Trace Everywhere

Based on：IH \＆N．Hoshino，Semantics of Higher－Order Quantum Computation via Geometry of Interaction，Proc．LICS 2011

Ichiro Hasuo University of Tokyo（JP）

東京大学
THE UNIVERSITY OF TOKYO

Three "Traces"

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

Three "Traces"

$$
\begin{aligned}
& \boldsymbol{F} \boldsymbol{X} \xrightarrow{\boldsymbol{F} \mathbf{b e h}(\boldsymbol{c})} \underset{-}{\rightarrow} \boldsymbol{F} Z \\
& \underset{\boldsymbol{X}}{\boldsymbol{c} \uparrow} \underset{\operatorname{beh}(\bar{c})}{-\rightarrow \boldsymbol{Y}} \underset{\text { final }}{ } \\
& \text { Coinduction in } K l(\mathbf{B})
\end{aligned}
$$

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

Three "Traces"

$$
\begin{aligned}
& \boldsymbol{F X} \xrightarrow{\boldsymbol{F} \boldsymbol{b e h}(\boldsymbol{c})} \underset{-}{\rightarrow} \boldsymbol{F} Z \\
& \stackrel{c \uparrow}{\boldsymbol{X}} \underset{\operatorname{beh}(\bar{c})}{-\rightarrow \boldsymbol{Y}} \underset{\text { final }}{ }
\end{aligned}
$$

Coinduction in $K l(\mathbf{B})$

Coalgebraic Trace Semantics

Traced monoidal category

Categorical GoI
[Abramsky, Haghverdi, Scott]

Quantum λ-calculus

Three "Traces"

$$
\begin{aligned}
& \boldsymbol{F} \boldsymbol{F} \boldsymbol{\operatorname { b e h } (\boldsymbol { c })} \\
& \boldsymbol{c} \uparrow \\
& \boldsymbol{X}-\overline{\boldsymbol{b e h}} \boldsymbol{(\overline { c })}
\end{aligned}
$$

Coinduction in $K l(\mathbf{B})$

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

Measurements by tracing out matrices

Three
 "Traces"

$$
\begin{aligned}
& \boldsymbol{F X} \xrightarrow{\boldsymbol{F} \boldsymbol{b e h}(\boldsymbol{c})} \underset{-}{\rightarrow} \boldsymbol{F} \boldsymbol{Z} \\
& c \uparrow \quad \text { ffinal } \\
& X-\overline{\operatorname{beh}}(\bar{c})-\boldsymbol{Y}
\end{aligned}
$$

Coinduction in $K l(\mathbf{B})$
Coalgebraic Trace Semantics

Traced monoidal

category

Quantum λ-calculus
Measurements by tracing out matrices

* Goal: Denotational model of a quantum λ-calculus

Three
 "Traces"

$$
\begin{aligned}
& \boldsymbol{F X} \xrightarrow{\boldsymbol{F} \boldsymbol{b e h}(\boldsymbol{c})} \underset{-}{\rightarrow} \boldsymbol{F} \boldsymbol{Z} \\
& c \uparrow \quad \text { ffinal } \\
& X-\overline{\operatorname{beh}}(\bar{c})-\boldsymbol{Y}
\end{aligned}
$$

Coinduction in $K l(\mathbf{B})$
Coalgebraic Trace Semantics
category
Quantum λ-calculus

Categorical GoI
[Abramsky, Haghverdi, Scott]
trac
Mea

GoI:

Geometry of Interaction * J.-Y. Girard, at Logic Colloquium '88

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ' 88
* Provides denotational semantics $\llbracket M \rrbracket$ for linear λ-term M

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
* Provides denotational semantics $\llbracket M \rrbracket$ for linear λ-term M
* In this talk:
* Its categorical formulation [Abramsky, Haghverdi, Scott '02]
* "The GoI Animation"

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \downarrow \\
& =" p i p i n g " \\
& \text {... (countably many) }
\end{aligned}
$$

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

[|M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

... (countably many)
[M]

The GoI Animation

* Function application $\llbracket M N \rrbracket$
* by "parallel composition + hiding"
 $[|M|]$

[$N\rceil$

$=$

$=$

$=$

$=$

$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f \cdot f 1 & N=\lambda x .(x+1)
\end{array}
$$

$=$

$$
\begin{array}{rlr}
\ldots & M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2
\end{array}
$$

$$
M=\lambda f . f 1
$$

$$
N=\lambda x .(x+1)
$$

$\lceil M N \rrbracket$ $=$

$=$

$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2
\end{array}
$$

$$
M=\lambda f . f 1
$$

$$
N=\lambda x .(x+1)
$$

$=$

$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f \cdot f 1 & N=\lambda x .(x+1)
\end{array}
$$

$=$

$$
M=\lambda x \cdot x+1 \quad N=2
$$

$$
\rightarrow M=\lambda x .1 \quad N=2
$$

$$
M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

$=$

$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
\rightarrow M=\lambda x .1 & N=2
\end{array}
$$

$$
M=\lambda f . f 1
$$

$$
N=\lambda x .(x+1)
$$

$=$

$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f \cdot f 1 & N=\lambda x .(x+1)
\end{array}
$$

$=$

$$
M=\lambda x \cdot x+1 \quad N=2
$$

$$
M=\lambda x .1 \quad N=2
$$

$$
\rightarrow M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

$\lceil M N \rrbracket$ $=$

$=$

$=$

$$
M=\lambda x \cdot x+1 \quad N=2
$$

$$
M=\lambda x .1 \quad N=2
$$

$$
\rightarrow M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

$=$

$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f \cdot f 1 & N=\lambda x .(x+1)
\end{array}
$$

GoI:

Geometry of Interaction * J.-Y. Girard, at Logic Colloquium '88

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
* Provides denotational semantics $\llbracket M \rrbracket$ for linear λ-term M

