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Gol:
Geometry of Interaction
* J.-Y. Girard, at Logic Colloquium ‘88

* Provides denotational semantics | M|
for linear A-term M

% In this talk:

* Its categorical formulation
[Abramsky, Haghverdi, Scott ‘02]

% “"The Gol Animation”
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The Gol Animation

* Function application [MN]

% by “parallel composition + hiding”
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"parallel composition + hiding”
(cf. AJM games)
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Gol:
Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ‘88

% Provides denotational semantics |[M ]]
for linear A-term M

* Similar fo game semantics nw/mol

* Linearity: simplicity; no-cloning

% Girard translation

* “Geom etry fhs g L
invariant under B-reductions .. '
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Categorical Gol

* Axiomatics of Gol in the categorical language

%k QOur main reference:

* [AHSO2] S. Abramsky, E. Haghverdi, and
P. Scott, "Geometry of interaction and linear
combinatory algebras,” MSCS 2002

* Especially its technical report version
(Oxford CL), since its a bit more detailed
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The Categorical Gol
Work floy

‘-----------------'

A\ \C Al

" Traced monoidal category C fl -~ |u)
: + other constructs =» "Gol situation” [AHS02] B ‘ ‘C B‘ ~—

‘ Ca'l'QQOriCGI Gol [AHs02] *  Applicative str. + combinators

Tl UES M ST WS BN RSN BN SN BEN BN I B EE ,:.‘ % Model of un’ryped calculus

: Linear combinatory algebra

‘----------------

‘ Realizability

----------~

« m {y

O
: Linear category .
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Workflow

Gl B e B L B L B L L L L L A‘ ‘C A‘ m
. Traced monoidal category C fl = |u)
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‘ Realizability
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The Categorical Gol
Work flow

‘-----------------'

‘ A e A~
. Traced monoidal category C fl = |w()

‘ Ca'l'QQOriCGI Gol [AHs02] *  Applicative str. + combinators

Tl UES M ST WS BN RSN BN SN BEN BN I B EE ,:,‘ % Model of un’ryped calculus

+ other constructs =» “Gol situation” [AHS02] B‘ ‘C B ‘ \_/

: Linear combinatory algebra

(RS Ep————.SSPMSYY 4  DER, w-sef, assembly, .

‘ Realizability - == % “Programming in untyped N |

B T B R R e T I e B R R T T I G el B T L BT T SR U 1Y
A% IR el g S : <2 . A o <2 ) S
= S
I ® 3
3 b
) L
s
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The Categorical Gol
Workflow

‘-----------------' ‘

\C Al

" Traced monoidal category C fl -~ |u)
: + other constructs =» “Gol situation” [AHS02] B‘ ‘C B‘ ~—

‘ Ca'l'QQOriCGI Gol [AHs02] *  Applicative str. + combinators
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Linear Combinatory Algebra
(LCA)

A linear combinatory algebra (LCA) is a set A equipped with

e a binary operator (called an applicative structure)

TEIAZTTETA
e a unary operator
'1: A— A
e (combinators) distinguished elements B, C, I, K, W, D, §, F
satisfying
Bryz = x(yz) Composition, Cut
Cxyz = (x2)y Exchange
== Identity
Kelyi== Weakening
Wx!ly=x!y'ly Contraction
D!xi= = Dereliction
ol =1z Comultiplication
Fla!y = !(zy) Monoidal functoriality

Here: - associates to the left; - is suppressed; and ! binds
stronger than - does.
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(LCA) What '

| we want (outcome)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

e a binary operator (called an applicative structure)

TEIAZTTETA

e a unary operator

'1: A— A
e (combinators) distinguished elements B, C, I, K, W, D, §, F
satisfying
Bryz = x(yz) Composition, Cut
Cxyz = (x2)y Exchange
== Identity
Kelyi== Weakening
Wx!ly=x!y'ly Contraction
D!xi= = Dereliction
ol =1z Comultiplication
Fla!y = !(zy) Monoidal functoriality

Here: - associates to the left; - is suppressed; and ! binds
stronger than - does.
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Linear Combinatory Algebra
(LCA) Wha+ .

{ we want (ou’rcome)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with £8 MOdel OF

e a binary operator (called an applicative structure) un'l'yped llnear >\
TETAFTTOTA

X ach =

® a unary OpGI’&tOI’

HES S closed linear A-term
e (combinators) distinguished elements B, C, I, K, W, D, §, F
satisfying
Bryz = x(yz) Composition, Cut
Cxyz = (x2)y Exchange
== Identity
Kelyi== Weakening
Wx!ly=x!y'ly Contraction
D!xi= = Dereliction
ol =1z Comultiplication
Fla!y = !(zy) Monoidal functoriality

Here: - associates to the left; - is suppressed; and ! binds
stronger than - does.
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Linear Combi
(LC A) T What |

. we wan’r (ou’rcome)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with 58 MOdel OF
e a binary operator (called an applicative structure) un'l'yped l| near }\
T AT
¥ aeA =
e a unary operator
fonl ]
N B closed linear A-term
e (combinators) distinguished elements B, C, I, K, W, D, d, F
satisfying .
% No S or K (linear!)
Bryz = x(yz) Composition, Cut
Cxyz = (x2)y Exchange I
Pamn Er % Combinatory
Kty =w Weakening completeness: e.g.
Wx!ly=x!y'ly Contraction
D!xi= = Dereliction
Slw=11s Ebahiplicarion ATYZ. Z22Y
Fla!y = !(zy) Monoidal functoriality
Here: . associates to the left; - is suppressed; and ! binds deSIgnafeS an elem. OF A

stronger than - does.
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What we use (ingredien’r)

Gol situafion

Defn. (Gol situation [AHS02])
A Gol situation is a triple (C, F,U) where

e C = (C,®,1) is a traced symmetric monoidal category

(TSMC);

o ' : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FFaF : € Comultiplication
d:id<F :d Dereliction

c : FQF<F :c Contraction
w: Ki<F : w Weakening

Here K7 is the constant functor into the monoidal unit I;

e U € C is an object (called refiexive object), equipped with
the following retractions.

