
Trace Everywhere

Ichiro Hasuo
University of Tokyo (JP)

Based on: IH & N. Hoshino, Semantics of Higher-Order Quantum 
Computation via Geometry of Interaction, Proc. LICS 2011

Tuesday, October 9, 12



Hasuo (Tokyo)

Three “Traces”
Coalgebraic Trace Semantics

Quantum λ-calculus

appl.

Traced monoidal 
category

Tuesday, October 9, 12



Hasuo (Tokyo)

Three “Traces”
Coalgebraic Trace Semantics

Quantum λ-calculus

appl.

Traced monoidal 
category

Coinduction in Kl(B) 

FX
Fbeh(c)

�������� FZ

X
c

��

beh(c)
��������� Y

final
��

Tuesday, October 9, 12



Hasuo (Tokyo)

Three “Traces”
Coalgebraic Trace Semantics

Quantum λ-calculus

appl.

Traced monoidal 
category

Coinduction in Kl(B) 

FX
Fbeh(c)

�������� FZ

X
c

��

beh(c)
��������� Y

final
��

Categorical 
GoI
[Abramsky, Haghverdi, 
Scott]

M N

Tuesday, October 9, 12



Hasuo (Tokyo)

Three “Traces”
Coalgebraic Trace Semantics

Quantum λ-calculus

appl.

Traced monoidal 
category

Measurements by 
tracing out matrices

Coinduction in Kl(B) 

FX
Fbeh(c)

�������� FZ

X
c

��

beh(c)
��������� Y

final
��

Categorical 
GoI
[Abramsky, Haghverdi, 
Scott]

M N

Tuesday, October 9, 12



Hasuo (Tokyo)

Three “Traces”
Coalgebraic Trace Semantics

Quantum λ-calculus

appl.

Traced monoidal 
category

Measurements by 
tracing out matrices

Coinduction in Kl(B) 

FX
Fbeh(c)

�������� FZ

X
c

��

beh(c)
��������� Y

final
��

Goal: Denotational model of a quantum λ-calculus

Categorical 
GoI
[Abramsky, Haghverdi, 
Scott]

M N

Tuesday, October 9, 12



Hasuo (Tokyo)

Three “Traces”
Coalgebraic Trace Semantics

Quantum λ-calculus

appl.

Traced monoidal 
category

Measurements by 
tracing out matrices

Coinduction in Kl(B) 

FX
Fbeh(c)

�������� FZ

X
c

��

beh(c)
��������� Y

final
��

Goal: Denotational model of a quantum λ-calculus

Categorical 
GoI
[Abramsky, Haghverdi, 
Scott]

M N

Tuesday, October 9, 12



Hasuo (Tokyo)

GoI:                         
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Tuesday, October 9, 12



Hasuo (Tokyo)

GoI:                         
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics       
for linear λ-term M

JMK

Tuesday, October 9, 12



Hasuo (Tokyo)

GoI:                         
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics       
for linear λ-term M

In this talk:

Its categorical formulation                    
[Abramsky, Haghverdi, Scott ’02]

“The GoI Animation”

JMK
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J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics       
for linear λ-term M

Similar to game semantics [AJM/HO]

Linearity: simplicity; no-cloning

Girard translation 

“Geometry”: 
invariant under β-reductions 

JMK

A ! B

as !A ( B
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Categorical GoI
Axiomatics of GoI in the categorical language

Our main reference:

[AHS02]  S. Abramsky, E. Haghverdi, and        
P. Scott, “Geometry of interaction and linear 
combinatory algebras,” MSCS 2002

Especially its technical report version       
(Oxford CL), since it’s a bit more detailed
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Linear Combinatory Algebra 
(LCA)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 �⇥ A

• a unary operator
! : A �⇥ A

• (combinators) distinguished elements B,C, I,K,W,D, �, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

� !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds
stronger than · does.
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Model of              
untyped linear λ

a ∈ A    ≈                 
closed linear λ-term

No S or K (linear!)