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
* Provides denotational semantics $\llbracket M \rrbracket$ for linear λ-term M
* Similar to game semantics [aJm/Ho]

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
* Provides denotational semantics $\llbracket M \rrbracket$ for linear λ-term M
* Similar to game semantics [aтm/ho]
* Linearity: simplicity; no-cloning

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
* Provides denotational semantics $\llbracket M \rrbracket$ for linear λ-term M
* Similar to game semantics [ajm/ho]
* Linearity: simplicity; no-cloning
* Girard translation $\left\{\begin{array}{l}\boldsymbol{A} \rightarrow \boldsymbol{B} \\ \text { as }!\boldsymbol{A} \mapsto \boldsymbol{B}\end{array}\right.$

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
* Provides denotational semantics $\llbracket M \rrbracket$ for linear λ-term M
* Similar to game semantics [ajm/но]
* Linearity: simplicity; no-cloning
* Girard translation
* "Geometry":
invariant under β-reductions

Categorical GoI

* Axiomatics of GoI in the categorical language
* Our main reference:
* [AHSO2] S. Abramsky, E. Haghverdi, and P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002
* Especially its technical report version (Oxford CL), since it's a bit more detailed

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsO2]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsOz]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSO2]

* Applicative str. + combinators
* Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsO2]

* Applicative str. + combinators
* Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsOz]

Linear combinatory algebra

Realizability

* PER, ω-set, assembly, ...
* "Programming in untyped $\lambda^{\prime \prime}$

The Categorical GoI Workflow

Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability \quad * "Programming in untyped λ "
PER, w-set, assembly, .. Linear category

Linear Combinatory Algebra (LCA)

Defn. (LCA)
A linear combinatory algebra ($L C A$) is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathbf{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

Linear Combinatory Algebra

Defn. (LCA)
A linear combinatory algebra ($L C A$) is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

Linear Combinatory Algebra

What
we want (outcome)
Defn. (LCA)
A linear combinatory algebra ($L C A$) is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \boldsymbol{\delta}, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

* Model of untyped linear λ

Linear Combinatory Algebra

What
we want (outcome)

Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \boldsymbol{\delta}, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than • does.

* Model of untyped linear λ

* $a \in A$
 \approx

closed linear λ-term

Linear Combinatory Algebra

What we want (outcome)

Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

* Model of untyped linear λ
* $a \in A \quad \approx$ closed linear λ-term
* No S or K (linear!)
* Combinatory completeness: e.g.

$\lambda x y z . z x y$

designates an elem. of A

What we use (ingredient)

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
$e: F F \triangleleft F: e^{\prime} \quad$ Comultiplication
$\boldsymbol{d}: \mathbf{i d} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \quad$ Dereliction
$\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \quad$ Contraction
$\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} \quad$ Weakening

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

$$
\xrightarrow[{A \xrightarrow{A \xrightarrow{f} B \quad B \xrightarrow{g} C}} C]{ }
$$

$$
\frac{A \xrightarrow{f} B \quad C \xrightarrow{g} D}{A \otimes C \xrightarrow{f \otimes g} B \otimes D}
$$

$$
h \circ(f \otimes g)
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced monoidal category

* "feedback"

$$
\frac{A \otimes C \xrightarrow{f} B \otimes C}{A \xrightarrow{\operatorname{tr}(f)} B}
$$

that is

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial functions $\mathbb{N} \rightharpoonup \mathbb{N}$

String Diagram vs. Pipe Diagram"

* I use two ways of depicting partial
functions $\mathbb{N} \rightharpoonup \mathbb{N}$
In the monoidal category (Pan,,+ 0)

String diagram

Traced Sym. Monoidal Category (Pfn,,+ 0)

* Category Pfn of partial functions
* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\overline{\boldsymbol{X}} \boldsymbol{Y}, \text { partial function }}
$$

Traced Sym. Monoidal Category (Pfn,,+ 0)

* Category Pfn of partial functions
* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\overline{\boldsymbol{X}} \boldsymbol{Y}, \text { partial function }}
$$

* is traced symmetric monoidal

Traced Sym. Monoidal Category (Pfn,,+ 0)

$$
\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in } \mathbf{P f n}}{X \xrightarrow{\operatorname{tr}(f)} Y \text { in } \mathbf{P f n}}
$$

How?

Traced Sym. Monoidal Category (Pfn,,+ 0)

How?

Traced Sym. Monoidal Category (Pfn,,+ 0)

How?

Traced Sym. Monoidal Category (Pfn,,+ 0)

$$
\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in Pfn }}{X \xrightarrow{\operatorname{tr}(f)} Y \text { in Pfn }}
$$

How?

$f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}$
Similar for $\boldsymbol{f}_{X Z}, \boldsymbol{f}_{Z Y}, \boldsymbol{f}_{Z Z}$

Traced Sym. Monoidal Category (Pfn,,+ 0)

* $\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in Pfn }}{X \xrightarrow{\operatorname{tr}(f)} Y \text { in Pfn }}$

How?
s)

$f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}$
Similar for $\boldsymbol{f}_{X Z}, f_{Z Y}, f_{Z Z}$

* Trace operator:

Traced Sym. Monoidal Category (Pan,,+ 0)

$\xrightarrow{X+Z \xrightarrow{f} Y+Z \quad \text { in } \mathbf{P f n}}$ $\boldsymbol{X} \xrightarrow{\operatorname{tr}(f)} \boldsymbol{Y} \quad$ in $\mathbf{P f n}$

How?

2?

