Trace Everywhere

Based on: IH & N. Hoshino, Semantics of Higher-Order Quantum Computation via Geometry of Interaction, Proc. LICS 2011

> Ichiro Hasuo University of Tokyo (JP)

Three "Traces"

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ -calculus

Hasuo (Tokyo)

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ -calculus

Hasuo (Tokyo)

Three "Traces"

Coalgebraic Trace Semantics

Traced monoidal category

GoI [Abramsky, Haghverdi, Scott]

Categorical

Quantum λ -calculus

Hasuo (Tokyo)

Three "Traces"

Coalgebraic Trace Semantics

Traced monoidal category

Categorical GoI [Abramsky, Haghverdi, Scott]

Quantum λ -calculus

Measurements by tracing out matrices

Hasuo (Tokyo)

Coalgebraic Trace Semantics

* Goal: Denotational model of a quantum λ -calculus

Hasuo (Tokyo)

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

* Provides denotational semantics $\llbracket M rbracket$ for linear λ -term M

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

* Provides denotational semantics $\llbracket M
rbracket$ for linear λ -term M

Hasuo (Tokyo)

- ***** In this talk:
 - * Its categorical formulation [Abramsky, Haghverdi, Scott '02]
 - * "The GoI Animation"

* Function application $\llbracket MN rbracket$

* by "parallel composition + hiding"

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $[\![M]\!]$ for linear λ -term M

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $[\![M]\!]$ for linear λ -term M
 - * Similar to game semantics [AJM/HO]

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $[\![M]\!]$ for linear λ -term M
 - * Similar to game semantics [AJM/HO]
 - * Linearity: simplicity; no-cloning

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $\llbracket M
 rbracket$ for linear λ -term M
 - * Similar to game semantics [AJM/HO]
 - Linearity: simplicity; no-cloning
 - * Girard translation <

$$A \rightarrow B$$

as $!A \multimap B$

Geometry of Interaction

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $\llbracket M
 rbracket$ for linear λ -term M
 - * Similar to game semantics [AJM/HO]
 - Linearity: simplicity; no-cloning
 - * Girard translation $A \rightarrow B$ as $!A \rightarrow B$

Tokyo

* "Geometry":

invariant under β -reductions .

Categorical GoI

* Axiomatics of GoI in the categorical language

* Our main reference:

[AHS02] S. Abramsky, E. Haghverdi, and
 P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002

Especially its technical report version
 (Oxford CL), since it's a bit more detailed

Hasuo (Tokyo)

Traced monoidal category $\ensuremath{\mathbb{C}}$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Hasuo (Tokyo)

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Applicative str. + combinators

Hasuo (Tokyo)

Model of untyped calculus

Linear combinatory algebra

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Applicative str. + combinators

Hasuo (Tokyo)

Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

Model of typed calculus

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

- Applicative str. + combinators
- Model of untyped calculus

- PER, ω-set, assembly, ...
 - "Programming in untyped λ''

Hasuo (Tokyo)

Linear category

Model of typed calculus

*

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

- Applicative str. + combinators
- Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

- PER, ω-set, assembly, ...
- "Programming in untyped λ "

Hasuo (Tokyo)

Model of typed calculus

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

Hasuo (Tokyo)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (*combinators*) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (*combinators*) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

What we want (outcome)

Model of
 untyped linear λ

Hasuo (Tokyo)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y= !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

- Model of
 untyped linear λ
- ***** a ∈ A ≈
 - closed linear λ-term

Hasuo (Tokyo)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
Wx ! y=x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome) * Model of untyped linear λ $* a \in A$ ~ closed linear λ -term * No S or K (linear!) * Combinatory completeness: e.q. $\lambda xyz. zxy$ designates an elem. of A

Hasuo (Tokyo)

What we use (ingredient)

Hasuo (Tokyo)

