Coalgebras and Higher－Order Computation： a GoI Approach

Ichiro Hasuo
University of Tokyo（JP）

東京大学
THE UNIVERSITY OF TOKYO

FSCD 2016，Porto， 24 Jun 2016

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, Lc'88]

"GoI Animation"

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, Lc'88]
"GoI Animation"

Categorical GoI
[Abramsky, Haghverdi \& Scott, MSCS'02]

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

$$
\frac{\square}{\frac{1}{4}} \times \frac{\square}{n}=
$$

Categorical GOI
bramsky, Haghverdi \& Scott, MSCs'02]
Categorical
[Abramsky, Haghverdi \& Scott, MSCS'02]

GoI w/
T-branching
[IH \& Hoshino, LICS'11]

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

Categorical GoI

GoI w/
T-branching
[IH \& Hoshino, LICS'11]

Memoryful GoI
[Hoshino, Muroya \& IH, CSL-LICS'14 \& POPL'16]

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

Categorical GoI

GoI w/
T-branching
[IH \& Hoshino, LICS'11]

Memoryful GoI
[Hoshino, Muroya \& IH, CSI-ITCS'14 \& POPI'16]

Collaborators

Collaborators

Naohiko Hoshino

(Kyoto U)

Koko Muroya
(Tokyo => Birmingham)

Naohiko Hoshino

Koko Muroya
(Tokyo => Birmingham)

Naohiko Hoshino

Bart Jacobs

(Nijmegen)

Collaborators
 Koko Muroya
 (Tokyo => Birmingham)

Toshiki
Kataoka
(Tokyo)

Hasuo (Tokyo)

* [LICS 2011] IH and Naohiko Hoshino. Semantics of Higher-Order Quantum Computation via Geometry of Interaction.
(Extended ver. to appear in Annals Pure \& Appl. Logic)
* [CSL-LICS 2014]

Naohiko Hoshino, Koko Muroya and IH. Memoryful Geometry of Interaction: From Coalgebraic Components to Algebraic Effects.

* [POPL 2016] Koko Muroya, Naohiko Hoshino and IH.

Memoryful Geometry of Interaction II: Recursion and Adequacy.

* [LOLA 2014]

Koko Muroya, Toshiki Kataoka, IH and Naohiko Hoshino.
Compiling Effectful Terms to Transducers: Prototype Implementation of Memoryful Geometry of Interaction (Preliminary Report).

* [Math. Str. in Comp. Sci. 2011]

IH and Bart Jacobs. Traces for Coalgebraic Components.

Geometry of Interaction (GoI)

* J.-Y. Girard, at Logic Colloquium '88

Geometry of Interaction (GoI)

* J.-Y. Girard, at Logic Colloquium '88
* Provides "denotational" semantics (w/ operational flavor) for linear λ-term M

Geometry of Interaction (GoI)

* J.-Y. Girard, at Logic Colloquium ' 88
* Provides "denotational" semantics ($w /$ operational flavor) for linear λ-term M
* As a compilation technique
[Mackie, POPL'95] [Pinto, TLCA'01] [Ghica et al., POPL'07, POPL'11, ICFP'11, ...]

Geometry of Interaction (GoI)

* J.-Y. Girard, at Logic Colloquium ' 88
* Provides "denotational" semantics (w / operational flavor) for linear λ-term M
* As a compilation technique
[Mackie, POPL'95] [Pinto, TLCA'01] [Ghica et al., POPL'07, POPL'11, ICFP'11, ...]
* Two presentations:
* (Operator-) Algebraic [Girard]

$$
\begin{array}{r}
\frac{\stackrel{\vdash}{\vdash, A^{\perp}} \overline{\vdash A^{\perp}, A}}{\frac{\vdash A, A^{\perp}, A^{\perp} \otimes A}{\vdash A, A^{\perp}}} \frac{\stackrel{\rightharpoonup}{\vdash}+A^{\perp} A^{\perp}}{\vdash\left[A^{\perp} \otimes A\right], A, A^{\perp}}
\end{array} \Pi^{*}=\left(\begin{array}{cccc}
0 & 0 & p & q \\
0 & p q^{*}+q p^{*} & 0 & 0 \\
p^{*} & 0 & 0 & 0 \\
q^{*} & 0 & 0 & 0
\end{array}\right) \sigma=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\frac{\frac{\vdash \alpha_{2}^{+8}, \alpha_{3}}{\vdash \alpha_{1}^{\prime}+\alpha_{1}^{\perp}, \alpha_{4}^{\perp},\left(\alpha_{3} \otimes \alpha_{4}\right)}}{\frac{\vdash\left(\alpha_{1}^{\perp}(8) \alpha^{\perp}\right),\left(\alpha_{3} \otimes \alpha_{4}\right)}{\vdash\left(\alpha_{1}^{\perp} 8 \alpha_{2}^{\perp}\right)(8)\left(\alpha_{3} \otimes \alpha_{4}\right)}} \gg
$$

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$$
\begin{array}{cccc}
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & 1 & 2 & 3
\end{array}
$$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$$
=\text { "piping" }
$$

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$$
\begin{array}{cccc}
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & 1 & 2 & 3
\end{array}
$$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$$
\begin{array}{cccc}
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & 1 & 2 & 3
\end{array}
$$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$=$ "piping" | | \downarrow | | \downarrow | \downarrow | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 2 | 3 | \cdots | (countably many) |

[$[M]$

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$$
\begin{array}{cccc}
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & 1 & 2 & 3
\end{array}
$$

... (countably many)
[M]

The GoI Animation

* Function application $\llbracket M N \rrbracket$
* by "parallel composition + hiding"

$\llbracket M N \rrbracket$
$=$

[M]

[$N\rceil$

[$N\rceil$

$=$

$=$

[$N\rceil$
"parallel composition + hiding" (cf. AJM games)

$\lceil M N \rrbracket$ $=$

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, Lc'88]