$f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}$
Similar for $\boldsymbol{f}_{X Z}, f_{Z Y}, f_{Z Z}$

* Trace operator:

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

Traced Sym. Monoidal Category (Pan,,+ 0)

$$
\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in Pan }}{X \xrightarrow{\operatorname{tr}(f)} Y \text { in Pan }}
$$

How?

$$
f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w }\end{cases}
$$

Similar for $\boldsymbol{f}_{\boldsymbol{X} \boldsymbol{Z}}, \boldsymbol{f}_{\boldsymbol{Z} \boldsymbol{Y}}, \boldsymbol{f}_{\boldsymbol{Z} \boldsymbol{Z}}$

* Execution formula (Girard)
* Partiality is essential (infinite loop)

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
$\bullet \boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced sym. monoidal cat.
* Where one can "feedback"

* Why for GoI?

$=$

$=$

in string diagram

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced sym. monoidal cat.
* Where one can "feedback"

* Why for GoI?

* Leading example: Pfn

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

Defn. (Retraction)
A retraction from \boldsymbol{X} to \boldsymbol{Y},

$$
f: X \triangleleft Y: g
$$

is a pair of arrows
"embedding"

such that $g \circ f=\operatorname{id}_{\boldsymbol{X}}$.

* Functor F

* For obtaining ! : $A \rightarrow A$

GoI situation

Defn. (GoI situation [AHS02])
A GoV situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* The reflexive object U

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{aligned}
j: U \otimes U & \triangleleft U: k \\
I & \triangleleft U \\
u: F U & \triangleleft U: v
\end{aligned}
$$

The reflexive object U

$\frac{1}{i}$

 with

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{array}{rl}
e: F F & \boldsymbol{F} \boldsymbol{F}: \boldsymbol{e}^{\prime} \\
d: \text { id } \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime}
\end{array}
$$

* The reflexive object U

* Why for GoI?

* Example in Pfn:

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
e: F F \triangleleft F & : e^{\prime} \\
d: \mathrm{id} \triangleleft F & : d^{\prime} \\
c: F \otimes F \triangleleft F & : c^{\prime} \\
w: K_{I} \triangleleft F & : w^{\prime}
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functo

* The reflexive object U

* Why for GoI?

* Example in Pfn:

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
& e: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} \\
& \boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \\
& \boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \\
& \boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime}
\end{aligned}
$$

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexiv ject), equipped with the following retractions.

$$
\begin{gathered}
\boldsymbol{j}: \boldsymbol{U} \otimes \boldsymbol{U} \triangleleft \boldsymbol{U}: \boldsymbol{k} \\
\boldsymbol{I} \triangleleft \boldsymbol{U} \\
\boldsymbol{u}: \boldsymbol{F} \boldsymbol{U} \triangleleft \boldsymbol{U}: \boldsymbol{v}
\end{gathered}
$$

* The reflexive object U

* Why for GoI?

* Example in Pfn:
$\mathbb{N} \in \mathbf{P f n}$, with
$\mathbb{N}+\mathbb{N} \cong \mathbb{N}$,
$\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$

GoI Situation: Summary

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Categorical axiomatics of the "GoI animation"

* Example:
$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Categorical axiomatics of the "GoI animation"

* Example:
$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the 10 owing retractions (which are monoidal natural transformations).

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \text { id } \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into til

* Categorical axiomatics of the "GoI animation"
- $U \in \mathbb{C}$ is an object (called reflexive ob) the following retractions.

$$
\begin{aligned}
& j: U \otimes U \triangleleft U: k \\
& I \triangleleft U \\
& u: F U \triangleleft U: v
\end{aligned}
$$

* Example:
$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the 10 owing retractions (which are monoidal natural transformations).

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \text { id } \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into til

- $U \in \mathbb{C}$ is an object (called reflexive ob.

* Categorical axiomatics of the "GoI animation"
the following retractions.

$$
\begin{aligned}
j: U \otimes U & \triangleleft U: k \\
I & \triangleleft U \\
u: F U & \triangleleft U: v
\end{aligned}
$$

* Example:

$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the lowing retractions (which are monoidal natural transformations

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \text { id } \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into ti

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive obj

* Categorical axiomatics of the "GoI animation"

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Example:

$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

* Applicative str.
* ! operator
* Combinators B, C, I, ...

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

* Applicative str.
* ! operator
* Combinators B, C, I, ...

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

* Applicative str.
* ! operator
* Combinators B, C, I, ...

$$
\text { * } g \cdot f
$$

$$
:=\operatorname{tr}((U \otimes f) \circ k \circ g \circ j)
$$

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

$$
!f:=u \circ F f \circ v
$$

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
from [AHSO2]

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Tuesday, October 9, 12

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
from [AHSO2]

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
Nice dynamic interpretation of
from [AHSO2] (linear) computation!!

Summary:

Categorical GoI

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

Why Categorical Generalization?: Examples Other Than Pin [aHsoz]

* Strategy: find a TSMC!
* "Wave-style" examples
* \otimes is Cartesian product(-like)

* in which case,
trace \approx fixed point operator [Hasegawa/Hyland]
* An example: $\left((\omega\right.$-Cpo, $\left.\times, \mathbf{1}),\left(_\right)^{\mathbb{N}}, \boldsymbol{A}^{\mathbb{N}}\right)$
* (... less of a dynamic flavor)

Why Categorical Generalization?: Examples Other Than Pin [aHsoz]

* "Particle-style" examples
* Obj. $\mathrm{X} \in \mathrm{C}$ is set-like; \otimes is coproduct-like
* The GoI animation is valid

* Examples:
* Partial functions
$((\operatorname{Pfn},+, 0), \mathbb{N} \cdot,, \mathbb{N})$
* Binary relations
$((\operatorname{Rel},+, 0), \mathbb{N} \cdot \ldots, \mathbb{N})$
* "Discrete stochastic relations"
$\left((\right.$ DSRel,,+ 0$\left.), \mathbb{N} \cdot _, \mathbb{N}\right)$