GoI situation

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e~:~FF \lhd F~:~e'$	Comultiplication
$d~:~\mathrm{id} \lhd F~:~d'$	Dereliction
$c \; : \; F \otimes F \lhd F \; : \; c'$	Contraction
$w \ : \ K_I \lhd F \ : \ w'$	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} \lhd F$: d'	Dereliction
$e : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} ee F$: d'	Dereliction
$c : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} \lhd F$: d'	Dereliction
$e \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Monoidal category (\mathbb{C}, \otimes, I) *

* String diagrams

 $h \circ (f \otimes g)$

 \boldsymbol{h}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} ee F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Traced monoidal category

* "feedback"

that is

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial functions $\mathbb{N} \longrightarrow \mathbb{N}$

* Category Pfn of partial functions

* Arr. A partial function

$$\frac{X \to Y \text{ in } \mathbf{Pfn}}{X \rightharpoonup Y, \text{ partial function}}$$

Hasuo (Tokyo)

* Category Pfn of partial functions

* Obj. A set X

* Arr. A partial function

 $\frac{X \to Y \text{ in } \mathbf{Pfn}}{X \rightharpoonup Y, \text{ partial function}}$

* is traced symmetric monoidal

Hasuo (Tokyo)

How?

*

$\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$

How?

How?

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$

How?

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

Hasuo (Tokyo)

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in Pfn}}$

* Trace operator:

Traced Sym. Monoidal Category (Pfn, +, 0)

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in Pfn}}$

* Trace operator:

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ oldsymbol{\perp} & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

How?

Execution formula (Girard)

Partiality is essential (infinite loop)

Tokyo)

tr(f) = $f_{XY} \sqcup \left(\coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Traced sym. monoidal cat.

* Where one can "feedback"

Hasuo (Tokyo)

* Why for GoI?

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

 Traced sym. monoidal cat.

Where one can "feedback"

Why for GoI?

Leading example: Pfn

N

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: (e'	Comultiplication
$d \ : \ \mathrm{id} \mathrel{\triangleleft} F$: (d'	Dereliction
$c \; : \; F \otimes F \lhd F$: (c'	Contraction
$w \; : \; K_I \lhd F$: 1	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Defn. (Retraction) A *retraction* from X to Y,

 $f:X \lhd Y:g$,

"embedding"

"projection"

such that $g \circ f = \mathrm{id}_X$.

***** Functor
$$F$$

* For obtaining $!: A \rightarrow A$

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} \lhd F$: d'	Dereliction
$e : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* The reflexive object U

* Retr. $U \otimes U \xleftarrow{j} U$ \boldsymbol{k}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} arphi F$: d'	Dereliction
$e : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** The reflexive object U

* Retr. $U \otimes U \subset U$

 \boldsymbol{k}

Defn. (GoI situation [AHS02]) A *GoI situation* is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

Defn. (GoI situation [AHS02]) A *GoI situation* is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

Defn. (GoI situation [AHS02]) A *GoI situation* is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

* Example in Pfn: $\mathbb{N} \in \mathbf{Pfn}$, with $\mathbb{N} + \mathbb{N} \cong \mathbb{N}$, $\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$

GoI Situation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$e : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Categorical axiomatics of the "GoI animation"

(Pfn, $\mathbb{N} \cdot _, \mathbb{N}$)

tr(f) tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Categorical axiomatics of the "GoI animation"

(Pfn, $\mathbb{N} \cdot _$, \mathbb{N})

tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the collowing retractions (which are monoidal natural transformations).

For !, via

- $e : FF \triangleleft F : e'$
- $w~:~K_{I} ee F~:~w'$. We

Here K_I is the constant functor into the functor into

• $U \in \mathbb{C}$ is an object (called *reflexive object*), the following retractions.

Categorical axiomatics of the "GoI animation"

Example:

 $(Pfn, \mathbb{N} \cdot _, \mathbb{N})$

tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the collowing retractions (which are monoidal natural transformations).

De

- $e \ : \ FF \lhd F \ : \ e' \ d \ : \ \mathrm{id} \lhd F \ : \ d'$

Here K_I is the constant functor into the

• $U \in \mathbb{C}$ is an object (called *reflexive object*) the following retractions.