"GoI Animation"

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, Lc'88]
"GoI Animation"

Categorical GoI
[Abramsky, Haghverdi \& Scott, MSCS'02]

Categorical GoI

* Axiomatics of GoI in the categorical language
* Our main reference:
* [AHSO2] S. Abramsky, E. Haghverdi, and P. Scott, Geometry of interaction and linear combinatory algebras, Math. Str. Comp. Sci, 2002
* Especially its technical report version (Oxford CL), since it's a bit more detailed
* See also:
* IH and Naohiko Hoshino. Semantics of Higher-Order Quantum Computation via Geometry of Interaction. Extended ver. of [LICS'11], to appear in Annals Pure \& Applied Logic. arxiv.org/abs/1605.05079

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsOz]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsO2]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

* Applicative str. + combinators
* Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsO2]

* Applicative str. + combinators
* Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability

* Applicative str. + combinators
* Model of untyped calculus
* PER, ω-set, assembly, ...
* "Programming in untyped λ "

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

* Applicative str. + combinators
* Model of untyped calculus

Realizability
PER, w-set, assembly,

Linear Combinatory Algebra (LCA)

Defn. (LCA)
A linear combinatory algebra ($L C A$) is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathbf{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

Linear Combinatory Algebra

Defn. (LCA)
A linear combinatory algebra ($L C A$) is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than \cdot does.

Linear Combinatory Algebra

What
 we want (outcome)

Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \boldsymbol{\delta}, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than • does.

* Model of untyped linear λ

Linear Combinatory Algebra

What
we want (outcome)

Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \boldsymbol{\delta}, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than • does.

* Model of untyped linear λ
* $a \in A \approx$ closed linear λ-term

Linear Combinatory Algebra

What
we want (outcome)

Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathbf{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

* Model of untyped linear λ
* $a \in A \approx$ closed linear λ-term
* No S or K (linear!)
* Combinatory completeness:
e.g.

$$
\lambda x y z . z x y
$$

designates an elem. of A

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \text { id } \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{aligned}
j: U \otimes U & \triangleleft U: k \\
I & \triangleleft U \\
u: F U & \triangleleft U: v
\end{aligned}
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

$$
\xrightarrow[{A \xrightarrow{A \xrightarrow{f} B \quad B \xrightarrow{g} C}} C]{ }
$$

$$
\xrightarrow[{A \xrightarrow{A} B \quad C \xrightarrow{g}} D]{A \otimes C}
$$

$$
h \circ(f \otimes g)
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
e: F \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced monoidal category

* "feedback"

$$
\frac{A \otimes C \xrightarrow{f} B \otimes C}{A \xrightarrow{\operatorname{tr}(f)} B}
$$

that is

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial functions $\mathbb{N} \rightharpoonup \mathbb{N}$

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial
functions $\mathbb{N} \rightharpoonup \mathbb{N}$
In the monoidal category (Pan,,+ 0)

Pipe diagram String diagram

Traced Sym. Monoidal Category (Pfn,,+ 0)

* Category Pfn of partial functions
* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\overline{\boldsymbol{X}} \boldsymbol{Y}, \text { partial function }}
$$

Traced Sym. Monoidal Category (Pfn,,+ 0)

* Category Pfn of partial functions
* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\overline{\boldsymbol{X}} \boldsymbol{Y}, \text { partial function }}
$$

* is traced symmetric monoidal

Traced Sym. Monoidal Category (Pfn, +, 0)

* $\frac{\boldsymbol{X}+Z \xrightarrow{f} Y+Z \text { in Pfn }}{\boldsymbol{X} \xrightarrow{\operatorname{tr}(f)} Y \text { in } \operatorname{Pfn}}$ How?

Traced Sym. Monoidal Category (Pfn,,+ 0)

How?

Traced Sym. Monoidal Category (Pfn, +, 0)

How?

Traced Sym. Monoidal Category (Pfn, +, 0)

> How? $X \xrightarrow{\mathrm{tr}(f)} Y \quad$ in Pfn
> $f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}$
> Similar for $\boldsymbol{f}_{X Z}, \boldsymbol{f}_{Z Y}, \boldsymbol{f}_{Z Z}$

Traced Sym. Monoidal Category (Pfn,,+ 0)

* $\quad \frac{X+Z \xrightarrow{f} Y+Z \quad \text { in Pfn }}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text { in Pfn }}$

How?

23

$f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}$
Similar for $\boldsymbol{f}_{\boldsymbol{X} \boldsymbol{Z}}, \boldsymbol{f}_{\boldsymbol{Z} \boldsymbol{Y}}, \boldsymbol{f}_{\boldsymbol{Z} \boldsymbol{Z}}$

* Trace operator:

Traced Sym. Monoidal Category (Pfn, +, 0)

$X+Z \xrightarrow{f} Y+Z \quad$ in $\mathbf{P f n}$ $X \xrightarrow{\operatorname{tr}(f)} \boldsymbol{Y} \quad$ in $\mathbf{P f n}$

How?
$f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}$
Similar for $\boldsymbol{f}_{X Z}, \boldsymbol{f}_{Z Y}, \boldsymbol{f}_{Z Z}$

* Trace operator:

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

Traced Sym. Monoidal Category (Pan,,+ 0)

$\xrightarrow{X+Z \xrightarrow{f} Y+Z \quad \text { in Afn }}$
$\boldsymbol{X} \xrightarrow{\operatorname{tr}(f)} \boldsymbol{Y} \quad$ in $\mathbf{P f n}$

How?

$$
f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}
$$

Similar for $\boldsymbol{f}_{X Z}, f_{Z Y}, f_{Z Z}$

* Execution formula (Girard)
* Partiality is essential (infinite loop)

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced sym. monoidal cat.
* Where one can "feedback"

* Why for GoI?

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
$\bullet \boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced sym. monoidal cat.

* Where one can "feedback"

* Why for GoI?