Why Categorical Generalization?: Examples Other Than Pfin [AHsoz]

* Pfn (partial functions)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\overline{\boldsymbol{X} \rightharpoonup \boldsymbol{Y}, \text { partial function }}}} \text { X where } \mathcal{L} \boldsymbol{X}=\{\perp\}+\boldsymbol{\mathcal { L } Y \text { in Sets }}
$$

* Rel (relations)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\frac{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}{\boldsymbol{X} \rightarrow \mathcal{P} \boldsymbol{Y} \text { in Sets }}} \text { where } \mathcal{P} \text { is the powerset monad }
$$

* DSRel

$$
\begin{aligned}
& \xlongequal[X \rightarrow Y \text { in DSRel }]{X \rightarrow \mathcal{D} Y \text { in Sets }} \\
& \text { where } \mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}
\end{aligned}
$$

Why

* Pfn (partial functions)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\overline{\boldsymbol{X} \rightharpoonup \boldsymbol{Y}, \text { partial function }}}} \text { X where } \mathcal{L} \boldsymbol{X}=\{\perp\}+\boldsymbol{\mathcal { L } Y \text { in Sets }}
$$

* Rel (relations)
$\xlongequal{\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}$ where \mathcal{P} is the powerset monad
* DSRel
$\xlongequal[X \rightarrow \boldsymbol{Y} \text { in DSRel }]{\boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Why Categd Categories of sets and

(functions with different branching/partiality)
Examples

* Pfn (partial functions)
(Potential) non-termination
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \boldsymbol{P f n}}{\frac{\overline{\boldsymbol{X} \boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}}$ where $\mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}$
* Rel (relations)

Non-determinism
$\xlongequal{\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}$ where \mathcal{P} is the powerset monad

* DSRel
$\underset{X \rightarrow \mathcal{D} \text { in DSRel }}{X \rightarrow \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck

Rel (relations)

* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch

DSRel

* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Why Categ Categories of sets and

* Pfn (partial functions)
(Potential) non-termination
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \boldsymbol{P f n}}{\frac{\overline{\boldsymbol{X} \boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}}$ where $\mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}$
* Rel (relations)

Non-determinism

* DSRel
$\frac{X \rightarrow Y \text { in DSRel }}{\boldsymbol{X} \boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Example

* Pfn (partial functions)
(Potential) non-termination

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\frac{\overline{\boldsymbol{X} \boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}} \text { where } \mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)

Non-determinism

* DSRel
$\xlongequal[X \rightarrow \boldsymbol{Y} \text { in DSRel }]{\boldsymbol{X} \boldsymbol{X} \boldsymbol{D} \boldsymbol{\text { in Sets }}}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Part

Coalgebraic

 Trace Semantics
Trace Semantics of

Systems

$\operatorname{tr}(x)=\{a, a b, a b b, \ldots\}=a b^{*}$

* Non-deterministic branching:
sign. functor is $\mathcal{P}(\mathbf{1}+\boldsymbol{\Sigma} \times \ldots)$

Bisimilarity

vs. Trace Sem.

Hasuo (Tokyo)

Bisimilarity

vs. Trace Sem.

Hasuo (Tokyo)

Bisimilarity vs. Trace Sem.

 -

Hasuo (Tokyo)

Bisimilarity vs. Trace Sem.

Bisimilarity

Branching structure matters. Can I choose later?

Trace semantics

Branching structure does not matter.
Anyway we'll get the same sets of food.

Bisimilarity vs. Trace Sem.

Bisimilarity
Branching structure matters.
Can I choose later?

Trace semantics

Branching structure does not matter.
Anyway we'll get the same sets of food.

Coinduction in a

 Kleisli Category[IH, Jacobs, Sokolova, '07]

Thm. Let \boldsymbol{F} be an endofunctor, and \boldsymbol{B} be a monad, both on Sets. Assume:

1. We have a distributive law $\boldsymbol{\lambda}: \boldsymbol{F B} \Rightarrow \boldsymbol{B F}$.
2. The functor \boldsymbol{F} preserves $\boldsymbol{\omega}$-colimits, yield$\boldsymbol{F} \boldsymbol{A}$ ing an initial algebra $\cong \downarrow \boldsymbol{\alpha}$.
3. The Kleisli category $\mathcal{K} \ell(B)$ is $\mathbf{C p o}_{\perp^{-}}$ enriched and composition in $\mathcal{K} \ell(B)$ is leftstrict.

Then:

1. \boldsymbol{F} lifts to $\overline{\boldsymbol{F}}: \mathcal{K} \ell(B) \rightarrow \mathcal{K} \ell(B)$, with $\boldsymbol{J F}=\overline{\boldsymbol{F}} \boldsymbol{J}$.
$\bar{F} \boldsymbol{A}$
2. $\quad \ddagger \boldsymbol{\eta} \circ \boldsymbol{\alpha}$ is an initial algebra in $\mathcal{K} \ell(\boldsymbol{B})$. A
3. In $\mathcal{K} \ell(\boldsymbol{B})$ we have initial algebra-final coal$\overline{\boldsymbol{F}} \boldsymbol{A}$
gebra coincidence and $\hat{f}(\boldsymbol{\eta} \circ \boldsymbol{\alpha})^{-1}$ is a A
final coalgebra.