For ! , via

Example:

 $(\mathbf{Pfn}, \mathbb{N} \cdot _, \mathbb{N})$

* Categorical axiomatics of

the "GoI animation"

Hasuo (Tokyo)

tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the collowing retractions (which are monoidal natural transformations).

De

- $e \ : \ FF \lhd F \ : \ e' \ d \ : \ \mathrm{id} \lhd F \ : \ d'$

Here K_I is the constant functor into the functor into

• $U \in \mathbb{C}$ is an object (called *reflexive object*), the following retractions.

For ! , via

Example:

 $(\mathbf{Pfn}, \mathbb{N} \cdot , \mathbb{N})$

Hasuo (Tokyo)

Categorical axiomatics of the "GoI animation"

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Hasuo (Tokyo)

 $\begin{bmatrix} I \\ f \end{bmatrix} \in \mathbb{C}(U, U)$

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

 $*g \cdot f$ $:= \mathsf{tr}((U \otimes f) \circ k \circ g \circ j)$

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

***** Combinator Bxyz = x(yz)

Figure 7: Composition Combinator B

from [AHS02]

छाडि = की

Hasuo (Tokyo)

***** Combinator Bxyz = x(yz)

***** Combinator Bxyz = x(yz)

Figure 7: Composition Combinator B

from [AHS02]

***** Combinator Bxyz = x(yz)

Tuesday, October 9, 12

Summary: Categorical GoI

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e~:~FF \lhd F~:~e'$	Comultiplication
$d~:~\mathrm{id} \lhd F~:~d'$	Dereliction
$c \; : \; F \otimes F \lhd F \; : \; c'$	Contraction
$w \; : \; K_I \lhd F \; : \; w'$	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

 Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

Hasuo (Tokyo)

carries a canonical LCA structure.

Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

* Strategy: find a TSMC!

* "Wave-style" examples

★ ⊗ is Cartesian product(-like)

* in which case,

trace \approx fixed point operator [Hasegawa/Hyland]

* An example:
$$ig((\omega ext{-}\operatorname{Cpo}, imes,1),\ (_)^{\mathbb{N}},\ A^{\mathbb{N}}ig)$$

(... less of a dynamic flavor)

Hasuo (Tokyo)

Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

- * "Particle-style" examples
 - * Obj. $X \in C$ is set-like; \otimes is coproduct-like
 - * The GoI animation is valid
 - * Examples:
 - Partial functions

$$(Pfn, +, 0), \mathbb{N} \cdot _, \mathbb{N}$$

- * Binary relations $((\operatorname{Rel},+,0), \mathbb{N} \cdot _, \mathbb{N})$
 - * "Discrete stochastic relations" $((DSRel, +, 0), \mathbb{N} \cdot _, \mathbb{N})$

Why Categorical Generalization?: Examples Other Than Pfn [AHS02]

Why Categories of sets and (functions with different branching/partiality) Examples

Why Categories of sets and (functions with different branching/partiality) Examples

Different Branching in The GoI Animation

2

3

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically
- Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

2

3

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
 - Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

2

3

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

2

3

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

Why Categories of sets and (functions with different branching/partiality) Examples of sets and Examples of sets and

Why Catego Kl(B) for different branching monads B Example

Coalgebraic Trace Semantics

Trace Semantics of

Systems

$\mathsf{tr}(x) = \{a, ab, abb, \dots\} = ab^*$

* Non-deterministic branching: sign. functor is $\mathcal{P}(1 + \Sigma \times _)$

Hasuo (Tokyo)

Branching structure matters. Can I choose later?

Trace semantics

Branching structure does not matter. Anyway we'll get the same sets of food.

Bisimilarity

Branching structure matters. Can I choose later?

Trace semantics

Branching structure does not matter. Anyway we'll get the same sets of food.