* Leading example: Pfn

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
e: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

Defn. (Retraction)
A retraction from \boldsymbol{X} to \boldsymbol{Y},

$$
f: X \triangleleft Y: g
$$

is a pair of arrows

"embedding"

such that $\boldsymbol{g} \circ \boldsymbol{f}=\mathrm{id}_{\boldsymbol{X}}$.

* Functor F

* For obtaining ! : $A \rightarrow A$

GoI situation

Defn. (GoI situation [AHS02])
A GoV situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\boldsymbol{\prime}}$		Comultiplication
$\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime}$		Dereliction
$\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime}$		Contraction
$\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime}$		Weakening

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* The reflexive object U

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{array}{rll}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* The reflexive object U

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
& e: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} \text { Comultiplication } \\
& d: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \\
& \boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \\
& \boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime}
\end{aligned}
$$

* The reflexive object U

* Why for GoI?

* Example in Pfn:

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
& e: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} \text { Comultiplication } \\
& \boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \\
& \boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \\
& \boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime}
\end{aligned}
$$

* The reflexive object U

* Why for GoI?

* Example in Pfn:

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
& e: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} \text { Comultiplication } \\
& \boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \\
& \boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \\
& \boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime}
\end{aligned}
$$

* The reflexive object U

* Why for GoI?

* Example in Pfn:
$\mathbb{N} \in \mathbf{P f n}$, with
$\mathbb{N}+\mathbb{N} \cong \mathbb{N}$,
$\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$

GoI Situation: Summary

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Categorical axiomatics of the "GoI animation"

* Example:
$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Categorical axiomatics of the "GoI animation"

* Example:
$\left(\operatorname{Pfn}, \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the 10 owing retractions (which are monoidal natural transformations).

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \text { id } \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into ti

* Categorical axiomatics of the "GoI animation"

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive the following retractions.

$$
\begin{gathered}
\boldsymbol{j}: \boldsymbol{U} \otimes U \triangleleft U: k \\
I \triangleleft U \\
\boldsymbol{u}: \boldsymbol{F} \boldsymbol{U} \quad \triangleleft \boldsymbol{U}: \boldsymbol{v}
\end{gathered}
$$

* Example:
$\left(\operatorname{Pfn}, \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the lowing retractions (which are monoidal natural transformations).

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \operatorname{id} \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into ti

* Categorical axiomatics of the "GoI animation"

- $U \in \mathbb{C}$ is an object (called reflexive o the following retractions.

$$
\begin{aligned}
& j: U \otimes U \triangleleft U: k \\
& I \triangleleft U \\
& u: F U \triangleleft U: v
\end{aligned}
$$

* Example:

$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the 10 owing retractions (which are monoidal natural transformations).

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \text { id } \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into ti

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive obs the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Categorical axiomatics of the "GoI animation"

* Example:

$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

* Applicative str.
* ! operator
* Combinators B, C, I, ...

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

* Applicative str.
* ! operator
* Combinators B, C, I, ...

Categorical GoI: Constr. of an LCA

The. ([AHS02])
Given a Got situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

* Applicative str.
* ! operator
* Combinators B, C, I, ...

$$
\begin{aligned}
& \text { ** } g \cdot f \\
&:=\operatorname{tr}((U \otimes f) \circ k \circ g \circ j) \\
&=\frac{\square}{\frac{g}{f}}=\frac{g}{\square}=\frac{1}{\square}
\end{aligned}
$$

Categorical GoI: Constr. of an LCA

The. ([AHS02])
Given a Got situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

* Applicative str.
* ! operator
* Combinators B, C, I, ...

$$
\text { * }!f:=u \circ F f \circ v
$$

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
from [AHSO2]

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Friday, June 24, 16

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
from [AHSO2]

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
Nice dynamic interpretation of
from [AHSO2] (linear) computation!!

Summary:

Categorical GoI

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U
\end{gathered}
$$

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, Lc'88]
"GoI Animation"

Categorical GoI
[Abramsky, Haghverdi \& Scott, MSCS'02]

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

$$
\frac{\square}{\frac{1}{4}} \times \frac{\square}{n}=
$$

Categorical GOI
bramsky, Haghverdi \& Scott, MSCs'02]
Categorical
[Abramsky, Haghverdi \& Scott, MSCS'02]

GoI w/
T-branching
[IH \& Hoshino, LICS'11]

Why Categorical Generalization?: Examples Other Than Pin [AHsoz]

* Strategy: find a TSMC!
* "Wave-style" examples
* \otimes is Cartesian product(-like)

* in which case,
trace \approx fixed point operator [Hasegawa/Hyland]
* An example: $\quad\left((\omega\right.$-Cpo, $\left.\times, \mathbf{1}),\left(_\right)^{\mathbb{N}}, A^{\mathbb{N}}\right)$
* (... less of a dynamic flavor)

Why Categorical Generalization?: Examples Other Than Pin [aHsoz]

* "Particle-style" examples
* Obj. $\mathrm{X} \in \mathrm{C}$ is set-like; \otimes is coproduct-like
* The GoI animation is valid

* Examples:
* Partial functions
$((\operatorname{Pfn},+, 0), \mathbb{N} \cdot,, \mathbb{N})$
* Binary relations
$\left((\operatorname{Rel},+, 0), \mathbb{N} \cdot _, \mathbb{N}\right)$
* "Discrete stochastic relations"
$(($ DSRel,,+ 0$), \mathbb{N} \cdot \ldots, \mathbb{N})$

Why Categorical Generalization?: Examples Other Than Pfin [aHsoz]

* Pfn (partial functions)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\overline{\boldsymbol{X} \rightharpoonup \boldsymbol{Y}, \text { partial function }}}} \text { X } \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets } \quad \text { where } \mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\frac{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}{\bar{X} \rightarrow \mathcal{P} \boldsymbol{Y} \text { in Sets }}} \text { where } \mathcal{P} \text { is the powerset monad }
$$