Coinduction in a Kleisli Category
 [IH, Jacobs, Sokolova, '07]
 $\boldsymbol{X} \longrightarrow \boldsymbol{Y} \quad$ in $\mathcal{K} \ell(B)$
 $X \longrightarrow B Y$ in Sets
 * Initial algebra lifts from Sets to $K l(B)$

* diagram chasing [Johnstone]

Thm. Let \boldsymbol{F} be an endofunctor, and \boldsymbol{B} be a monad, both on Sets. Assume:

1. We have a distributive law $\boldsymbol{\lambda}: \boldsymbol{F B} \Rightarrow \boldsymbol{B F}$.
2. The functor \boldsymbol{F} preserves $\boldsymbol{\omega}$-colimits, yielding an initial algebra $\underset{\underset{\boldsymbol{A}}{\boldsymbol{F} \boldsymbol{A}}}{\substack{ \\\boldsymbol{\alpha} \\ \hline}}$
3. The Kleisli category $\mathcal{K} \ell(B)$ is $\mathbf{C p o}_{\perp^{-}}$ enriched and composition in $\mathcal{K} \ell(B)$ is leftstrict.

Then:

1. \boldsymbol{F} lifts to $\overline{\boldsymbol{F}}: \mathcal{K} \ell(B) \rightarrow \mathcal{K} \ell(B)$, with $J F=\overline{\boldsymbol{F}} \boldsymbol{J}$.
$\overline{\boldsymbol{F}} \boldsymbol{A}$
2. $\quad \boldsymbol{\eta} \circ \boldsymbol{\alpha}$ is an initial algebra in $\mathcal{K} \ell(B)$. A
3. In $\mathcal{K} \ell(\boldsymbol{B})$ we have initial algebra-final coalgebra coincidence and $\begin{gathered}\overline{\boldsymbol{F}} \boldsymbol{A} \\ \neq \boldsymbol{A} \\ \boldsymbol{\eta} \circ \boldsymbol{\alpha})^{-1}\end{gathered}$ is a final coalgebra.

Coinduction in a Kleisli Category
 [IH, Jacobs, Sokolova, '07]

Thm. Let \boldsymbol{F} be an endofunctor, and \boldsymbol{B} be a monad, both on Sets. Assume:

1. We have a distributive law $\boldsymbol{\lambda}: \boldsymbol{F B} \Rightarrow \boldsymbol{B F}$.
2. The functor \boldsymbol{F} preserves $\boldsymbol{\omega}$-colimits, yielding an initial algebra $\begin{aligned} & \cong \boldsymbol{F} \boldsymbol{A} \\ &{ } \boldsymbol{\alpha} }\end{aligned}$
3. The Kleisli category $\mathcal{K} \ell(B)$ is $\mathbf{C p o}_{\perp^{-}}$ enriched and composition in $\mathcal{K} \ell(B)$ is leftstrict.

Then:

1. \boldsymbol{F} lifts to $\overline{\boldsymbol{F}}: \mathcal{K} \ell(B) \rightarrow \mathcal{K} \ell(B)$, with $\boldsymbol{J} \boldsymbol{F}=\overline{\boldsymbol{F}} \boldsymbol{J}$.
$\overline{\boldsymbol{F}} \boldsymbol{A}$
2. $\quad \underset{\boldsymbol{\eta}}{\boldsymbol{\eta}} \circ \boldsymbol{\alpha}$ is an initial algebra in $\mathcal{K} \ell(\boldsymbol{B})$.
3. In $\mathcal{K} \ell(\boldsymbol{B})$ we have initial algebra-final coalgebra coincidence and $\begin{gathered}\overline{\boldsymbol{F}} \boldsymbol{A} \\ \neq \boldsymbol{\eta} \\ \boldsymbol{\eta} \circ \boldsymbol{\alpha})^{-1}\end{gathered}$ is a final coalgebra.

* In $\boldsymbol{K l}(\boldsymbol{B})$ we have IA-FC coincidence
* typical of "domain-theoretic" categories
* "Algebraically compact" [Freyd]

Coinduction in a

 Kleisli Category* E.g. $B=\mathcal{P}, F=1+\Sigma \times\left(_\right)$

$$
\begin{aligned}
& 1+\Sigma \times X^{1+\Sigma}+\underset{\sim}{\boldsymbol{t r}(c)} 1+\Sigma \times \Sigma^{*} \\
& \boldsymbol{c} \uparrow \quad \text { final in } \mathcal{K} \ell(\mathcal{P}) \\
& X---\underset{\operatorname{tr}(c)}{+}--\rightarrow \Sigma^{*}
\end{aligned}
$$

* Separation between \boldsymbol{B} and \boldsymbol{F}

Coinduction in a

 Kleisli Category$$
\text { * E.g. } B=\mathcal{P}, F=1+\Sigma \times(-)
$$

$$
1+\Sigma \times X_{-}^{1+\Sigma}+\underset{\rightarrow}{\operatorname{tr}(c)} 1+\Sigma \times \Sigma^{*}
$$

$\stackrel{c \uparrow}{X} \quad{ }_{i n}$ Sets

$$
X---\underset{\operatorname{tr}(c)}{+}--\rightarrow \Sigma^{*}
$$

* Separation between \boldsymbol{B} and \boldsymbol{F}

Coinduction in a

 Kleisli Category induced by$$
\text { * E.g. } B=\mathcal{P}, F=1+\Sigma \times(-)
$$

$$
1+\Sigma \times \Sigma^{*}
$$

in Sets
in Sets

* Separation between \boldsymbol{B} and \boldsymbol{F}

$$
\begin{aligned}
& \mathcal{P}(1+\Sigma \times X) \\
& \begin{array}{c}
c \uparrow \\
X
\end{array} \\
& \boldsymbol{X}-\cdots \underset{\operatorname{tr}(c)}{+} \underset{\sim}{ }
\end{aligned}
$$