Thm. Let F be an endofunctor, and B be a monad, both on **Sets**. Assume:

- 1. We have a distributive law $\lambda : FB \Rightarrow BF$.
- 2. The functor F preserves ω -colimits, yield- FAing an initial algebra $\cong \downarrow \alpha$. A

3. The Kleisli category $\mathcal{K}\ell(B)$ is \mathbf{Cpo}_{\perp} enriched and composition in $\mathcal{K}\ell(B)$ is leftstrict.

Then:

1. F lifts to \overline{F} : $\mathcal{K}\ell(B) \to \mathcal{K}\ell(B)$, with $JF = \overline{F}J$.

2. $\overline{F}A$ $\pm \eta \circ \alpha$ is an initial algebra in $\mathcal{K}\ell(B)$.

3. In $\mathcal{K}\ell(B)$ we have initial algebra-final coal-

gebra coincidence and $egin{array}{c} \overline{F}A \ \uparrow(\eta\circlpha)^{-1} & ext{is a} \ A \end{array}$

final coalgebra.

Coinduction in a Kleisli Category [IH, Jacobs, Sokolova, '07] $X \longrightarrow Y$ in $\mathcal{K}\ell(B)$

 $X \longrightarrow BY$ in Sets

* Initial algebra lifts from Sets to Kl(B)

* diagram chasing [Johnstone]

Thi mor	m. Let F be an endofunctor, and B be a nad, both on Sets . Assume:
1	. We have a distributive law $\lambda:FB\Rightarrow BF$
2	. The functor F preserves ω -colimits, yield- FA ing an initial algebra $\cong \downarrow \alpha$. A
3	. The Kleisli category $\mathcal{K}\ell(B)$ is $\operatorname{Cpo}_{\perp}$ - enriched and composition in $\mathcal{K}\ell(B)$ is left- strict.
The	n:
1	. F lifts to \overline{F} : $\mathcal{K}\ell(B) \to \mathcal{K}\ell(B)$, with $JF = \overline{F}J$.
) 2	$egin{array}{c} \overline{F}A \ & \downarrow \eta \circ lpha \ & ext{is an initial algebra in } \mathcal{K}\ell(B). \ & A \end{array}$
3	. In $\mathcal{K}\ell(B)$ we have initial algebra-final coal-
	gebra coincidence and $\overline{F}A + (\eta \circ \alpha)^{-1}$ is a
	final coalgebra.

Coinduction in a Kleisli Category [IH, Jacobs, Sokolova, '07] $X \longrightarrow Y$ in $\mathcal{K}\ell(B)$

* Initial algebra lifts from Sets to Kl(B)

* diagram chasing [Johnstone]

 $X \longrightarrow BY$ in Sets

Thm. Let F be an endofunctor, and B be a monad, both on Sets. Assume: 1. We have a distributive law $\lambda : FB \Rightarrow BF$. 2. The functor F preserves ω -colimits, yield-FA ing an initial algebra $\cong \downarrow \alpha$. 3. The Kleisli category $\mathcal{K}\ell(B)$ is Cpo₁enriched and composition in $\mathcal{K}\ell(B)$ is leftstrict. Then: 1. F lifts to \overline{F} : $\mathcal{K}\ell(B) \to \mathcal{K}\ell(B)$, with $JF = \overline{F}J.$ $\overline{F}A$ 2. $\pm \eta \circ \alpha$ is an initial algebra in $\mathcal{K}\ell(B)$. 3. In $\mathcal{K}\ell(B)$ we have initial algebra-final coal-FA gebra coincidence and $\uparrow(\eta \circ \alpha)^{-1}$ is a final coalgebra.