2RI < T R
T<atlts
TISCNT nf (TAPRY VAR

Hasuo (Tokyo)
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E Gol situation

A Gol situation is a triple (C, F,U) where * MonOi dal category (C, ® o I)

e C = (C,®,I) is a traced symmetric monoidal category

(TSMC);

e F : C — C is a traced symmetric monoidal functor, * S"'ring diagrams

equipped with the following retractions (which are monoidal
natural transformations).

e : FF aF : € Comultiplication
d:id<F :d Dereliction

el L I =TIF ¢t Icl Contraction
w: Ki<F : w Weakening

Here K7 is the constant functor into the monoidal unit I;

e U € C is an object (called reflexive object), equipped with
the following retractions.

Jr—+-U-Q U-<-U-: 'k
I U
b UL < U s

Hasuo (Tokyo)
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Gol situation

* Monoidal category (C,®,I)

Defn. (Gol situation [AHS02))
A Go situation sa tripl , F, U hr IIEEEE

e C = (C,®,I) is a traced symmetric monoidal category
b (TSMO);

ST N is a traced ytic monoidal tor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FFaF : € Comultiplication
d:id<F :d Dereliction

el L I =TIF ¢t Icl Contraction
w: Ki<F : w Weakening

Here K7 is the constant functor into the monoidal unit I;

e U € C is an object (called reflexive object), equipped with
the following retractions.

Jr—+-U-Q U-<-U-: 'k
I U
b UL < U s

* String diagrams

Hasuo (Tokyo)
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Gol situation

* Monoidal category (C,®,I)

Defn. (Gol situation [AHS02))
A Go situation is a tripl F, U hr UNENE

f e C = (C,®,1) is a traced symmetric monoidal category f;‘\

(TSMC);

S B is a traced ytic monoidal tor,
equipped with the following retractions (which are monoidal
natural transformations).

* String diagrams

Al
e : FFAQF : € Comultiplication A f 3 B B 9 y C’ f
d:id<F :d Dereliction
e L H RF < IFl ¢ [cl Contraction A ﬂ) ¢ B
w: Ki<F : w Weakening g
Here K7 is the constant functor into the monoidal unit I; C |
e U € C is an object (called reflexive object), equipped with 4
the following retractions.
J g
j:UQUU : k P INELENE * SN A0 E ) AfC
I<U f® g
w: FU QU : v A®CJB®D B| D|
flla
ho(f®g) — 5
h
| o)
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E Gol situation

A Gol situation is a triple (C, F,U) where

* Traced monoidal category

e C = (C,®,I) is a traced symmetric monoidal category
b (TSMO);

S B is a traced ytic monoidal tor,
equipped with the following retractions (which are monoidal

* “feedback”
natural transformations).

f
e : FFAQF : € Comultiplication A ® C Tt B ® C

d:id<F :d Dereliction
tr(f
c: FQFF : ¢ Contraction A B
w: Ki<F : w Weakening
[ J
Here K7 is the constant functor into the monoidal unit I; fhaf 's

e U € C is an object (called reflexive object), equipped with
the following retractions.

j:UQU<U : k A‘ ‘C’ A‘ )
I<U
i w: FU AU : v A f — tr(f)

Hasuo (Tokyo)
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String Diagram vs.
“Pipe Diagram”

* I use two ways of depicting partial
functions N — N

L UL A B L JdE Bl UL Il .
~ -
~ — X
~ -
~ -
Il
Il .
| Ras S SRl BEN S SR B NS S

Pipe diagram .* String diagram .
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String Diagram vs.
“Pipe Diagram”

* I use two ways of depicting partial

functions N — N In the monbldal cafegofy
(Pfn, +, 0)

I N
1 2 3 4 ... (countaby many) I

g I HJVITI

N

L UL A B L JdE Bl UL Il .
~ -
~ —
~ -
~ -
Il
Il .
| Ras S SRl BEN S SR B NS S

Pipe diagram .* String diagram .
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Traced Sym. Monoidal Category
(Pfn, +,0)

% Category Pfn of partial functions

% Obj. A set X

* Arr. A partial function

X
X — Y in Pin ﬁf
X — Y, partial function v
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Traced Sym. Monoidal Category
(Pfn, +,0)

% Category Pfn of partial functions

* Obj. A set X

* Arr. A partial function

X
X — Y in Pin ﬁf
X — Y, partial function v

% Is traced symmetric monoidal

Hasuo (Tokyo)




Traced Sym. Monoidal Category
(Pfn, T+ O)

AL e e

S CLLCRAEZSREnRE S YN

How?

kK
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ey e

T T
X | 'z

f

Y|z

How?
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Traced Sym. Monoidal Category
(Pfn, +, O)

AL e e

?
QL RIE 7 RERCRE Y38 How:
% 25555 |
Pasfassi {f(fv) if f(x) €Y
Tl 0.W.

Similar for fxz, fzy, fzz
T — T
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Traced Sym. Monoidal Category
(Pfn, +, O)

AL e e

?
QL RIE 7 RERCRE Y38 How:
Pasfassi {f(fv) if f(x) €Y
Tl 0.W.

Similar for fxz, fzy, fzz
L — ——
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Traced Sym. Monoidal Category
(Pfn, +, O)

AL e e

?
xSy L Py judidt
x ™ e—
\ Z [ f(=) iff(x) ey
? Fxv (@) := i 0.W.
AV Similar for fxz, fzy, fzz

tr(f) =
fxy U (H fzy o (fzz)" o fXZ)
neN i
SE——y ] 07)
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Traced Sym. Monoidal Category

(Pfn, +, O)

AL e e

x "y

in Pfn

Tuesday, October 9, 12

How?
e A

Similar for fxz, fzy, fzz

. * Execution formula (Girard)

| * Partiality is essential (infinite loop)

tr(f) =
fxy U (H fzy o (fzz)" o fXZ)

neN

ﬁ“—o kyo)




E Gol situation

A Iz_'ti is tple(U‘e LT iy * Traced Sym. mOrlOidCll CCl'l'.

C = (C,®,I) is a traced symmetric monoidal category

(TSMC);

eF : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

% Where one can “feedback”

e : FFaF : € Comultiplication
d:id<F :d Dereliction

el L I =TIF ¢t Icl Contraction
w: Ki<F : w Weakening

Here K7 is the constant functor into the monoidal unit I;

e U € C is an object (called reflexive object), equipped with * Why For GOI?

the following retractions.