Combinatory 
completeness: e.g.

designates an elem. of A
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What 
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GoI situation
What we use (ingredient)

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Tuesday, October 9, 12
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A GoI situation is a triple (C, F, U) where
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j : U ⌦ U C U : k

I C U
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(C,⌦, I)

A
f�! B B

g�! C

A
g�f�! C

A

B

C

g

f

gf

h

h � (f ⌦ g)

A

B

C
gf

D

A
f�! B C

g�! D

A ⌦ C
f⌦g�! B ⌦ D
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GoI situation
Traced monoidal category

“feedback”

that is

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

A ⌦ C
f�! B ⌦ C

A
tr(f)�! B

tr7�!f
A

B

C

C

A

B

tr(f)
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Pipe diagram

I use two ways of depicting partial 
functions

String Diagram vs. 
“Pipe Diagram”

N * N

String diagram

JMK

N

N
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Pipe diagram

I use two ways of depicting partial 
functions

String Diagram vs. 
“Pipe Diagram”

N * N

String diagram

JMK

N

N

In the monoidal category
(Pfn,+, 0)
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Traced Sym. Monoidal Category  

Category Pfn of partial functions

Obj.  A set X

Arr.  A partial function

X ! Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)
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Traced Sym. Monoidal Category  

Category Pfn of partial functions

Obj.  A set X

Arr.  A partial function

is traced symmetric monoidal

X ! Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)
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Traced Sym. Monoidal Category  

                             How?

 

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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                             How?
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f(x) if f(x) 2 Y
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Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
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X
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Trace operator:

f
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fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
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Y
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n � fXZ
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Traced Sym. Monoidal Category  

                             How?

 

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY t
 
a

n2N
fZY � (fZZ)

n � fXZ

!

Execution formula (Girard)

Partiality is essential (infinite loop)

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)
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GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Leading example: Pfn

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)

M N M

N

M

N

= = tr[ ]
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GoI situation

Functor F

For obtaining  ! : A → A

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Defn. (Retraction)

A retraction from X to Y ,

f : X C Y : g ,

is a pair of arrows

Xid 99

f
((
Y

g
hh

such that g � f = idX .

“embedding”

“projection”
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GoI situation
The reflexive object U

 Retr. 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

U ⌦ U

j
))U

k

hh

Tuesday, October 9, 12



Hasuo (Tokyo)

GoI situation
The reflexive object U

 Retr. 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

U ⌦ U

j
))U

k

hh

          ,         with

                 =  id

j k

j

k
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GoI situation
The reflexive object U

Why for GoI? 

Example in Pfn: 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k M N
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(TSMC);
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GoI situation
The reflexive object U

Why for GoI? 

Example in Pfn: 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k M N

N ⇥ Pfn, with

N + N �= N,
N · N �= N
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

(Pfn, N · , N)
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

tr7�!f
A

B

C

C

A

B

tr(f)

(Pfn, N · , N)
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k

M N

tr7�!f
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C

A

B

tr(f)
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F7�!f fff
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(Pfn, N · , N)
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)

· · · · · ·

· · ·
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Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.
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Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...
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Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)
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Categorical GoI:
Constr. of an LCA

 

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)

g f=

g · f
:= tr

�
(U � f) ⇥ k ⇥ g ⇥ j

�

=
f

g
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Categorical GoI:
Constr. of an LCA

 

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)

! f := u � Ff � v

=

U

v

u

Ff
FU

FU

U

=
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
Nice dynamic interpretation of 
(linear) computation!!
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Summary: 
Categorical GoI

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v
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Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Strategy: find a TSMC!