Hasuo (Tokyo)

* In *Kl*(*B*) we have **IA-FC coincidence**

* typical of "domain-theoretic" categories

* "Algebraically compact" [Freyd]

Coinduction in a Kleisli Category

* Separation between B and F

* E.g. $B = \mathcal{P}, F = 1 + \Sigma \times (_)$

Hasuo (Tokyo)

* Separation between B and F

Hasuo (Tokyo)

Hasuo (Tokyo)

* Separation between B and F

Examples

- * A branching monad B:
 - * Lift monad $\mathcal{L} = 1 + (_)$, powerset monad \mathcal{P} ,
 - subdistribution monad ${\cal D}$
 - * Precisely those in

Hasuo (Tokyo)

* A functor F: polynomial functors

The Coauthor

* Naohiko Hoshino

* DSc (Kyoto, 2011)

 Supervisor: Masahito "Hassei" Hasegawa

* Currently at RIMS, Kyoto U.

http://www.kurims.kyoto-u.ac.jp/ ~naophiko/

Thm. ([Jacobs,CMCS10]) Given a "branching monad" **B** on Sets, the monoidal category

 $(\mathcal{K}\ell(B),+,0)$

is a traced symmetric monoidal category.

Cor. $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_, \mathbb{N})$ is a GoI situation.

Thm. ([Jacobs,CMCS10]) Given a "branching monad" **B** on Sets, the monoidal category

 $(\mathcal{K}\ell(B),+,0)$

is a traced symmetric monoidal category.

Cor. $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_, \mathbb{N})$ is a GoI situation.

Thm. ([Jacobs,CMCS10]) Given a "branching monad" **B** on Sets, the monoidal category

 $(\mathcal{K}\ell(B),+,0)$

is a traced symmetric monoidal category.

Cor.

 $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_{-}, \mathbb{N})$ is a GoI situation.

Proof. We need

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in } \mathcal{K}\ell(T)}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in } \mathcal{K}\ell(T)}$

• $X + Z \xrightarrow{f} Y + Z \xrightarrow{\kappa} Y + (X + Z)$ is a $Y + (_)$ -coalgebra

• $Y + \mathbb{N} \cdot Y$ • $\cong \downarrow \alpha$ is an initial algebra in Sets $\mathbb{N} \cdot Y$

• Therefore in $\mathcal{K}\ell(T)$:

$$egin{aligned} Y + (X+Z) & --- & Y + \mathbb{N} \cdot Y \\ \kappa \circ f \uparrow & \uparrow \text{final} \\ X + Z & -- & +-- & \rightarrow \mathbb{N} \cdot Y \\ \kappa_1 \uparrow & \mathsf{tr}(c) & \downarrow \nabla \\ X & Y \end{aligned}$$
Hasuo (Tokyo)

Thm. ([Jacobs,CMCS10]) Given a "branching monad" **B** on Sets, the monoidal category

 $(\mathcal{K}\ell(B),+,0)$

is a traced symmetric monoidal category.

Cor.

 $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_{-}, \mathbb{N})$ is a GoI situation.

Proof. We need

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in } \mathcal{K}\ell(T)}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in } \mathcal{K}\ell(T)}$

• $X + Z \xrightarrow{f} Y + Z \xrightarrow{\kappa} Y + (X + Z)$ is a $Y + (_)$ -coalgebra

• $Y + \mathbb{N} \cdot Y$ • $\cong \downarrow \alpha$ is an initial algebra in Sets $\mathbb{N} \cdot Y$

• Therefore in $\mathcal{K}\ell(T)$:

$$egin{aligned} Y + (X+Z) & --- & Y + \mathbb{N} \cdot Y \\ \kappa \circ f \uparrow & \uparrow \text{final} \\ X + Z & -- & +-- & \rightarrow \mathbb{N} \cdot Y \\ \kappa_1 \uparrow & \mathsf{tr}(c) & \downarrow \nabla \\ X & Y \end{aligned}$$
Hasuo (Tokyo)

Hasuo (Tokyo)

Traced monoidal category C + other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Model of fancy

language

Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Model of fancy language Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

TSMC

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Fancy

Model of fancy language Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy monad

Fancy TSMC

Fancy LCA

Model of fancy language Hasuo (Tokyo)

- * Biology?
- * Hybrid systems?
 - * Both discrete and continuous data, typically in **cyber-physical systems** (CPS)
 - Our approach via non-standard analysis [Suenaga, IH, ICALP'11] [IH, Suenaga, CAV'12] [Suenaga, Sekine, IH, POPL'13]

- * Biology?
- * Hybrid systems?
 - * Both discrete and continuous data, typically in **cyber-physical systems** (CPS)
 - ★ → Our approach via non-standard analysis [Suenaga, IH, ICALP'11] [IH, Suenaga, CAV'12] [Suenaga, Sekine, IH, POPL'13]

Hasuo (Tokyo)

* Quantum?