* DSRel

$$
\begin{aligned}
& \xlongequal[X \rightarrow Y \text { in DSRel }]{X \rightarrow \mathcal{D} Y \text { in Sets }} \\
& \text { where } \mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}
\end{aligned}
$$

Why Catego Categories of sets and (functions with different branching/partiality) Examples

* Pfn (partial functions)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\overline{\boldsymbol{X} \rightharpoonup \boldsymbol{Y}, \text { partial function }}}} \text { X where } \mathcal{L} \boldsymbol{X}=\{\perp\}+\boldsymbol{\mathcal { L } Y \text { in Sets }}
$$

* Rel (relations)
$\xlongequal{\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}$ where \mathcal{P} is the powerset monad
* DSRel
$\xlongequal[X \rightarrow \boldsymbol{Y} \text { in DSRel }]{\boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Why Categd Categories of sets and

 (functions with different branching/partiality) Examples* Pfn (partial functions)
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \boldsymbol{P f n}}{\frac{\overline{\boldsymbol{X} \boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}}$ where $\mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}$
* Rel (relations)

Non-determinism
$\xlongequal{\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}$ where \mathcal{P} is the powerset monad

* DSRel
$\underset{X \rightarrow \mathcal{D} \text { in DSRel }}{X \rightarrow \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)

* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)

* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck

Rel (relations)

* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)

* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch

DSRel

* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)

* Pipes can branch
* DSRel
* Pipes can branch probabilistically

A Coalgebraic View

* Theory of coalgebra =

Categorical theory of state-based dynamic systems (LTS, automaton, Markov chain, ...)

* In my thesis (2008):
* Coalgebras in a Kleisli category $K l(T)$

$$
\frac{X \rightarrow Y \text { in } \mathcal{K \ell}(T)}{\bar{X} \rightarrow \boldsymbol{T} \boldsymbol{Y} \text { in Sets }}
$$

* \rightarrow Generic theory of trace and simulations

Why Categ Categories of sets and

* Pfn (partial functions)
(Potential) non-termination

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\frac{\overline{\boldsymbol{X} \boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}} \text { where } \mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)

Non-determinism

* DSRel
$\xlongequal[X \rightarrow \boldsymbol{Y} \text { in DSRel }]{\boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Example

 monads T* Pfn (partial functions)
(Potential) non-termination

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\frac{\bar{X} \boldsymbol{Y}, \text { partial function }}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}} \text { where } \mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\frac{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}{\bar{X} \rightarrow \mathcal{P} \boldsymbol{Y} \text { in Sets }}}$ where \mathcal{P} is the powerset monad
* DSRel
$\frac{X \rightarrow Y \text { in DSRel }}{\boldsymbol{X} \boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad" \boldsymbol{T} on Sets, the monoidal category

$$
(\mathcal{K} \ell(T),+, 0)
$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(T),+, 0), \mathbb{N} \cdot _, \mathbb{N}\right)$ is a GoI situation.

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad" \boldsymbol{T} on Sets, the monoidal category

$$
(\mathcal{K} \ell(T),+, 0)
$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(T),+, 0), \mathbb{N} \cdot _, \mathbb{N}\right)$ is a GoI situation.

Monads in
[Hasuo,Jacobs\&Sokolova07]

* $\mathrm{KI}(\mathrm{T})$ is CPO_{\perp}-enriched
* like L, P, D

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad" \boldsymbol{T} on Sets, the monoidal category

$$
(\mathcal{K} \ell(T),+, 0)
$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(T),+, 0), \mathbb{N} \cdot _, \mathbb{N}\right)$ is a GoI situation.

Monads in
[Hasuo,Jacobs\&Sokolova07]

* $\mathrm{KI}(\mathrm{T})$ is Cpo_{\perp}-enriched
* like L, P, D

Particle-style: trace via the execution formula

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

The Categorical GoI Workflow

Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability

Linear category

Model of fancy language

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Model of fancy language

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

Fancy
TSMC

Fancy
LCA

Model of fancy
language

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

Fancy monad

Fancy
TSMC

Fancy
LCA

Model of fancy
language

* Model for (a variant of) the Selinger-Valiron

Workflow

 quantum λ-calculus(linear $\lambda+$ prep./Unitary/meas.)
[Hasuo \& Hoshino, LICS'11 \& APAL'16]

* via the quantum branching monad

Fancy monad

Fancy
TSMC

Fancy

LCA

Realizability

Linear category

Model of fancy
language

* Model for (a variant of) the Selinger-Valiron

Workflow

 quantum λ-calculus(linear $\lambda+$ prep./Unitary/meas.)
[Hasuo \& Hoshino, LICS'11 \& APAL'16]

* via the quantum branching monad * ... with considerable complication:(

$$
\llbracket \Gamma \vdash M: \tau \rrbracket: \llbracket \Gamma \rrbracket \longrightarrow(\llbracket \tau \rrbracket \multimap R) \multimap R
$$

where

Fancy monad

Fancy

TSMC

Fancy

LCA

Realizability

Linear category

Model of fancy
language

* Model for (a variant of) the Selinger-Valiron

Workflow

 quantum λ-calculus(linear $\lambda+$ prep./Unitary/meas.)
[Hasuo \& Hoshino, LICS'11 \& APAL'16]

* via the quantum branching monad

Fancy
 monad

* ... with considerable complication:(

$$
\llbracket \Gamma \vdash M: \tau \rrbracket: \llbracket \Gamma \rrbracket \longrightarrow(\llbracket \tau \rrbracket \multimap R) \multimap R
$$

where

$$
R=\{\underbrace{p_{\varepsilon} p_{0} q_{\varepsilon}}_{p_{0}} \overbrace{\bullet}^{q_{0}} \mid p_{\alpha}, q_{\alpha} \in[0,1]\}
$$

* Records measurement outcomes
* \boldsymbol{R} as a suitable final coalgebra in the realizability category

Fancy

LCA

Realizability

Linear category

Challenge: Memorizing Effects

Already w/ nondeterminism!
..- Challenge: Memorizing Effects
$\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$
Already w/ nondeterminism!