Coinduction in a

 Kleisli Category induced by$$
\text { * E.g. } B=\mathcal{P}, F=1+\Sigma \times\left(_\right)
$$

$$
1+\Sigma \times \Sigma^{*}
$$

in Sets
$\mathcal{P}(1+\Sigma \times X)$ $c \uparrow$
final in $\mathcal{K} \ell(\mathcal{P})$
$c \uparrow$

$$
X---\frac{1}{\operatorname{tr}(c)}--\rightarrow \Sigma^{*}
$$

in Sets

$$
X \xrightarrow{\operatorname{tr}(c)} \mathcal{P}\left(\Sigma^{*}\right)
$$

* Separation between \boldsymbol{B} and \boldsymbol{F}

Coinduction in a Kleisli Category

 induced by$$
\text { * E.g. } B=\mathcal{P}, F=1+\Sigma \times\left(_\right)
$$

$$
1+\Sigma \times \Sigma^{*}
$$

in Sets
$\mathcal{P}(1+\Sigma \times X)$
$c \uparrow$
X
1
$X)$ $1+\Sigma \times X^{1+\Sigma}+\underset{-}{\operatorname{tr}(c)} \underset{\rightarrow}{\rightarrow}+\Sigma \times \Sigma^{*}$
$\mathcal{P}(1+\Sigma \times X)$
final in $\mathcal{K} \ell(\mathcal{P})$

$X---\frac{1}{\operatorname{tr}(c)}--\rightarrow \Sigma^{*}$
in Sets

$$
X \xrightarrow{\operatorname{tr}(c)} \mathcal{P}\left(\Sigma^{*}\right)
$$

* Separation between \boldsymbol{B} and \boldsymbol{F}

Coinduction in a Kleisli Category

 induced by$$
\text { * E.g. } B=\mathcal{P}, F=1+\Sigma \times\left(_\right)
$$

$$
1+\Sigma \times \Sigma^{*}
$$

in Sets
$\mathcal{P}(1+\Sigma \times X)$
$c \uparrow$
X
1
$X)$ $1+\Sigma \times X^{1+\Sigma}+\underset{-}{\operatorname{tr}(c)} \underset{\rightarrow}{\rightarrow}+\Sigma \times \Sigma^{*}$
$\mathcal{P}(1+\Sigma \times X)$
final in $\mathcal{K} \ell(\mathcal{P})$

$X---\frac{1}{\operatorname{tr}(c)}--\rightarrow \Sigma^{*}$
in Sets

$$
X \xrightarrow{\operatorname{tr}(c)} \mathcal{P}\left(\Sigma^{*}\right)
$$

* Separation between \boldsymbol{B} and \boldsymbol{F}

Examples

* A branching monad B:
* Lift monad $\mathcal{L}=1+\left(_\right)$, powerset monad P, subdistribution monad \mathcal{D}
* Precisely those in

* A functor F : polynomial functors

The Coauthor

* Naohiko Hoshino

* DSc (Kyoto, 2011)

* Supervisor:

Masahito "Hassei" Hasegawa

* Currently at RIMS, Kyoto U.
* http://www.kurims.kyoto-u.ac.jp/ ~naophiko/

From Coalgebraic Trace to Monoidal Trace

Thm. ([Jacobs,CMCS10])
Given a "branching monad" B on Sets, the monoidal category

$$
(\mathcal{K} \ell(B),+, 0)
$$

is a traced symmetric monoidal category.
Cor.
$\left((\mathcal{K} \ell(B),+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$ is a GoI situation.

From Coalgebraic Trace to Monoidal Trace

Thm. ([Jacobs,CMCS10])
Given a "branching monad" B on Sets, the monoidal category

$$
(\mathcal{K} \ell(B),+, 0)
$$

is a traced symmetric monoidal category.
Cor.
$\left((\mathcal{K} \ell(B),+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$ is a GoI situation.

From Coalgebraic Trace to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a "branching monad" B on Sets, the monoidal category

$$
(\mathcal{K} \ell(B),+, 0)
$$

is a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(\boldsymbol{B}),+, \mathbf{0}), \mathbb{N}_{-}, \mathbb{N}\right)$ is a GoI situation.

Proof. We need

$$
\frac{X+Z \xrightarrow{\stackrel{f}{\longrightarrow}} \boldsymbol{Y}+Z \text { in } \mathcal{K \ell}(T)}{X \stackrel{\operatorname{tr}(f)}{\stackrel{ }{\longrightarrow}} \boldsymbol{Y} \text { in } \mathcal{K \ell}(T)}
$$

- $X+Z \xrightarrow{f} Y+Z \xrightarrow{\stackrel{\kappa}{\longrightarrow}} \boldsymbol{Y}+(X+Z)$
is a $\boldsymbol{Y}+\left(_\right)$-coalgebra
$\boldsymbol{Y}+\mathbb{N} \cdot \boldsymbol{Y}$
- $\cong \downarrow \alpha \quad$ is an initial algebra in Sets
$\mathbb{N} \cdot \boldsymbol{Y}$
- Therefore in $\mathcal{K} \ell(T)$:

$$
Y+(X+Z)---\boldsymbol{Y}+\mathbb{N} \cdot \boldsymbol{Y}
$$

$$
\boldsymbol{\kappa} \circ \boldsymbol{f} \not \subset \quad \text { ffinal }
$$

From Coalgebraic Trace to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a "branching monad" B on Sets, the monoidal category

$$
(\mathcal{K} \ell(B),+, 0)
$$

is a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(\boldsymbol{B}),+, \mathbf{0}), \mathbb{N}_{-}, \mathbb{N}\right)$ is a GoI situation.