Jr—+-U-Q U-<-U-: 'k
I U
RS B T ) B S

Hasuo (Tokyo)
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in string diagram

Tuesday, October 9, 12



Defn. (Gol situation [AHS02))
A Gol situation is a triple (C, F,U) where

(TSMC);

C = (C,®,I) is a traced symmetric monoidal category «} “

o F : C C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

g * \HKE <\F &
d : hid </|F] E

C s | XH Pk
w TV J1F

Comultiplication
Dereliction
Contraction

Weakening

Here K7 is the constant functor into the monoidal unit I;

e U € C is an object (called reflexive object), equipped with

the following retractions.

Jr—+-O-Q-U-<-U-

u

i 38 1 ]

k

v

Gol situation

* Traced sym. monoidal cat.

% Where one can “feedback”

Al _le Al
fl - ()
B| |C B|

* Why for Gol?

= {r

B
=

* Leading example: Pin
Hasuo (Tokyo)
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Gol situation

Defn. (Gol situation [AHS02]) .
A Gol situation is a triple (C, F,U) where Detn. (Retractlon)
A retraction from X to Y,

e C = (C,®,I) is a traced symmetric monoidal category

(TSMC)

3 o F C L1 C is a traced symmetrlc monmdal functor
equipped with the following retractions (which are monoidal

.; natural transformations). " is a, pair of arrows “embedding”
e: FFF : € Comultiplication ; SR
d:id<F :d Dereliction 5
¢ It H S P E el Contraction :
WK I W Weakening

"projection”

: I Here K 118 the constant functor 1nto the monmdal unlt I

S~ - =_- ) s

o U € Cisan obJect (called reflexive object), equlpped Wlth such that g o f = o idX

the following retractions.

Jr—+-U-Q U-<-U-: 'k

T * Functor F

wis FU QU ¢+ w
B — L

* For obtaining !: A — A

Hasuo (Tokyo)
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Gol situation

Defn. (GOI situation [AHSOZ]) * The reﬂ €XiV€ ObJ' ec.l- U

A Gol situation is a triple (C, F,U) where

e C = (C,®,I) is a traced symmetric monoidal category J

SEEaN % Reilr. UU_ U

e F : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal kj
natural transformations).

e : FFaF : € Comultiplication
d:id<F :d Dereliction

el L I =TIF ¢t Icl Contraction
w: Ki<F : w Weakening

Here K I is the constant functor 1nto the monmdal unlt I

4

® U E (C is an obJect (called reﬂea:zve ob]ect) equlpped Wlth
the following retractions.

7 U-@-U-<-Ui—+—k
I U
u FU < U v

=.- = = =~ ~ ~

Hasuo (Tokyo)
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Gol situation

Defn. (GOI situation [AHSOZ]) * The reﬂ exive ObJ' ec.l. U

A Gol situation is a triple (C, F,U) where

e C = (C,®,I) is a traced symmetric monoidal category .7

iEne * Retr. UUZ_ U

e F : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal k
natural transformations). I TR

e: FFaF : € Comultiplication . .
d:id<aF :d Dereliction , Wl'l'h

c: FQFF : ¢ Contraction
w: Ki<F : w Weakening

Here K I is the constant functor 1nto the mon01dal umt I : . d

4

X U E C is an obJect (called reﬂea:zve ob]ect) equlpped Wlth
the following retractions.

J U ® U <l U k : o -{._-:, S T O R R RO B ORI b el
I U
u FU < U v

=.- = = =~ ~ ~

Hasuo (Tokyo)
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Gol situation

Defn. (Gol situation [AHS02))
A Gol situation is a triple (C, F,U) where

e C = (C,®,I) is a traced symmetric monoidal category

(TSMC);

e F : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FFaF : € Comultiplication
d:idaF :d #
¢ H R I & lc 3 :

w: Ki<F : v}

Here K I is the constant funct

b

the following retractions.

j:U®U<U:k
I <U
ek 4 BN 9 TR 2

TR TR, S R T VI B b I s Ty S T DR D, X e O3 AR el rs <a e o 3 ] i DN
oy B g =~ = _ o . TR S -~ c _ an NI 1y -~ G _ el

® U E (C is an obJect (called reﬂea:zv '. ect) equipped with

* Why for Gol?

* Example in Pin:

% The reflexive object U

Hasuo (Tokyo)
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Gol situation

Defn. (Gol situation [AHS02))
A Gol situation is a triple (C, F,U) where

e C = (C,®,I) is a traced symmetric monoidal category

(TSMC);

e F : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FFaF : € Comultiplication
d:idaF :d #
¢ H R I & lc 3 :

w: Ki<F : v}

Here K I is the constant funct

b

the following retractions.

j:U®U<U:k
I <U
ek 4 BN 9 TR 2

TR TR, S R T VI B b I s Ty S T DR D, X e O3 AR el rs <a e o 3 ] i DN
oy B g =~ = _ o . TR S -~ c _ an NI 1y -~ G _ el

® U E (C is an obJect (called reﬂea:zv '. ect) equipped with

* Why for Gol?

* Example in Pin:

% The reflexive object U

Hasuo (Tokyo)
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Gol situation

Defn. (GOI situation [AHSOZ]) * The reﬂ exive ObJ' ec.l- U

A Gol situation is a triple (C, F,U) where

e C = (C,®,I) is a traced symmetric monoidal category

SHane * Why for Gol?

e F : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FFaF : € Comultiplication
d : id < F : d/ “:-..’.: t-.‘-_.. e .;_ aichia .>_-, __-.,-~_. ’.,'-‘»‘-".‘.:
c: FQFF : ¢ ' N
, 8 4

w LI TF W
] /
Here K I 1s the constant funct

e e R
P

- U E (C is an obJect (called reﬂe:mvl equipped with
the following retractions. e :

j:U®U<:k ' .
14U " * Example in Pin:
N+ NZ=N,

N.-N=N

Frdsuo (Tokyo)
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Gol Situation: Summary

Defn. (Gol situation [AHS02))
A Gol situation is a triple (C, F,U) where

e C = (C,®,I) is a traced symmetric monoidal category

(TSMC);

e F : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FFaF : € Comultiplication
d:id<F :d Dereliction

el L I =TIF ¢t Icl Contraction
w: Ki<F : w Weakening

Here K7 is the constant functor into the monoidal unit I;

e U € C is an object (called reflexive object), equipped with
the following retractions.

