care of this point.

Example: onion routing

Semantics of epistemic operators

 Semantics of epistemic operators

• Reinterpretation of messages

Observational equivalence

Verification examples

Conclusion

Reinterpretation of messages

Our approach is finer, using **reinterpretation** We cheat adversary, by reinterpreting

message which looks junk for adversary

into another message

in the way adversary cannot detect a lie.

Example: onion routing

Semantics of epistemic operators

 Semantics of epistemic operators

• Reinterpretation of messages

Observational equivalence

Verification examples

Conclusion

Reinterpretation of messages

Our approach is finer, using **reinterpretation** We cheat adversary, by reinterpreting

message which looks junk for adversary

into another message

in the way adversary cannot detect a lie.

Definition U: a set of messages (e.g. spy's possession) Permutation π of messages is **reinterpretation under** U if:

 $\begin{aligned} \pi(p) &= p & \text{for a primitive term } p \\ \\ \pi(\{m\}_K) &= \{\!|\pi(m)|\!\}_K & \text{if } \begin{cases} m, K \in U, \text{ or} \\ \{m\}_K, K^{-1} \in U \end{cases} \\ \\ \pi(\text{hash}(m)) &= \text{hash}(\pi(m)) & \text{if } m \in U \end{cases} \\ \\ \pi(\langle m_1, m_2 \rangle) &= \langle \pi(m_1), \pi(m_2) \rangle \end{aligned}$

In short, π preserves term structures available in U.

Observational equivalence

Definition

 $r \cong_A r'$

def

Introduction

Example: onion routing

Semantics of epistemic operators

 Semantics of epistemic operators

Reinterpretation of messages
 Observational equivalence

Verification examples

Conclusion

$$\pi(r|_A)=r'|_A$$

where $r|_A$: A-visible part of r

For $A \neq spy$, $r|_A$ consists of events where A is sender or receiver.

• $r|_{spy} = r$, i.e., spy is a global eavesdropper.

 \cong_A is in fact an equivalence relation. Hence \square_A is S5-modality.

Observational equivalence

Introduction

Example: onion routing

Semantics of epistemic operators

 Semantics of epistemic operators

Reinterpretation of messagesObservational equivalence

Verification examples

Conclusion

where $((\circ)) = \{ [n, (\circ)] \}_R$

n: random nonce

Observational equivalence

Example: onion routing

Semantics of epistemic operators

 Semantics of epistemic operators

Reinterpretation of messages
 Observational equivalence

Verification examples

Conclusion

where $((\circ)) = \{ [n, (\circ)] \}_R$

n: random nonce

Reinterpretation π : $((\circ)) \mapsto ((\circ))$ $((\bullet)) \mapsto ((\bullet))$ $(\circ) \mapsto (\bullet)$ $(\bullet) \mapsto (\circ)$

operators

deniability

Conclusion

Onion routing: unlinkability

where $((m)) = \{ [n, B, (m)] \}_R$

 $r \models \neg \square_{spv} \exists m. (A \text{ Sends } m \land B \text{ Receives } m)$ (A and B are unlinkable)

some $C \neq A$ sends ((m')) to R, before R relays (m). (there is enough padding)

Proof [\Rightarrow] By contradiction. In $\forall r' \cong_{spy} r, \pi$ of (m) must result from π of ((m)). Hence they have same core of onion.

Onion routing: plausible deniability

Semantics of epistemic operators

Verification examples

- Onion routing: unlinkability
- Onion routing: plausible deniability
- Forgotten nonces
- Private-key compromised
- Other examples

Conclusion

where $((m)) = \{n, B, (m)\}_R$

Theorem For any m,

 $r \models \neg \square_R(R \text{ Sends } m)$

Proof R doesn't possess private-key of B, hence for $\forall m'$, $\exists \pi$: reinterpretation under R, which gives

(actual run)
$$\cong_R A \xrightarrow{((m'))} R \xrightarrow{(m')} B$$

Example: onion routing

Semantics of epistemic operators

Verification examples

- Onion routing: unlinkability
- Onion routing: plausible deniability
- Forgotten nonces
- Private-key compromised
- Other examples

Conclusion

We forget nonces beneath skin of onion.

where $((m)) = \{ B, (m) \}_R$

Theorem Unlinkability fails, i.e. $r \models \Box_{spy} \exists m. (A \text{ Sends } m \land B \text{ Receives } m)$

Proof Any reinterpretation π must be like $(m) \mapsto m_1$ $((m)) \mapsto \{B, m_1\}_R$ since spy possesses public-key of R. Hence any $r' \cong_{spy} r$ is like $A^{\{B, m_1\}_R} \xrightarrow{m_1} B$, therefore $r' \models \exists m$. (A Sends $m \land B$ Receives m).

Example: onion routing

Semantics of epistemic operators

Verification examples

- Onion routing: unlinkability
- Onion routing: plausible deniability
- Forgotten nonces

Private-key compromised

Other examples

Conclusion

Flawed OR 2: private-key compromised

Private-key of *R* possessed by spy.

Theorem Unlinkability fails, i.e. $r \models \square_{spv} \exists m. (A \text{ Sends } m \land B \text{ Receives } m)$

Proof Any reinterpretation π must be like $(m) \mapsto m_1 \qquad ((m)) \mapsto \{n, B, m_1\}_R$ Hence any $r' \cong_{spy} r$ is like $A \xrightarrow{\{\!|n,B,m_1|\!\}_R} R \xrightarrow{m_1} B$, therefore $r' \models \exists m. (A \text{ Sends } m \land B \text{ Receives } m).$

- Introduction
- Example: onion routing

Semantics of epistemic operators

Verification examples

- Onion routing: unlinkability
- Onion routing: plausible deniability
- Forgotten nonces
- Private-key compromised

Other examples

Conclusion

Other examples

- Can detect even more subtle (artificial) flaw in Onion Routing: see full paper
- Crowds, for sender anonymity
- Internet voting protocol RIES
 In real use in the Netherlands (ongoing analysis)

Introduction

Semantics of epistemic operators

Verification examples

Conclusion

Conclusion

Conclusion

- **Anonymity** is important, hard to define, hard to verify
- Competing notions are straightforwardly expressed with epistemic language
- First to consider use of cryptographic operations in semantics of epistemic logic
- Finer treatment of cryptographic operations using reinterpretation
- Able to uniformly verify/falsify wide variety of anonymizing systems

Future work

- Justification of reinterpretation (cf. Abadi, Rogaway)
- Tool support
 Quantitative analysis

the state of the s	
Introductio	วท

Semantics of epistemic operators

Verification examples

Conclusion

Conclusion

Conclusion

- **Anonymity** is important, hard to define, hard to verify
- Competing notions are straightforwardly expressed with epistemic language
- First to consider use of cryptographic operations in semantics of epistemic logic
- Finer treatment of cryptographic operations using reinterpretation
- Able to uniformly verify/falsify wide variety of anonymizing systems

Future work

- Justification of reinterpretation (cf. Abadi, Rogaway)
- Tool support
 Quantitative analysis

Thank you for your attention! Contact: Ichiro Hasuo www.sos.cs.ru.nl ichiro@cs.ru.nl