Proof. We need

$$
\frac{X+Z \xrightarrow{\stackrel{f}{\longrightarrow}} \boldsymbol{Y}+Z \text { in } \mathcal{K \ell}(T)}{X \stackrel{\operatorname{tr}(f)}{\stackrel{ }{\longrightarrow}} \boldsymbol{Y} \text { in } \mathcal{K \ell}(T)}
$$

- $X+Z \xrightarrow{f} Y+Z \xrightarrow{\stackrel{\kappa}{\longrightarrow}} \boldsymbol{Y}+(X+Z)$
is a $\boldsymbol{Y}+\left(_\right)$-coalgebra
$\boldsymbol{Y}+\mathbb{N} \cdot \boldsymbol{Y}$
- $\cong \downarrow \alpha \quad$ is an initial algebra in Sets
$\mathbb{N} \cdot \boldsymbol{Y}$
- Therefore in $\mathcal{K} \ell(T)$:

$$
Y+(X+Z)---\boldsymbol{Y}+\mathbb{N} \cdot \boldsymbol{Y}
$$

$$
\boldsymbol{\kappa} \circ \boldsymbol{f} \not \subset \quad \text { ffinal }
$$

The Categorical GoI Workflow

Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSO2]
Linear combinatory algebra

Realizability

Linear category

Model of fancy language

The Categorical GoI Workflow

Branching monad B
Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Model of fancy language

The Categorical GoI Workflow

Branching monad B
Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

Fancy
TSMC

Fancy
LCA

Model of fancy
language

The Categorical GoI Workflow

Branching monad B
Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Fancy monad

Fancy
TSMC

Fancy

LCA

Model of fancy
language

What is Fancy,
 Nowadays?

What is Fancy, Nowadays?

* Biology?

What is Fancy, Nowadays?

* Biology?
* Hybrid systems?
* Both discrete and continuous data, typically in cyber-physical systems (CPS)
* \rightarrow Our approach via non-standard analysis [Suenaga, IH, ICALP'11] [IH, Suenaga, CAV'12] [Suenaga, Sekine, IH, POPL'13]

What is Fancy, Nowadays?

* Biology?
* Hybrid systems?
* Both discrete and continuous data, typically in cyber-physical systems (CPS)
* \rightarrow Our approach via non-standard analysis [Suenaga, IH, ICALP'11] [IH, Suenaga, CAV'12] [Suenaga, Sekine, IH, POPL'13]
* Quantum?
* Yes this worked!

Future Directions
Qape 3 . GoI 2: Non-converging algms (untogped λ-calc /PCF)

- Uses mone topological info on operatin algs
- Go I 3: usesadditives \& additive proof nots -
GoI 4 (laot month): Von Necumann

Phil Scott.
Tutorial on Geometry of Interaction, FMCS 2004. Page 47/47
algebias: Ex (f, τ) fo f arb (nottecoming from proof)
-Quantum GoI?

Future Directions
Qape 3 . GoI 2: Non-converging algms (untagped λ-calc /PCF)

- Uses mone topological info on operatin algs
- Go I 3: usesadditives a additive proof nots -
GoI 4 (laot month): Von Necumann
Phil Scott.
Tutorial on Geometry of Interaction, FMCS 2004. Page 47/47 algebas: $E x(f, \tau)$ fo f arb (nottrecoming from proof)
Quantum GOI?

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSO2]
Linear combinatory algebra

Realizability

Linear category

Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum language ${ }_{\text {lasuo (Tokyo) }}$

The Quantum Branching Monad

$$
\mathcal{Q} Y=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

The Quantum Branching

$$
\mathbf{Q O}_{m, n}:=\left\{\begin{array}{l}
\text { quantum operations, } \\
\text { from dim. } \boldsymbol{m} \text { to dim. } n
\end{array}\right\}
$$

$$
\mathcal{Q} Y=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

The Quantum Branching

$$
\mathbf{Q O}_{\boldsymbol{m}, \boldsymbol{n}}:=\left\{\begin{array}{l}
\text { quantum operations, } \\
\text { from dim. } \boldsymbol{m} \text { to dim. } \boldsymbol{n}
\end{array}\right\}
$$

$\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{\boldsymbol{m}, \boldsymbol{n}}\right.$ the trace condition $\}$

$$
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1,
$$

$\forall m \in \mathbb{N}, \forall \rho \in D_{m}$.

The Quantum Branching

 $\mathbf{Q O}_{m, n}:=\left\{\begin{array}{l}\text { quantum operations, } \\ \text { from dim. } \boldsymbol{m} \text { to dim. } n\end{array}\right\}$
$\mathcal{Q Y}=\left\{c: \boldsymbol{Y} \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid\right.$ the trace condition $\}$

$$
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1
$$

$\forall m \in \mathbb{N}, \forall \rho \in D_{m}$.

* Compare with

$$
\mathcal{P} Y=\{c: Y \rightarrow 2\}
$$

$$
\mathcal{D} Y=\left\{c: Y \rightarrow[0,1] \mid \sum_{y \in Y} c(y) \leq 1\right\}
$$

The Quantum Branching

$\mathbf{Q O}_{m, n}:=\left\{\begin{array}{l}\text { quantum operations, } \\ \text { from dim. } \boldsymbol{m} \text { to dim. } n\end{array}\right\}$
$\mathcal{Q Y}=\left\{c: \boldsymbol{Y} \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n}\right)$ the trace condition $\}$

$$
\begin{gathered}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{gathered}
$$

* Compare with

$$
\mathcal{P} Y=\{c: Y \rightarrow 2\}
$$

$$
\mathcal{D} Y=\left\{c: Y \rightarrow[0,1] \mid \sum_{y \in Y} c(y) \leq 1\right\}
$$

The Quantum Branching

$\mathbf{Q O}_{m, n}:=\left\{\begin{array}{l}\text { quantum operations, } \\ \text { from dim. } \boldsymbol{m} \text { to dim. } n\end{array}\right\}$
$\mathcal{Q Y}=\left\{c: \boldsymbol{Y} \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n}\right)$ the trace condition $\}$

$$
\begin{gathered}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{gathered}
$$

* Compare with

$$
\mathcal{P} Y=\{c: Y \rightarrow 2\}
$$

$$
\mathcal{D} Y=\left\{c: Y \rightarrow[0,1] \sum_{y \in Y} c(y) \leq 1\right\}
$$