“Wave-style” examples

⊗ is Cartesian product(-like)

in which case, 

trace  ≈  fixed point operator [Hasegawa/Hyland]

An example: 

(... less of a dynamic flavor)

�
(�-Cpo,⇥, 1), ( )

N, AN �

M N
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“Particle-style” examples

Obj. X∈C is set-like; ⊗ is coproduct-like

The GoI animation is valid

Examples:

Partial functions

Binary relations

“Discrete stochastic                               
relations”

M N

�
(Pfn,+, 0), N · , N

�

�
(Rel,+, 0), N · , N

�

�
(DSRel,+, 0), N · , N

�

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]
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Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn  (partial functions)

Rel  (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}
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Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn  (partial functions)

Rel  (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and                 
(functions with different branching/partiality)

Tuesday, October 9, 12



Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn  (partial functions)

Rel  (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and                 
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching
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Different Branching in 
The GoI Animation

...   

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn  (partial functions)

Pipes can be stuck

Rel  (relations)

Pipes can branch

DSRel

Pipes can branch 
probabilistically
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Different Branching in 
The GoI Animation

...   

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

✖

Pfn  (partial functions)

Pipes can be stuck

Rel  (relations)

Pipes can branch

DSRel

Pipes can branch 
probabilistically

➜
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Different Branching in 
The GoI Animation

...   

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn  (partial functions)
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Rel  (relations)
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Different Branching in 
The GoI Animation

...   

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn  (partial functions)

Pipes can be stuck

Rel  (relations)

Pipes can branch

DSRel

Pipes can branch 
probabilistically

➜
✖ 1

3

2

3

11
1
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The GoI Animation
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Why Categorical Generalization?:
Examples Other Than Pfn

Pfn  (partial functions)

Rel  (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and                 
(functions with different branching/partiality)

(Potential) non-termination
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Why Categorical Generalization?:
Examples Other Than Pfn

Pfn  (partial functions)

Rel  (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and                 
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Kl(B) for different branching 
monads B 
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Trace Semantics of 
Systems

Non-deterministic branching:
sign. functor is   

��������x a �� ��������y

��

b
��

�

tr(x) = {a, ab, abb, . . . } = ab�

P(1 + ⌃ ⇥ )

Tuesday, October 9, 12



Hasuo (Tokyo)

Bisimilarity 
vs. Trace Sem. 

a a

b c

a

b c
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Bisimilarity 
vs. Trace Sem. 

a a

b c

a

b c=

≠
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Bisimilarity 
vs. Trace Sem. 

a a

b c

a

b c=

≠

Bisimilarity
Branching structure matters. 
Can I choose later?

Trace semantics
Branching structure does not matter.              
Anyway we’ll get the same sets of food.
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Bisimilarity 
vs. Trace Sem. 

a a

b c

a

b c=

≠

Bisimilarity
Branching structure matters. 
Can I choose later?

Trace semantics
Branching structure does not matter.              
Anyway we’ll get the same sets of food.

Also by final coalgebra?
FX

Fbeh(c)
�������� FZ

X
c

��

beh(c)
��������� Y

final
��
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Coinduction in a 
Kleisli Category

[IH, Jacobs, Sokolova, ’07]

X � p�! Y in K`(B)

X �! BY in Sets

Thm. Let F be an endofunctor, and B be a

monad, both on Sets. Assume:

1. We have a distributive law � : FB ) BF .

2. The functor F preserves !-colimits, yield-

ing an initial algebra

FA
↵⇠

= ✏✏

A
.

3. The Kleisli category K`(B) is Cpo?-

enriched and composition in K`(B) is left-

strict.

Then:

1. F lifts to F : K`(B) ! K`(B), with

JF = FJ .

2.

FA
_⌘ � ↵
✏✏

A

is an initial algebra in K`(B).

3. In K`(B) we have initial algebra-final coal-

gebra coincidence and

FA

A

_
(⌘ � ↵)

�1
OO

is a

final coalgebra.
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[IH, Jacobs, Sokolova, ’07]

X � p�! Y in K`(B)

X �! BY in Sets
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diagram chasing [Johnstone]
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Coinduction in a 
Kleisli Category

[IH, Jacobs, Sokolova, ’07]

X � p�! Y in K`(B)

X �! BY in Sets

Initial algebra lifts from Sets to Kl(B)

diagram chasing [Johnstone]

In Kl(B) we have IA-FC coincidence

typical of “domain-theoretic” categories

“Algebraically compact” [Freyd]

Thm. Let F be an endofunctor, and B be a

monad, both on Sets. Assume:

1. We have a distributive law � : FB ) BF .

2. The functor F preserves !-colimits, yield-

ing an initial algebra
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↵⇠

= ✏✏

A
.