Jr—+-U-Q U-<-U-: 'k
I U
b UL < U s

R

* Categorical axiomatics of
the “Gol animation”

N
M| NN

* Example:
(Pfn, N. |, N)J

Hasuo (Tokyo)
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N

4| lc

Defn (GOI situation

[AFIS02))

A Gol situation is a triple (C, F, U

e C = (Ca®aI)
(TSMC);

stH L 1LC L 1 C

is a traced Symmetrlc monoidal category

is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal
natural transformations).

e : FFaF : € Comultiplication
d:id<F :d Dereliction

el L I =TIF ¢t Icl Contraction
w: Ki<F : w Weakening

Here K7 is the constant functor into the monoidal unit I;

e U € C is an object (called reflexive object), equipped with
the following retractions.

Jr—+-U-Q U-<-U-: 'k
I U
b UL < U s

e *;(‘@ uation: Summary

* Categorical axiomatics of
the “Gol animation”

N

M

* Example:
(Pfn,

Hasuo (Tokyo)
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Cadii Aot e AR A L £ el .
AR SO YR -V
i

Al e A
g *BT‘@ uation: Summary

A S B R % Categorical axiomatics of

A Gol situation is a triple (C, F, U)

e C = (C,®,I) is a traced Symmet monoidal category 'I'he “GOI anima"-ion”

(TSMC);

o LE Ll C Lyl 1s_ a traced symmetrlc monmdal functor

natural transformat1on-~ i

e s \HE <!F] k
d : hid </|F] E
c: FQFF : ¢
w: Ki<F : w

\ For I, via

Here K7 is the constant functor into

e U € C is an object (called reflezive ob T PV O PP
the following retractions.

j:URU<U : k 2% Example
R u:FUqUivﬁ*. (an, N._, N)J

Hasuo (Tokyo)
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a4l e Al
Bl le Bl

Defn (GoI sﬂ:uatlon [AHSOZ
A Gol situation is a triple (C, F, U)

ua’rlon Summary

* Categorical axiomatics of

e C = (C,®,I) is a traced Symmet monoidal category 'l'he “GOI anima"-ion”

(TSMC);

o LE Ll C Lyl 1s_ a traced symmetrlc monmdal functor

natural transformat10n~ s

e s \HE <!F] k
d : hid </|F] E
c: FQFF : ¢
w: Ki<F : w

Here K7 is the constant functor into

\ For I, via

e U € C is an object (called reflezive ‘.-; T PV O PP

the following retractions.

J++-U-Q U-<q-U- 2
I U
(TASE S/ 08 1 ]

= sk Example
> (Pfn, N- _, N) |

v

Hasuo (Tokyo)
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a4l e Al
Bl le Bl

Defn (GoI sﬂ:uatlon [AHSOZ
A Gol situation is a triple (C, F, U)

ua’rlon Summary

* Categorical axiomatics of

e C = (C,®,I) is a traced Symmet monoidal category 'l'he “GOI anima"-ion”

(TSMC);

o LE Ll C Lyl 1s_ a traced symmetrlc monmdal functor

natural transformat10n~ s

e s \HE <!F] k
d : hid </|F] E
c: FQFF : ¢
w: Ki<F : w

Here K7 is the constant functor into

\ For I, via

e U € C is an object (called reflezive ‘.-; T PV O PP

the following retractions.

J++-U-Q U-<q-U- 2
I U
(TASE S/ 08 1 ]

- sk Example

v

Hasuo (Tokyo)
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Categorical Gol:
Constr. of an LCA

Thm. ([AHS02])
Given a Gol situation (C, F,U), the homset

C(U, U)

carries a canonical LCA structure.
L re— e e

Hasuo (Tokyo)
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Categorical Gol:
Constr. of an LCA

Thm. ([AHS02])
Given a Gol situation (C, F,U), the homset

C(U, U)

carries a canonical LCA structure.

* Applicative str. -

* | operator

%k Combinators B, C, I, ...
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Categorical Gol:
Constr. of an LCA

Thm. ([AHS02))

Given a Gol situation (C, F,U), the homset U
carries a canonical LOA structure. 4

* Applicative str. -

. % | operator

. % Combinators B, C, I, ..
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Categorical Gol:
Constr. of an LCA

Thm. ([AHS02])
Given a Gol situation (C, F,U), the homset |U

C(U, U) J

carries a canonical LCA structure. 4

* Applicative str. - *g-f
. % 1 operator | =tr((U® f)okogoyj)

|
% Combinators B, C, I, ... | %
N i N S O S N I I U I P AT A A TS P g f

Y f

Hasuo (Tokyo)

I
D
I
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Categorical Gol:
Constr. of an LCA

Thm. ([AHS02))

Given a Gol situation (C, F,U), the homset U
carries a canonical LOA structure. 4

* Applicative str. -

. %k ! operator

* Combinators B, C, I, ..
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Categorical Gol:
Constr. of an LCA

% Combinator Bzyz = z(yz)

— k| B

— " ¢ il .
- k] T R ) S—

k —— —— A
koo j 5

Figure 7: Composition Combinator B

from [AHSO02]

Hasuo (Tokyo)




Categorical Gol:
Constr. of an LCA

% Combinator Bzyz = z(yz
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Categorical Gol:
Constr. of an LCA

% Combinator Bzyz = z(yz)

— k| B

— " ¢ il .
- k] T R ) S—

k —— —— A
koo j 5

Figure 7: Composition Combinator B

from [AHSO02]

Hasuo (Tokyo)




Categorical Gol:
Constr. of an LCA

% Combinator Bzyz = z(yz)

N P . Py S

B Ry )
J ok . B i

- k| "J R :

o  Figure 7: Composition Combinator B

from [AHSO02]

Nice dynamic interpretation of

(linear) computation!!
Hasuo (Tokyo)

AN g = o ¢ 8 AN AR s S PRRES 7 A fr EEX = 7 g
hs-‘t._. Ny i o g e S e R e e e o e S R e g B e s T R e
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Summary:
Categorical Gol

Defn. (Gol situation [AHS02])

A Gol situation is a triple (C, F,U) where Thm. ([AHS02])
Given a Gol situation (C, F,U), the homset

o C = (C,®,1I) is a traced symmetric monoidal category

(TSMC); C(U,U)

o ' : C — C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

carries a canonical LCA structure.
T —— a2

e: FF<F : € Comultiplication
d:id<F :d Dereliction
c: FRF<F :c Contraction
w: Ki<F : w Weakening

Here Ky is the constant functor into the monoidal unit I;

e U € C is an object (called refiexive object), equipped with
the following retractions.

e U U TR
I U
e POt gy

Hasuo (Tokyo)
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Why Categorical Generalization?:
Examples Other Than Pfn (ausoz