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

\rightarrow • Query $(\lambda x . x+x)(3 \sqcup 5)$

- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
\rightarrow - Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5
\rightarrow - Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
\rightarrow • Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

【3 $\sqcup 5$ 5

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
$\rightarrow \bullet$ Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects

$$
\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket
$$

Challenge: Memorizing Effects

* Nondeterministic choice is resolved
\rightarrow we must stick to it!
* Is CBV to blame?
(GoI is inherently CBN...)

$$
(\lambda x \cdot x+x)(3 \sqcup 5) \longrightarrow_{\mathrm{CBV}} 6 \text { or } 10
$$

Challenge: Memorizing Effects

* Nondeterministic choice is resolved
\rightarrow we must stick to it!
* Is CBV to blame?
(GoI is inherently CBN...)

$$
(\lambda x \cdot x+x)(3 \sqcup 5) \longrightarrow_{\mathrm{CBV}} 6 \text { or } 10
$$

* Not really: it's also hard to get

$$
(M \sqcup N) L=M L \sqcup N L
$$

Challenge: Memorizing Effects

* Nondeterministic choice is resolved
\rightarrow we must stick to it!
* Is CBV to blame?
(GoI is inherently CBN...)

$$
(\lambda x \cdot x+x)(3 \sqcup 5) \longrightarrow_{\mathrm{CBV}} 6 \text { or } 10
$$

* Not really: it's also hard to get

$$
(M \sqcup N) L=M L \sqcup N L
$$

* Mathematically:

Given

$$
\begin{aligned}
& \operatorname{tr}(f \cup g) \neq \operatorname{tr}(f) \cup \operatorname{tr}(g)
\end{aligned}
$$

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

$$
\frac{\square}{\frac{1}{4}} \times \frac{\square}{n}=
$$

Categorical GOI
bramsky, Haghverdi \& Scott, MSCs'02]
Categorical
[Abramsky, Haghverdi \& Scott, MSCS'02]

GoI w/
T-branching
[IH \& Hoshino, LICS'11]

Outline

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

Categorical GoI

GoI w/
T-branching
[IH \& Hoshino, LICS'11]

Memoryful GoI
[Hoshino, Muroya \& IH, CSL-LICS'14 \& POPL'16]

* Equip piping with internal states, or memory
iliil

Memoryful GoI

* Equip piping with internal states, or memory
* not

$$
\llbracket 3 \sqcup 5 \rrbracket: \mathbb{N} \longrightarrow \mathcal{P} \mathbb{N}, \quad q \longmapsto\{3,5\}
$$

but a transducer (Mealy machine)

Memoryful GoI

* Equip piping with internal states, or memory
* not

$$
\llbracket 3 \sqcup 5 \rrbracket: \mathbb{N} \longrightarrow \mathcal{P} \mathbb{N}, \quad q \longmapsto\{3,5\}
$$

but a transducer (Mealy machine)

Memoryful GoI

* Equip piping with internal states, or memory
* not $\mid \llbracket 3 \sqcup 5 \rrbracket: \mathbb{N} \longrightarrow \mathcal{P} \mathbb{N}, \quad q \longmapsto\{3,5\}$

but a transducer (Mealy machine)

* Not a new idea:
* Slices in GoI for additives [Laurent, tLCA'O1]
* Resumption GoI [Abramsky, concur'96]
..- Challenge: Memorizing Effects
$\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

...

... Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

... Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

... Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

\rightarrow - Query $(\lambda x . x+x)(3 \sqcup 5)$

- Query x
- Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

... Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

..- Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\boldsymbol{\lambda} x . x+x)(3 \sqcup 5)$
- Query x
\rightarrow • Answer 3 or 5
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
\rightarrow - Answer 3 or 5 and remember the choice
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
\rightarrow - Answer 3 or 5 and remember the choice
- Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

..- Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5 and remember the choice
\rightarrow - Query \boldsymbol{x}
- Answer 3 or 5
- Answer $\mathbf{3 + 3}, \mathbf{3 + 5 , 5 + 3}$ or $5+5$

... Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5 and remember the choice
- Query \boldsymbol{x}
\rightarrow • Answer 3 or 5
- Answer $\mathbf{3}+\mathbf{3}, \mathbf{3}+5,5+\mathbf{3}$ or $5+5$

... Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5 and remember the choice
- Query \boldsymbol{x}
\rightarrow - Answer 3 or 5 following the prev. choice
- Answer $\mathbf{3}+\mathbf{3}, 3+5,5+\mathbf{3}$ or $5+5$

... Challenge: Memorizing Effects $\llbracket(\lambda x . x+x)(3 \sqcup 5) \rrbracket$

- Query $(\lambda x . x+x)(3 \sqcup 5)$
- Query x
- Answer 3 or 5 and remember the choice
- Query \boldsymbol{x}
- Answer 3 or 5 following the prev. choice
$\rightarrow \bullet$ Answer $3+3,3 \div 5,5 * 3$ or $5+5$

Memoryful GoI

* That is...
a traversing token rearranges piping!