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m}
\end{array}
$$

$$
\frac{\underset{\rightarrow}{\boldsymbol{X}} \boldsymbol{Y} \text { in } \mathcal{K} \ell(\mathcal{Q})}{\boldsymbol{X} \xrightarrow[\rightarrow]{f} \mathcal{Q} Y \text { in Sets }}
$$

* Given $x \in X, y \in \boldsymbol{y}, \boldsymbol{m} \in \mathbb{N}, \boldsymbol{n} \in \mathbb{N}$ determines a quantum operation

$$
(f(x)(y))_{m, n}: D_{m} \rightarrow D_{n}
$$

* Subject to the trace condition

$$
\mathcal{Q} Y=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

Branching Monad

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m}
\end{array}
$$

$$
\frac{\underset{\rightarrow}{\boldsymbol{X}} \boldsymbol{Y} \text { in } \mathcal{K} \ell(\mathcal{Q})}{\boldsymbol{X} \xrightarrow{f} \mathcal{Q} Y \text { in Sets }}
$$

* Given $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{Y}, \boldsymbol{m} \in \mathbb{N}, \boldsymbol{n} \in \mathbb{N}$
determines a quantum operation

Any opr. on quantum data:

$$
(f(x)(y))_{m, n}: D_{m} \rightarrow D_{n}
$$

* Subject to the trace condition
combination of
- preparation
- unitary transf.
- measurement

The Quantum
Branching Monad

$$
\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y} \text { in } \mathcal{K} \ell(\mathcal{Q})
$$

$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m}
\end{array}
$$

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:

The Quantum
Branching Monad

$$
\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y} \text { in } \mathcal{K} \ell(\mathcal{Q})
$$

$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{array}
$$

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:
out dim.

The Quantum
Branching Monad

$\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y}$ in $\mathcal{K} \ell(\mathcal{Q})$

$X \xrightarrow{f} \mathcal{Q} Y$ in Sets
entrance exit dim. dim.

* Given $x \in x, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{array}
$$

The Quantum

Branching Monad $\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y}$ in $\mathcal{K} \ell(\mathcal{Q})$
$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

* Given $x \in x, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$ * trace cond.:

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{array}
$$

The Quantum

Branching Monad $\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y}$ in $\mathcal{K} \ell(\mathcal{Q})$
$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$ * trace cond.:

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{array}
$$

$$
(f(x)(y))_{m, n}(\rho) \in D_{n}
$$

for each n

The Quantum

Branching Monad

$\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y}$ in $\mathcal{K}(\mathcal{Q})$

$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:
$\sum_{y, n} \operatorname{Pr}\left(\begin{array}{c}\text { Token led } \\ \text { to } y \\ \text { with dim. } n\end{array}\right) \leq 1$

$$
\mathcal{Q} Y=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{array}
$$

"Quantum Data, Classical Control"

Quantum data

Illustration by N. Hoshino

Classical control

"Quantum Data, Classical Control"

Quantum data

Classical control

"Quantum Data,

Classical Control"

Quantum data

Classical control

Hasuo (Tokyo)

Quantum

Geometry of Interaction

... (countably many)
$\llbracket M \rrbracket=\quad{ }^{M}$

Hasuo (Tokyo)

Quantum

Geometry of Interaction

Not just a token/ particle, but quantum state!
$\llbracket M \rrbracket=$

Quantum

Geometry of Interaction

\downarrow	\downarrow	\downarrow	\downarrow		
1	2	3	4	\ldots	(countably many)

$\llbracket M \rrbracket=$
 M

Quantum

Geometry of Interaction

$\llbracket M \rrbracket=$
M

"Quantum Data"

Not just a token/ particle, but
quantum state!
Hasuo (Tokyo)

Quantum

Geometry of Interaction

"Classical Control"

$\llbracket M \rrbracket=$
M

"Quantum Data"

Not just a token/ particle, but
quantum state!
Hasuo (Tokyo)

* (measurement \rightarrow case-distinction) leads a token to different pipes

Geometry

"Classical Control"

$\llbracket M \rrbracket=$
M

Not just a token/ particle, but
quantum state!
\downarrow
Hasuo (Tokyo)

End of the Story?

* No! All the technicalities are yet to come:
* CPS-style interpretation (for partial measurement)
* Result type: a final coalgebra in $\mathbf{P E R}_{Q}$
* Admissible PERs for recursion
* ...
* On the next occasion :-)

Results

* The monad Qqualifies as a "branching monad"
* The quantum GoI workflow leads to a linear category PER $_{Q}$
* From which we construct an adequate denotational model for a quantum λ calculus (a variant of Selinger \& Valiron's)

Three "Traces"

$$
\begin{aligned}
& \boldsymbol{F} \boldsymbol{F} \boldsymbol{\operatorname { b e h } (\boldsymbol { c })} \\
& \boldsymbol{c} \uparrow \\
& \boldsymbol{X}-\overline{\boldsymbol{b e h}} \boldsymbol{(\overline { c })}
\end{aligned}
$$

Coinduction in $K l(\mathbf{B})$

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

Measurements by tracing out matrices

Conclusions \& Future Work

* Coalgebraic technologies in interaction-based denotational semantics
* GoI, games (AJM/HO), token machines, ...
* Dynamic/operational stuff: not only in concurrency theory!
* Simplifying our model; lang. w/ "quantum store"
* Ongoing w/ N. Hoshino, T. Roussel, C. Faggian

Future Work

* Coalgebraic technologies in interaction-based denotational semantics
* GoI, games (AJM/HO), token machines, ...
* Dynamic/operational stuff: not only in concurrency theory!
* Simplifying our model; lang. w/ "quantum store"
* Ongoing w/ N. Hoshino, T. Roussel, C. Faggian