* Strategy: find a TSMC! #
M
N

* “Wave-style” examples

* ® is Cartesian product(-like)

% In which case,

1'I"ClC€ = ﬁxed POIITI' Oper‘dfOf‘ [Hasegawa/Hyland]

* An example: ( (w-Cpo, x, 1), (L), AN) J

* (... less of a dynamic flavor)
Hasuo (Tokyo)
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Why Categorical Generalization?:
Examples Other Than Pfn (ausoz

* “Particle-style” examples #

% Obj. XeC is set-like; ® is coproduct-lik
j. Xe oprodu e M Iy

N

% The Gol animation is valid

* Examples:

* Partial functions  ((Pfn,+,0),N-_, N)

* Binary relations ((Rel,+,0), N- _, N)J

% “Discrete stochastic

relations” ((DSRel, +,0), N- _, N»

Hasuo (Tokyo)
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Why Categorical Generalization?:
Examples Other Than Pin sz

* Pfn (partial functions)

X — Y in Pin
X — Y, partial function where LY = {1} 4+ Y

X — LY in Sets b

* Rel (relations)

X — Y in Rel
R C X XY, relation where P is the powerset monad

X — PY in Sets )

* DSRel

X — Y in DSRel
X — DY in Sets

where DY = {d: Y — [0,1] | ) d(y) < 1}
Y y

Hasuo (Tokyo)
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Why C $ Ca’regorles of sets and "
Y a 39 i(functions with different branchlng/par’rlall’ry)

Examples

* Pfn (partial functions)

X — Y in Pin
X — Y, partial function where LY = {1} 4+ Y

X — LY in Sets B

* Rel (relations)

X — Y in Rel
R C X XY, relation where P is the powerset monad

X — PY in Sets )

* DSRel

X — Y in DSRel
X — DY in Sets

where DY = {d: Y — [0,1] | ) d(y) < 1}
Y y.

Hasuo (Tokyo)
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Ca’regorles of sets and |
Why Cafeg i(functions with different branching/partiality) §
Examples

* Pfn (par’rial functions) . (Potential) non-termination

X — Y in Pin
X — Y, partial function where LY = {1} 4+ Y

X — LY in Sets b

* Rel (relations)

X — Y in Rel
R C X XY, relation where P is the powerset monad 4

X — PY in Sets

* DSRel gRSSREREESERsSASRSEERRERnass:
X — Y in DSRel i Probablllshc branchmg '
X — DY in Sets N mrmogs oo ————— ‘

where DY = {d: Y — [0,1] | ) d(y) < 1}

|\ Non-determinism |

Hasuo (Tokyo)
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Different Branching in
The Gol Animation

* Pfn (partial functions)

ey
* Pipes can be stuck | 9 2 I 4
* Rel (relations)

* Pipes can branch

* DSRel

* Pipes can branch
probabilistically

Hasuo (Tokyo)




Different Branching in
The Gol Animation

Pfn (partial functions) ey
* Pipes can be stuck 1 9 9 A
* Rel (relations)

* Pipes can branch

* DSRel

* Pipes can branch
probabilistically
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Different Branching in
The Gol Animation

* Pfn (partial functions)

ey
* Pipes can be stuck | 9 2 I 4
* Rel (relations)

* Pipes can branch

* DSRel

* Pipes can branch
probabilistically
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Different Branching in
The Gol Animation

* Pfn (partial functions) | | | |

* Pipes can be stuck

Il M B E

A

Rel (relations)

* Pipes can branch

* DSRel

* Pipes can branch
probabilistically

Hasuo (Tokyo)




Different Branching in
The Gol Animation

* Pfn (partial functions)

ey
* Pipes can be stuck | 9 2 I 4
* Rel (relations)

* Pipes can branch

* DSRel

* Pipes can branch
probabilistically
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Different Branching in
The Gol Animation

* Pfn (partial functions) | | | |

* Pipes can be stuck A

Il Y B

* Rel (relations)

* Pipes can branch |
DSRel \
* Pipes can branch
probabilistically
S e

Hasuo (Tokyo)




Different Branching in
The Gol Animation

* Pfn (partial functions)

ey
* Pipes can be stuck | 9 2 I 4
* Rel (relations)

* Pipes can branch

* DSRel

* Pipes can branch
probabilistically

Hasuo (Tokyo)




Ca’regorles of sets and |
Why Categ §(functions with different branching/partiality) §
Exampleb-

* Pfn (par’rial Funcfions) | (Potential) non-termination

X — Y in Pin
X — Y, partial function where LY = {1} 4+ Y

X — LY in Sets b

* Rel (relations)

X = Y in Rel
R C X XY, relation where P is the powerset monad 4

X — PY in Sets

* DSRel

X — Y in DSRel Probablllshc branchlng
X — DY in Sets o ,

where DY = {d: Y — [0,1] | ) d(y) < 1}

Non-deferminism

Hasuo (Tokyo)
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Why Cafeg HKI(B) for different branching

iimonads B
Examples-

* Pfn (parfial functions) (Potential) non-termination

X — Y in Pin J

X — Y, partial function where LY = {1} 4+ Y
R

* Rel (relations) Non-determinism

X — Y in Rel
R C X XY, relation where P is the powerset monadJ

X — PY in Sets

* DSRel

X — Y in DSRel Probabilistic branching
X — DY in Sets

where DY ={d:Y — [0,1] | Zd(y) < l}j

Y

Hasuo (Tokyo)
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Part 2

Coalgebraic
Trace Semantics




Trace Semantics of
Systems

= b !
(@) C?Di

e

tr(x) = {a,ab,abb,...} = ab”

* Non-deterministic branching:
sign. functor is P(1 4+ X X _)

Hasuo (Tokyo)




Bisimilarity
vs. Trace Sem.

Hasuo (Tokyo)




Bisimilarity
vs. Trace Sem.

Hasuo (Tokyo)




vs. Trace Sem.

Bisimilarity

|
)
. ¥
e
J 3

o

|l
—
S

=

et .:1

[T
S o
A,

Hasuo (Tokyo)
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Bisimilarity
vS. Trace Sem.

Bisimilarity Trace semantics
Branching structure matters. Branching structure does not matter.
Can I choose later? Anyway we'll get the same sets of food.