Memoryful GoI

* We introduce memory in a structured manner...
\rightarrow
the "traced monoidal category" of transducers
$\operatorname{Trans}(\boldsymbol{T}) \quad$ Objects: sets $\boldsymbol{A}, \boldsymbol{B}, \ldots$

$$
\text { Arrows: } \frac{A \longrightarrow B \text { in Trans }(T)}{\overline{\left(X, X \times A \xrightarrow{c} T(X \times B), x_{0} \in X\right), T \text {-transducer }}}
$$

Memoryful GoI

* We introduce memory in a structured manner...
\rightarrow
the "traced monoidal category" of transducers
$\operatorname{Trans}(\boldsymbol{T}) \underline{\text { Objects: }}$ sets $\boldsymbol{A}, \boldsymbol{B}, \ldots$

$$
\text { Arrows: } \frac{A \longrightarrow B \text { in Trans }(T)}{\overline{\left(X, X \times A \xrightarrow{c} T(X \times B), x_{0} \in X\right), T \text {-transducer }}}
$$

* with operations
like

Trans(T) by Coalgebraic Component Calculus

$\operatorname{Trans}(T)$ Objects: sets $\boldsymbol{A}, \boldsymbol{B}, \ldots$
$\underline{\text { Arrows: }} \frac{A \longrightarrow B \text { in } \operatorname{Trans}(T)}{\left(X, X \times A \xrightarrow{c} T(X \times B), x_{0} \in X\right), T \text {-transducer }}$

Trans(T) by Coalgebraic Component Calculus

[Barbosa '03][IH \& Jacobs '11]
$\operatorname{Trans}(\boldsymbol{T})$ Objects: sets $\boldsymbol{A}, \boldsymbol{B}, \ldots$
$\underline{\text { Arrows: }} \xlongequal{\left(X, X \times A \xrightarrow{c} T(X \times B), x_{0} \in X\right), T \text {-transducer }}$

$$
\begin{aligned}
& (X \times Y) \times A \xrightarrow{\cong}(X \times A) \times Y \\
& \xrightarrow{c \times Y} T(X \times B) \times Y \\
& \xrightarrow{\text { str }^{\prime}} T((X \times B) \times Y) \\
& \xrightarrow[T(X \times d)]{\cong} T(X \times(Y \times B)) \\
& \xrightarrow{T(X \times d)} T(X \times T(Y \times C)),(x, y) \\
& \xrightarrow{T \mathrm{str}} \boldsymbol{T} T(X \times(Y \times C)) \\
& \xrightarrow{\mu^{T}} T(X \times(Y \times C)) \\
& \xrightarrow{\cong} T((X \times Y) \times C)
\end{aligned}
$$

The Memoryful GoI Framework

* Given:
* a monad T on Sets,
s.t. $\mathbf{K l (T)}$ is Cppo-enriched
* an alg. signature $\mathbf{\Sigma}$ with algebraic operations on T
[Plotkin \& Power]

$$
\left\{\alpha_{A, B}:(A \Rightarrow T B)^{|\alpha|} \longrightarrow(A \Rightarrow T B)\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K C}(T)}
$$

* For the calculus: $\lambda_{c}+($ alg. opr. from $\Sigma)+(c o)$ products + arith.
* We give

The Memoryful GoI Framework

- Exception $1+\boldsymbol{E}+\left(_\right)$
- with $\mathbf{0}$-ary opr. raise $_{e}(\boldsymbol{e} \in \boldsymbol{E})$
- Nondeterminism \mathcal{P}
- with binary opr. \sqcup
- Probability \mathcal{D}, where
$\mathcal{D} X=\left\{d: X \rightarrow[0,1] \mid \sum_{x} d(x) \leq 1\right\}$
- with binary opr. $\sqcup_{p}(\boldsymbol{p} \in[0,1])$
* an alg. signature Σ with algebraic operations on T
- Global state $(1+S \times)^{S}$
- with $|\boldsymbol{V}|$-ary lookup ${ }_{l}$ and unary update $_{l, v}$ [Plotkin \& Power]

$$
\left\{\alpha_{A, B}:(A \Rightarrow T B)^{|\alpha|} \longrightarrow(A \Rightarrow T B)\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K C}(T)}
$$

* For the calculus: $\lambda_{c}+($ alg. opr. from $\Sigma)+(c o)$ products + arith.
* We give

The Memoryful GoI Framework

- Exception $1+\boldsymbol{E}+\left(_\right)$
- with $\mathbf{0}$-ary opr. raise $_{\boldsymbol{e}}(\boldsymbol{e} \in \boldsymbol{E})$
- Nondeterminism \mathcal{P}
- with binary opr. \sqcup
- Probability \mathcal{D}, where
$\mathcal{D} X=\left\{d: X \rightarrow[0,1] \mid \sum_{x} d(x) \leq 1\right\}$
- with binary opr. $\sqcup_{p}(\boldsymbol{p} \in[0,1])$
- Global state $(1+S \times)^{S}$
- with $|\boldsymbol{V}|$-ary lookup $_{l}$ and unary update $_{l, v}$ algebraic operations on T [Plotkin \& Power]

$$
\left\{\alpha_{A, B}:(A \Rightarrow T B)^{|\alpha|} \longrightarrow(A \Rightarrow T B)\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K C}(T)}
$$

* For the calculus: $\lambda_{c}+($ alg. opr. from $\Sigma)+(c o)$ products + arith.

The Memoryful GoI Framework

- Exception $1+\boldsymbol{E}+\left(_\right)$

Given:

* a monad T on Sets, s.t. $\mathbf{K l (T)}$ is Cppo-enriched
* an alg. signature $\boldsymbol{\Sigma}$ with algebraic operations on T
- with $\mathbf{0}$-ary opr. raise $_{\boldsymbol{e}}(\boldsymbol{e} \in \boldsymbol{E})$
- Nondeterminism \mathcal{P}
- with binary opr. \sqcup
- Probability \mathcal{D}, where
$\mathcal{D} X=\left\{d: X \rightarrow[0,1] \mid \sum_{x} d(x) \leq 1\right\}$
- with binary opr. $\sqcup_{p}(\boldsymbol{p} \in[0,1])$
- Global state $(1+S \times)^{S}$
- with $|\boldsymbol{V}|$-ary lookup ${ }_{l}$ and unary update $_{l, v}$ [Plotkin \& Power]

$$
\left\{\alpha_{A, B}:(A \Rightarrow T B)^{|\alpha|} \longrightarrow(A \Rightarrow T B)\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K} C(T)}
$$