* Yes this worked!

Future Directions . GoI2: Non-converging algos Part 3 (untyped 2-calc (PCF) - Uses more topological info on operation algo -GoI3: Uses additives & additive prog nots -Von Neumann GOI 4 (last month): algebras: EX(f, z) fr f ab (not coming from proof) Phil Scott. Tutorial on Geometry of Interaction, FMCS 2004. Page 47/47 - Quantum GoI?

Future Directions . GoI2: Non-converging algos Part 3 (untyped 2-calc (PCF) - Uses more topological info on operation algo -GoI3: Uses additives & additive prog nots --Von Neumann GOI 4 (last month): algebras: EX(f, z) fr f ab (not toming from proof) Phil Scott. Tutorial on Geometry of Interaction, FMCS 2004. Quantum GoI?

Page 47/47

The Categorical GoI Workflow

Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum languagetasuo (Tokyo)

The Quantum Branching Monad

 $\sum_{y\in Y}\sum_{n\in\mathbb{N}} {\sf tr}ig[ig(c(y)ig)_{m,n}(
ho)ig] \leq 1 \; ,$

 $\mathcal{Q}Y = \left\{ c: Y
ightarrow \prod \mathrm{QO}_{m,n} \ \Big| \ ext{the trace condition}
ight\}$

 $m,n\in\mathbb{N}$

 $\forall m \in \mathbb{N}, \ \forall
ho \in D_m.$

$$X \stackrel{f}{
ightarrow} Y ext{ in } \mathcal{K}\ell(\mathcal{Q})$$

$$X \xrightarrow{f} \mathcal{Q}Y$$
 in Sets

determines a quantum operation

$$\left(f(x)(y)\right)_{m,n}$$
 : $D_m \to D_n$

* Subject to the trace condition

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Quantum data

Illustration by N. Hoshino

Classical control

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

Classical control

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

1

 $-rac{1}{\sqrt{2}}$

Classical control

Hasuo (Tokyo)

Quantum Geometry of Interaction

End of the Story?

- * No! All the technicalities are yet to come:
 - * CPS-style interpretation (for partial measurement)
 - * Result type: a final coalgebra in PER_Q

Hasuo (Tokyo)

* Admissible PERs for recursion

* On the next occasion :-)

* ...

- The monad Q qualifies as a "branching monad"
- The quantum GoI workflow leads to a linear category PER_Q
- * From which we construct an adequate denotational model for a quantum λ-calculus (a variant of Selinger & Valiron's)

Three "Traces"

Coalgebraic Trace Semantics

Traced monoidal category

Categorical GoI [Abramsky, Haghverdi, Scott]

Quantum λ -calculus

Measurements by tracing out matrices

Hasuo (Tokyo)

Conclusions & Future Work

- Coalgebraic technologies in
 interaction-based denotational semantics
 - * GoI, games (AJM/HO), token machines, ...
- Dynamic/operational <u>stuff</u>: not only in concurrency theory!

- * Simplifying our model; lang. w/ "quantum store"
 - * Ongoing w/ N. Hoshino, T. Roussel, C. Faggian

Conclusions &

Thank you for your attention! Ichiro Hasuo (Dept. CS, U Tokyo) http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

Future Work

- * Coalgebraic technologies in interaction-based denotational semantics
 - * GoI, games (AJM/HO), token machines, ...
- Dynamic/operational stuff: not only in concurrency theory!

- Simplifying our model; lang. w/ "quantum store"
 - * Ongoing w/ N. Hoshino, T. Roussel, C. Faggian