C— ————— L r— ~———-ﬁift**7°)
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Bisimilarity
vS. Trace Sem.

o
&« . val

e Also by final coalgebra?

o Fbeh(c

&* mEE FX————(—)+FZ
% P cT Tfinal

X — “beh(a) Y
,,,,, _ beh(9) y
| £

Bisimilarity Trace semantics
Branching structure matters. Branching structure does not matter.
Can I choose later? Anyway we'll get the same sets of food.

C— ————— L r— ~———-ﬁift**7°)
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Thm. Let F' be an endofunctor, and B be a

COi n d quion in a monad, both on Sets. Assume:

1. We have a distributive law \ : FFB = BUF.

[ o
K le| s l ' Cafeg ory 2. The functor F' preserves w-colimits, yield-

% [IH, Jacobs, Sokolova, '07]

FA
ing an initial algebra | o .
A

in Sets |

3. The Kleisli category K€(B) is Cpo, -
enriched and composition in IC€(B) is left-

strict.
Then:
1. F lifts to F : K€(B) — Kt(B), with
B T="H.T
FA
2. {m o « is an initial algebra in IC€(B).
A
3. In ICL(B) we have initial algebra-final coal-
FA
gebra coincidence and F(no «a)~! is a
A
final coalgebra. | .
L — ——T )
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AT SIS TR

Coinduction in a
Kleisli Category

% [IH, Jacobs, Sokolova, ‘07]

in Sets |

* Initial algebra lifts from Sets to Ki(B)

* didgl”dm ChClSing [Johnstone]

Thm. Let F be an endofunctor, and B be a
monad, both on Sets. Assume:

1. We have a distributive law X\ : FFB = BUF'.

2. The functor F' preserves w-colimits, yield-

FA
ing an initial algebra =~ o .

A

3. The Kleisli category IKC€(B) is Cpo, -
enriched and composition in KC€(B) is left-

strict.
Then:
1. F lifts to F : K€(B) — K&(B), with
JF =FJ.
FA
2. 4mo «a is an initial algebra in K€(B).
A
3. In IC€(B) we have initial algebra-final coal-
FA
gebra coincidence and  F(npo a)™! is a
A

final coalgebra.

, _

Hasuo (Tokyo)
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Rkt

Thm. Let F be an endofunctor, and B be a
monad, both on Sets. Assume:

Co i n d qui o n i n a 1. We have a distributive law A : FB = BF.

2. The functor F' preserves w-colimits, yield-

L L FA
e| s ' a e o r ing an initial algebra =~ o .
A
. [IH, Jacobs, Sokolova, '07] 3. The Kleisli category K€(B) is Cpo,-
. N ™ " 5 O U O O I enriched and composition in KC€(B) is left-

Then:

1. F lifts to F : K&(B) — K&(B), with

JF =FJ.

FA
{7 0 o is an initial algebra in KC€(B).

* Initial algebra lifts from Sets to KI(B)

3. In IC€(B) we have initial algebra-final coal-
FA

5 diagram C hClSing [Johnstone] gebry-paindidenceaaG - (m e T

A
final coalgebra.

T —

* In KI(B) we have IA-FC coincidence
* typical of "domain-theoretic” categories

* “Algebraically compact” e
Hasuo (Tokyo)

Tuesday, October 9, 12



Coinduction in a
Kleisli Category

*Eg B=P, F=1+Xx(_)

1+ 3 X tr(c)
1+ X X - ——+—->1+ X X X*
C$ %ﬁnal 111’C€(P)
D Esr e e SR E S HE =N e ES N B W
tr(c)
S50 BEEE—

* Separation between B and F
Hasuo (Tokyo)




Coinduction in a
Kleisli Category

*Eg B=P, F=1+Xx(_)

1+ 3 X tr(c)
]| IS N2, (ISR R R BN IR S A

c] o
X )

2
" b
i

* Separation between B and F
Hasuo (Tokyo)
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Coinduction in a
Kleisli Category

*Eg B=P, F=1+3x(_) |1+Zx3"]
linitial

1 + Y X tr( C) > . 
R E RS N NS RSN UNERRE AL R R AR AR 4 _in Sets |

7>(1+2><X) ot %ﬁnal i M(P)
cT 8 iaE R aaaateyat sadaaaabuas

2
" b
i

* Separation between B and F
Hasuo (Tokyo)
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Coinduction in a
Kleisli Category

X EGTB="R F=1+XX{{7 14+ X x X*
limtial

14+ 3 x tr(c) A/ =
D DX e e D Da e _in Sets/

a 7>(1 3 x X) $ Hinal in M(P)

il

E'
£
X

* Separation between B and F
Hasuo (Tokyo)
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Coinduction in a
Kleisli Category

*Eg. B=P,F=1+%Xx(_) | 1+Zxz|
|initial |

* }
14+ 3 X tr(c)

R a. AN S LR AR S S SR in Sets

| 7>(1 +3x X) $ %ﬁnal i M(P)

il

2
" b
i

| tr(2) = {a,ab,abb, ...} = ab’

* Separation between Band ¥
Hasuo (Tokyo)
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Coinduction in a
Kleisli Category

*Eg. B=P,F=1+%Xx(_) | 1+Zxz|
|initial |

* }
14+ 3 X tr(c)

R a. AN S LR AR S S SR in Sets

| 7>(1 +3x X) $ %ﬁnal i M(P)

il

2
" b
i

| tr(2) = {a,ab,abb, ...} = ab’

* Separation between Band ¥
Hasuo (Tokyo)
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Examples

* A branching monad B:

* Lift monad £ =1 + (L), powerset monad 7,

subdistribution monad D

% Precisely those in

* Pfn (partial functions)

X =Y in Pfn

-—
KI(B) for different branchin
Why Cafeg monads B ?
Example

@)otenfial) non-termination

X — Y, partial function where LY = {L} +Y

X = LY in Sets

* Rel (relations)
X — Y in Rel

Non-determinism )

RCX XY, relation where P is the powerset monad
X—PYiinSets

* DSRel
X =Y in DSRel
X — DY in Sets

where DY = {d: Y = [0,1] | ) _d(y) <1} e

E)robabilisﬁc branching

Hasuo (Tokyo)
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* A functor F: polynomial functors

*
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From Coalgebraic Trace
to Monoidal Trace

Thm. ([Jacobs,CMCS10|)

Given a “branching monad” B on Sets, the
monoidal category

(ICE(B), +,0)
is a traced symmetric monoidal category.

Cor.
((Ke(B),+,0), N-_, N) is a Gol situation.