* For the calculus: $\lambda_{c}+$ (alg. opr. from $\left.\Sigma\right)+(c o)$ products + arith.

$$
\frac{\Gamma \vdash M_{1}: \tau \quad \cdots \quad \Gamma \vdash M_{|\alpha|}: \tau}{\Gamma \vdash \alpha\left(M_{1}, \ldots, M_{|\alpha|}\right): \tau} \alpha \in \Sigma
$$

The Memoryful GoI Framework

- Exception $1+\boldsymbol{E}+\left(_\right)$

Given:

* a monad T on Sets, s.t. $\mathbf{K l (T)}$ is Cppo-enriched
* an alg. signature Σ with algebraic operations on T
- with $\mathbf{0}$-ary opr. raise $_{\boldsymbol{e}}(\boldsymbol{e} \in \boldsymbol{E})$
- Nondeterminism \mathcal{P}
- with binary opr. \sqcup
- Probability \mathcal{D}, where
$\mathcal{D} X=\left\{d: X \rightarrow[0,1] \mid \sum_{x} d(x) \leq 1\right\}$
- with binary opr. $\sqcup_{p}(\boldsymbol{p} \in[0,1])$
- Global state $\left(1+S \times{ }_{-}\right)^{S}$
- with $|\boldsymbol{V}|$-ary lookup ${ }_{l}$ and unary update ${ }_{l, v}$ [Plotkin \& Power]

$$
\left\{\alpha_{A, B}:(A \Rightarrow T B)^{|\alpha|} \longrightarrow(A \Rightarrow T B)\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K} C(T)}
$$

* For the calculus: $\lambda_{c}+($ alg. opr. from $\Sigma)+(c o)$ products + arith.
* We give
$|\Gamma|$

$$
\frac{\Gamma \vdash M_{1}: \tau \cdots \quad \Gamma \vdash M_{|\alpha|}: \tau}{\Gamma \vdash \alpha\left(M_{1}, \ldots, M_{|\alpha|}\right): \tau} \alpha \in \Sigma
$$

in Trans(T)

Trans(T) by Coalgebraic Component Calculus

[Barbosa '03][IH \& Jacobs '11]
$\operatorname{Trans}(\boldsymbol{T})$ Objects: sets $\boldsymbol{A}, \boldsymbol{B}, \ldots$
Arrows: $\frac{A \longrightarrow B \text { in } \operatorname{Trans}(T)}{\overline{\left(X, X \times A \xrightarrow{c} T(X \times B), x_{0} \in X\right), T \text {-transducer }}}$

$$
\begin{aligned}
(X \times Y) \times A & \xrightarrow{\cong}(X \times A) \times Y \\
& \xrightarrow{c \times Y} T(X \times B) \times Y \\
& \xrightarrow{\text { str }^{\prime}} T((X \times B) \times Y) \\
& \xrightarrow{\cong} T(X \times(Y \times B)) \\
& \underset{T(X \times d)}{\longrightarrow} T(X \times T(Y \times C)) \\
& \xrightarrow{T \operatorname{str}} T T(X \times(Y \times C)) \\
& \xrightarrow{\mu^{T}} T(X \times(Y \times C)) \\
& \xrightarrow{\cong} T((X \times Y) \times C)
\end{aligned}
$$

Missing Ingredient I: Alg. Opr.

* $\alpha \in \Sigma_{n}$ an alg. operation

$$
\boldsymbol{Q}\left(\frac{\left.\left.\begin{array}{|c}
A \mid \\
\left(X_{1}, c_{1}, x_{1}\right) \\
B \mid
\end{array}, \cdots, \frac{A \mid}{B \mid}\right), \frac{\left(X_{n}, c_{n}, x_{n}\right)}{B}\right)}{}\right)
$$

$$
=\left(\{*\}+X_{1}+\cdots+X_{n},\right.
$$

Missing Ingredient I: Alg. Opr.

* $\alpha \in \Sigma_{n}$ an alg. operation

$$
\boldsymbol{\alpha}\left(\frac{\left.\left.\left\lvert\, \begin{array}{|c}
\frac{A}{\left(X_{1}, c_{1}, x_{1}\right)} \\
B \mid
\end{array}\right., \ldots, \frac{A \mid}{B \mid}\right)=\frac{\left(X_{n}, c_{n}, x_{n}\right)}{B}\right)}{}\right)
$$

Fresh initial state

Missing Ingredient I: Alg. Opr.

* $\alpha \in \Sigma_{n}$ an alg. operation
T-branching given by $\left\{\alpha_{A, B}:(A \Rightarrow \boldsymbol{T B})^{|\alpha|} \longrightarrow(A \Rightarrow \boldsymbol{T B})\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K} \ell(T)}$

Fresh initial state

Missing Ingredient II: Recursion

Girard style fixed point operator

* Obviously a fixed point * Fixed-point induction

Mackie style fixed point operator

Missing Ingredient II: Recursion

Girard style fixed point operator

Obviously a fixed point Fixed-point induction

Theorem The two coincide. (for any suitable T!)