3. The Kleisli category K`(B) is Cpo?-

enriched and composition in K`(B) is left-

strict.

Then:

1. F lifts to F : K`(B) ! K`(B), with
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✏✏

A

is an initial algebra in K`(B).
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gebra coincidence and
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A
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�1
OO

is a

final coalgebra.
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E.g.

Separation between B and F 

Coinduction in a 
Kleisli Category

1 + ⌃ ⇥ X
1 + ⌃ ⇥ tr(c)�___ //___ 1 + ⌃ ⇥ ⌃⇤

X

_c
OO

tr(c)
�_____ //_____ ⌃⇤

_final
OO

in K`(P)

B = P, F = 1 + ⌃ ⇥ ( )
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E.g.

Separation between B and F 

Coinduction in a 
Kleisli Category

1 + ⌃ ⇥ X
1 + ⌃ ⇥ tr(c)�___ //___ 1 + ⌃ ⇥ ⌃⇤

X

_c
OO

tr(c)
�_____ //_____ ⌃⇤

_final
OO

in K`(P)

B = P, F = 1 + ⌃ ⇥ ( )

P(1 + ⌃ ⇥ X)

X

c
OO

in Sets
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E.g.

Separation between B and F 

Coinduction in a 
Kleisli Category
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Examples
A branching monad B: 

Lift monad L = 1 + (_), powerset monad P, 
subdistribution monad D

Precisely those in 

A functor F: polynomial functors 
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From Coalgebraic Trace 
to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the

monoidal category

(K`(B),+, 0)

is a traced symmetric monoidal category.

Cor.�
(K`(B),+, 0), N· , N

�
is a GoI situation.
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From Coalgebraic Trace 
to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the

monoidal category

(K`(B),+, 0)

is a traced symmetric monoidal category.

Cor.�
(K`(B),+, 0), N· , N

�
is a GoI situation.

Proof. We need

X + Z
f

�p�! Y + Z in K`(T )

X
tr(f)
�p�! Y in K`(T )

• X+Z
f

�p�! Y +Z


�p�! Y +(X+Z)
is a Y + ( )-coalgebra

•
Y + N · Y

↵⇠= ✏✏

N · Y
is an initial algebra in Sets

• Therefore in K`(T ):

Y + (X + Z) //____ Y + N · Y

X + Z

_ � f
OO

tr(c)
�___ //____ N · Y

_
final

OO

_r✏✏
X

_1
OO

Y
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From Coalgebraic Trace 
to Monoidal Trace
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
TSMC

Fancy
monad
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What is Fancy, 
Nowadays?
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What is Fancy, 
Nowadays?

Biology?

Hybrid systems?

Both discrete and continuous data, 
typically in cyber-physical systems (CPS)

➜ Our approach via non-standard analysis        
[Suenaga, IH, ICALP’11] [IH, Suenaga, CAV’12] 
[Suenaga, Sekine, IH, POPL’13]
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What is Fancy, 
Nowadays?

Biology?

Hybrid systems?

Both discrete and continuous data, 
typically in cyber-physical systems (CPS)

➜ Our approach via non-standard analysis        
[Suenaga, IH, ICALP’11] [IH, Suenaga, CAV’12] 
[Suenaga, Sekine, IH, POPL’13]

Quantum?