—ﬁ
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to Monoidal Trace

Thm. ([Jacobs,CMCS10|)

Given a “branching monad” B on Sets, the
monoidal category

(ICE(B), +,0)
is a traced symmetric monoidal category.

Cor.
((Ke(B),+,0), N-_, N) is a Gol situation.

—ﬁ
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From Coalgebraic Trace
to Monoidal Trace

Proof.  We need
Thm. ([Jacobs,CMCS10))

Given a “branching monad” B on Sets, the X7 _,f_> Y +Z in K¢T)
monoidal category tr(f)
X —+—Y in K¢T)
(KE(B), +,0) f
. | . Xz iy Sy
is a traced symmetric monoidal category. isaY + (_)-coalgebra
Cor. Y +N.Y
( (K¢(B),+,0), N.__, N) is a Gol situation. . ~|a s an initial algebra in Sets
N-Y
C re— ———

e Therefore in ICE(T):

Y+ (X+Z)--->Y+N.Y
ko fF THinal
2 T~ S ) S 8.
Iﬁ',1$ tr(c) iv
X Y
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The Categorical Gol Workflow

. Traced monoidal category C :
d
O

+ other constructs =» “Gol situation” [AHS02]

i
0
b
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The Categorical Gol Workflow

P »
; Branching monad B :
v
, Coalgebraic trace semantics
= h mmEmEEEEEEEEE s - ~»

. Traced monoidal category C

+ other constructs =» “Gol situation” [AHS02]

i
0
b
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The Categorical Gol Workflow

-----------\

|
" Branching monad B :

O B R

, Coalgebraic trace semantics

BB R BB Bl Ny

&

. Traced monoidal category C
O

+ other constructs =» “Gol situation” [AHS02]

]

‘ T S
; Categorical Gol [AHs02]
.- --------------~

: Linear combinatory algebra

‘----------------

O m =

Realizability

e e RS N SRR SR TESl RSN R RSN

: i ; : Model of fancy
Inear Ca egory 7 language

i
| N e HGSUO(TOKYO)
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Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs =» “Gol situation” [AHS02]

Categorical Gol [aHs02]

Fancy

Linear combinatory algebra LCA

Realizability

Model of fancy

Linear category language

o (Tokyo)
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Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs =» “Gol situation” [AHS02]

Categorical Gol [aHs02]

Linear combinatory algebra

Realizability

Linear category

Fancy
TSMC

Fancy
LCA

Model of fancy

lanquaqge
9499 o (Tokyo)
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Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs =» “Gol situation” [AHS02]

Categorical Gol [aHs02]

Linear combinatory algebra

Realizability

Linear category

Fancy
monad

Fancy
TSMC

Fancy
LCA

Model of fancy

lanquaqge
9499 o (Tokyo)
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What is Fancy,
Nowadays?
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What is Fancy,
Nowadays?

% Biology?
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What is Fancy,
Nowadays?

% Biology?
% Hybrid systems?
% Both discrete and continuous data,

typically in cyber-physical systems (CPS)

* =» Our approach via non-standard analysis
[Suenaga, IH, ICALP11] [IH, Suenaga, CAV'12]
[Suenaga, Sekine, IH, POPL13]
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What is Fancy,
Nowadays?

% Biology?
% Hybrid systems?
% Both discrete and continuous data,

typically in cyber-physical systems (CPS)

* =» Our approach via non-standard analysis
[Suenaga, IH, ICALP11] [IH, Suenaga, CAV'12]
[Suenaga, Sekine, IH, POPL13]

* Quantum?

* Yes this worked!
Hasuo (Tokyo)
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Phil Scott.
Tutorial on Geometry of

Interaction, FMCS 2004.

Page 47/47
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Phil Scott.
Tutorial on Geometry of

Interaction, FMCS 2004.

Page 47/47

Fu‘\‘m -D;I‘ e.c,‘h\'bv\ s

. GeT 2 0 Noa-cGauvging Qﬂjm
(uma%;uc( )-cade [PER )

(Loeg YYWK TDF“ "jff’«.ﬁ Tnls
™ O‘Pbm:hﬂ 4_,0.3/0

-Go T 3 Uses add hue, 2 add\Fre

Mm‘(‘s —
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The Categorical Gol Workflow

P »
; Branching monad B :
v
, Coalgebraic trace semantics
= h mmEmEEEEEEEEE s - ~»

. Traced monoidal category C

+ other constructs =» “Gol situation” [AHS02]

i
0
b
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Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs =» “Gol situation” [AHS02]

Categorical Gol [aHs02]

Linear combinatory algebra

Realizability

Linear category

Quantum
branching
monad

Quantum
TSMC

Quantum
LCA

Model of
quantum
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The Quantum Branching
Monad

O — {c Y — H QO,, n | the trace Condition}
m,neEN
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The Quantum Branching

quantum operations, |
from dim. m to dim. n

Qoman = {

R " | the trace condition}

Hasuo (Tokyo)
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The Quantum Branching

quantum operations, |
from dim. m to dim. n

L QO = {

oY = {c ¥ H Qom,,,,;

- D (@) @] <1,

YyeY neN

the trace condition

Vm €N, Vp € D,. |

Hasuo (Tokyo)
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The Quantum Branching

quantum operations, |
from dim. m to dim. n

| Qom,n - {

“ | the trace condition

Y Y e, <1

YyeY neN

vVm € N, Vp € D,,. ;;2

* Compare with

’PYz{c:Y—)Z}

S — T

DY:{C:Y—>[0,1]| Zc(y)gl}
yey

Hasuo (Tokyo)
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The Quantum Branching

quantum operations, |
from dim. m to dim. n

; Qom,n - {

O — ’ % | the trace condition

Y Y e, <1

YyeY neN

Vm €N, Vp € D,. |

* Compare with

PY — {c .Y —{2]

Y — {c Y] Z c(y) < 1}

Hasuo (Tokyo)
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The Quantum Branching

quantum operations, |
from dim. m to dim. n

| Qom,n - {

O — ’ % | the trace condition

Y Y e, <1

YyeY neN

Vm €N, Vp € D,. |

* Compare with

PY — {c .Y —{2]

DY — {c WP & —>‘, Z c(y) < 1}
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The Quantum &t~ IL 00 | e cmion)
Br‘anching Monad ;%“[(C(y))m,n(p)] <1,

Vvm €N, Vp € D,,.

X L v in K£(Q)

X i) QY in Sets

v,

* Gvenze X, yeY meN, neN
determines a quantum operation

m,n

(f=®)) _ : Dm— Dy,

% Subject to the trace condition

Hasuo (Tokyo)
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The Quantum | & 152 1L 90me |t cnto
Br‘anching Monad g%“[(dy))m,n(pﬂ <1,

Vvm €N, Vp € D,,.

X L v in K£(Q)

X i) QY in Sets

v,

* Gvenze X, yeY meN, neN

determines a quantum operation Any opr. on

(f(w)(y)) . D.,, — D, | combination of

m,n

® preparation

® unitary transf.

% Subject to the trace condition
® measurement

FTUOR U™ "'“7"/
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The Ouantum |- e:¥ = I QOma | the trace condition |

Branching Monad [T Y wllew) 0] <1
X 4 v in Ke(Q) ‘ vm €N, ¥p € Dy

X i> QY in Sets )

4 #
* Given ze X, yeY,meN,neN I I I I
determines a quantum
operation (f(a:)(y)) '
* trace cond.: —I—I_I—I
Yy Yy

Hasuo (Tokyo)
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The Quantum
Branching Monad

XLy ICe(Q)

L1 e —

X —) QY in Sets !

(nirnce) ot )_a.

* Given z ¢ X, yEY,mEN LEESS

determines a quantum
operation ( f(=)())

m,n

* trace cond.:

QY = {c Y — H QO,,.n ‘ the trace COIldlthIl}
m nEN

Z Z tr|( c(y) - n(p)]

. yYyeY neN

Vm €N, Vp € D,,.

Hasuo (Tokyo)
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QY = {c Y — H QO,,.n ‘ the trace COIldlthIl}

The Quantum i

Branching Monad > S el )] <
x 4y inKe(Q) ‘ vm € N, Vp € Dy

dinias

X ER QY in Sets _ iigpiaas
out
{dlm !

(nivnce) o). || 8.

* Given zeX,yecY,meN,neN
determines a quantum
operation ( f(=)())

m,n

* trace cond.:

Hasuo (Tokyo)
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QY = {c Y — H QO,,.n ‘ the trace COIldlthIl}

The Quantum i

Branching Monad > S el )] <
XLY in 1C0(Q) ‘ vm € N, Vp € Dy

dinias

QY in Sets  ifgpinnaias
out
{ dim. !

temm@ml o || dm.

* Given zeX,yecY,meN,neN
determines a quantum
operation ( f(=)())

m,n

* trace cond.:

Hasuo (Tokyo)
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QY = {c Y — H QO,,.n ‘ the trace COIldlthIl}

The Quantum ' EL

Branching Monad (> S wlew )] <
x 4y inKe(Q) ' vm € N, Vp € Dy

i) QY in Sets

{en’rrancjj{exﬂr . j{ dim-

* Given ceX,ycY,meN,neN
determines a quantum

operation ( f(=)())

in

m,n

* trace cond.:

(f@®)) () €Dn

for each n
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QY = {c Y — H QO,,.n ‘ the trace COIldlthIl}

The Quantum e

L1 e —

Branching Monad (% S i <
XLYinKLZ(Q) | Vm €N, Vp € D,,.

QY in Sets !

(emm@(;m{ o

* Given zeX,yev,men, ?feN
determines a quantum
operation ( f(=)())

AN

m,n

* trace cond.:

Token led
ZPP( fo y ) <1

(F@)@)) (p) € Dy
Yy,n er-h dlm. n ] ’

for each n
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"Quantum Data,
Classical Control”

Quantum data

'------
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"Quantum Data,
Classical Control”

Quanfurrj ..da’r.col
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"Quantum Data,
Classical Control”

— Illustration by N. Hoshino
- 3l BN BN BN BN . EE a2 B

Classical control

Quanfum ..da’r.col

1
V2

’------

Hasuo (Tokyo)
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Quantum
Geometry of Interaction

| R EERei SRR |
(countably many)
M
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I (countably many)

Not just a token/
particle, but
quantum state!
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Quantum
Geometry of Interaction

| SRR Cmmmas SmEREE |
(countably many)
|IM| = M
“*Quantum Data”
l @

Not just a token/
particle, but

quantum state!
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Quantum
Geometry of 1

S e “Classical Control”

(cddn‘ many)

Not just a token/
particle, but
quantum state!

“"Quantum Data” |

Hasuo (Tokyo)
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* in which pipe”

Qua % (measurement =» case-distinction)

Geomefry 0 leads a token to different pipes
, 1 1 [ Classical Control”

(cddn‘ many)

M| = M

W 1" Not just a token/
Quanfum Dafa ParﬁCle, bu.l.
= quantum state!
1

Hasuo (Tokyo)
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End of the Story?

% No! All the technicalities are yet to come:

* CPS-style interpretation (for partial
measurement)

* Result type: a final coalgebra in PERy

* Admissible PERs for recursion

x ..

* On the next occasion :-)
Hasuo (Tokyo)
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Results

* The monad Q qualifies as a “branching

monad”

* The quantum Gol workflow leads to a

linear category PER(

* From which we construct an adequate

denotational model for a quantum A-
calculus (a variant of Selinger & Valirons)

Hasuo (Tokyo)
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\ " - |
Three Traces | > o |

Coalgebraic Trace Semantics

0
i
i
‘------------------'

----------‘

category z Categorical
! [Abramsky, Haghverdi, “
Scott]

PP B O e M T P DR U (P O R S o R WO VRS B T
< ~
o

)
* Quantum A-calculus * , o
[ i tracing out matrices |

".
e o e o o o o o o
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Conclusions &
Future Work

* Coalgebraic technologies in
interaction-based denotational semantics

* Gol, games (AJM/HO), token machines, ...

* Dynamic/operational stuff:
not only in concurrency theory!

% Simplifying our model; lang. w/ "quantum store”

* Ongoing w/ N. Hoshino, T. Roussel, C. Faggian

Hasuo (Tokyo)
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Ichiro Hasuo (Dept. cs, U Tokyo)

http:// WWW-mmm.is.s.u-tokyo.ac.jp / ichiro/

Conclusions &
Future Work

* Coalgebraic technologies in
interaction-based denotational semantics

* Gol, games (AJM/HO), token machines, ...

* Dynamic/operational stuff:
not only in concurrency theory!

% Simplifying our model; lang. w/ "quantum store”

* Ongoing w/ N. Hoshino, T. Roussel, C. Faggian
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