Yes this worked!
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Part 3

Phil Scott. 
Tutorial on Geometry of 
Interaction, FMCS 2004.
Page 47/47
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of 
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum 
branching
monad
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The Quantum Branching  
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

Tuesday, October 9, 12



Hasuo (Tokyo)

The Quantum Branching  
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

QOm,n :=

⇢
quantum operations,

from dim. m to dim. n

�
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The Quantum Branching  
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

QOm,n :=

⇢
quantum operations,

from dim. m to dim. n

�
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Compare with

The Quantum Branching  
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

PY =
n

c : Y � 2
o

DY =
n

c : Y ⇥ [0, 1]
�

�

�

X

y2Y

c(y) � 1
o

QOm,n :=

⇢
quantum operations,

from dim. m to dim. n

�
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QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

The Quantum 
Branching  Monad

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

Given                                    
determines a quantum operation 

Subject to the trace condition

x 2 X, y 2 Y, m 2 N, n 2 N

⇣
f(x)(y)

⌘

m,n
: Dm ! Dn

X
f! Y in K`(Q)

X
f! QY in Sets
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QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

The Quantum 
Branching  Monad

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

Given                                    
determines a quantum operation 

Subject to the trace condition

x 2 X, y 2 Y, m 2 N, n 2 N

⇣
f(x)(y)

⌘

m,n
: Dm ! Dn

Any opr. on 
quantum data: 

combination of

• preparation 
• unitary transf. 
• measurement

X
f! Y in K`(Q)

X
f! QY in Sets
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The Quantum 
Branching  Monad

...   

...

Given                                    
determines a quantum 
operation 

trace cond.: 

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.
X

f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Tuesday, October 9, 12



Hasuo (Tokyo)

The Quantum 
Branching  Monad

...   

...

Given                                    
determines a quantum 
operation 

trace cond.: 

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

entrance exit
in 

dim.
out 
dim.

X
f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Tuesday, October 9, 12



Hasuo (Tokyo)

The Quantum 
Branching  Monad

...   

...

Given                                    
determines a quantum 
operation 

trace cond.: 

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

� 2 Dm

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

entrance exit
in 

dim.
out 
dim.

X
f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Tuesday, October 9, 12



Hasuo (Tokyo)

The Quantum 
Branching  Monad

...   

...

Given                                    
determines a quantum 
operation 

trace cond.: 

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

measure (and others)

� 2 Dm

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

entrance exit
in 

dim.
out 
dim.

X
f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Tuesday, October 9, 12



Hasuo (Tokyo)

The Quantum 
Branching  Monad

...   

...

Given                                    
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Classical control

Quantum data

“Quantum Data, 
Classical Control”

Illustration by N. Hoshino
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M

...    (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓
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Quantum
 Geometry of Interaction

JMK =

“Quantum Data”

“Classical Control”

Not just a token/
particle, but  

quantum state!

“in which pipe”

(measurement ➜ case-distinction) 
leads a token to different pipes
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End of the Story?
No! All the technicalities are yet to come:

CPS-style interpretation (for partial 
measurement)

Result type: a final coalgebra in PERQ

Admissible PERs for recursion

...

On the next occasion :-)
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Results
The monad Q qualifies as a “branching 
monad”

The quantum GoI workflow leads to a 
linear category PERQ

From which we construct an adequate 
denotational model for a quantum λ-
calculus (a variant of Selinger & Valiron’s)
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Three “Traces”
Coalgebraic Trace Semantics

Quantum λ-calculus

appl.

Traced monoidal 
category

Measurements by 
tracing out matrices

Coinduction in Kl(B) 

FX
Fbeh(c)

�������� FZ

X
c

��

beh(c)
��������� Y

final
��

Categorical 
GoI
[Abramsky, Haghverdi, 
Scott]

M N
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Conclusions & 
Future Work

Coalgebraic technologies in 
interaction-based denotational semantics

GoI, games (AJM/HO), token machines, ...

Dynamic/operational stuff: 
not only in concurrency theory! 

Simplifying our model; lang. w/ “quantum store”

Ongoing w/ N. Hoshino, T. Roussel, C. Faggian 
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Thank you for your attention!Ichiro Hasuo (Dept. CS, U Tokyo)http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/
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