The Memoryful GoI Framework

- Exception $1+\boldsymbol{E}+\left(_\right)$
- with 0 -ary opr. raise $_{\boldsymbol{e}}(\boldsymbol{e} \in \boldsymbol{E})$
- Nondeterminism \mathcal{P}
- with binary opr. \sqcup
- Probability \mathcal{D}, where
$\mathcal{D} X=\left\{d: X \rightarrow[0,1] \mid \sum_{x} d(x) \leq 1\right\}$
- with binary opr. $\sqcup_{p}(\boldsymbol{p} \in[0, \mathbf{1}])$
* an alg. signature $\boldsymbol{\Sigma}$ with algebraic operations on T

Global state $\left(1+S \times{ }_{-}\right)^{S}$

- with $|\boldsymbol{V}|$-ary lookup ${ }_{l}$ and unary update $_{l, v}$ [Plotkin \& Power]

$$
\left\{\alpha_{A, B}:(A \Rightarrow T B)^{|\alpha|} \longrightarrow(A \Rightarrow T B)\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K C}(T)}
$$

* For the calculus: $\lambda_{c}+$ (alg. opr. from Σ) + (co)products
$|\Gamma|$

$$
\frac{\Gamma \vdash M_{1}: \tau \quad \cdots \quad \Gamma \vdash M_{|\alpha|}: \tau}{\Gamma \vdash \alpha\left(M_{1}, \ldots, M_{|\alpha|}\right): \tau} \alpha \in \Sigma
$$

$$
\text { in Trans(} T)
$$

Given:

* a monad T on Sets,
st KI(T) is Cpro-anriched
an alg. signature Σ with
algebraic operations on T
- Exception $1+\boldsymbol{E}+\left(_\right)$

$$
\text { with 0-ary ont raise }(e \in E)
$$

- Nondeterminism \mathcal{P}
with binary opr. \sqcup
- Probability \boldsymbol{D} where

$$
\mathcal{D} X=\left\{d: X \rightarrow[0,1] \mid \sum_{x} d(x) \leq 1\right\}
$$

$$
\text { with binary opr. } \sqcup_{p}(p \in[0,1])
$$

- Global state $(1+S \times{ })^{S}$
with |VI-ary looking, and unary update,
[Plotkin \& Power]

$$
\left\{\alpha_{A, B}:(A \Rightarrow T B)^{|\alpha|} \longrightarrow(A \Rightarrow T B)\right\}_{A \in \operatorname{Sets}, B \in \mathcal{K \ell}(T)}
$$

For the calculus: $\lambda_{c}+($ alg. op. from $\Sigma)+(c o)$ products

Theorem (Adequacy)

Let $\vdash \boldsymbol{M}$: nat. Then, as elem. of $\boldsymbol{T}(\mathbb{N})$,

$$
\left(\frac{\mathbb{N} \mid}{\mid(|\vdash| \text { nat } \mid}\right)^{\dagger}=\llbracket|M| \rrbracket
$$

Theorem (Adequacy)

Let $\vdash M$: nat. Then, as elem. of $\boldsymbol{T}(\mathbb{N})$,

feeding a query and observing the outcome

Theorem (Adequacy)

Let $\vdash M$: nat. Then, as elem. of $\boldsymbol{T}(\mathbb{N})$,

Opr. sem.:

feeding a query and observing the outcome

Plotkin-Power effect-value. E.g.

Interpretation

$$
\llbracket _\rrbracket: \mathrm{EffVal}_{\mathbb{N}}^{\Sigma} \longrightarrow T(\mathbb{N})
$$

Theorem (Adequacy) (exploiting free conti. Σ-alg.) Let $\vdash \boldsymbol{M}$: nat. Then, as elem of $\boldsymbol{T}(\mathbb{N})$,

feeding a query and observing the outcome

Plotkin-Power effect-value. E.g.

Trans(T) by Coalgebraic Component Calculus

[Barbosa '03][IH \& Jacobs '11]
$\operatorname{Trans}(\boldsymbol{T})$ Objects: sets $\boldsymbol{A}, \boldsymbol{B}, \ldots$
Arrows: $\frac{A \longrightarrow B \text { in } \operatorname{Trans}(T)}{\overline{\left(X, X \times A \xrightarrow{c} T(X \times B), x_{0} \in X\right), T \text {-transducer }}}$

$$
\begin{aligned}
(X \times Y) \times A & \xrightarrow{\cong}(X \times A) \times Y \\
& \xrightarrow{c \times Y} T(X \times B) \times Y \\
& \xrightarrow{\text { str }^{\prime}} T((X \times B) \times Y) \\
& \xrightarrow{\cong} T(X \times(Y \times B)) \\
& \underset{T(X \times d)}{\longrightarrow} T(X \times T(Y \times C)) \\
& \xrightarrow{T \operatorname{str}} T T(X \times(Y \times C)) \\
& \xrightarrow{\mu^{T}} T(X \times(Y \times C)) \\
& \xrightarrow{\cong} T((X \times Y) \times C)
\end{aligned}
$$

Our Tool Ttt
 Developed by Koko Muroya http://koko-m.github.io/TtT/

- Enter a term, or type ";ex" to select one from 13 examples. [read documents] ((rec(fliploopSimple $x)$ (choose(0.4) x (flipLoopSimple x$)$)) 0)

回回 \square (2)

Summary

Coalgebra meets higher-order computation

 in Geometry of Interaction [Girard, LC'88]
"GoI Animation"

Categorical GoI

GoI w/

T-branching
[IH \& Hoshino, LICS'11]

Memoryful GoI
[Hoshino, Muroya \& IH, CSL-LICS'14 \& POPL'16]

in Geometry of Interaction [Girard, Lc'88]

[Hoshino, Muroya \& IH,
CSL-LICS'14 \& POPL'16]

Hasuo (Tokyo)

* GoI + algebraic effects [Plotkin \& Power]

[Hoshino, Muroya \& IH, CSL-LICS'14 \& POPL'16]

* GoI + algebraic effects [Plotkin \& Power] * via T-branching transducers
[Hoshino, Muroya \& IH, CSL-LICS'14 \& POPL'16]
* GoI + algebraic effects [Plotkin \& Power]
* via T-branching transducers
* Compositional translation
($\Gamma \vdash M: \tau$)
==> implementation $\mathrm{T}+\mathrm{T}$

[Hoshino, Muroya \& IH, CSL-LICS'14 \& POPL'16]
* GoI + algebraic effects [Plotkin \& Power]
* via T-branching transducers
* Compositional translation
($\Gamma \vdash M: \tau$)
==> implementation T+T
* (Categorical GoI + realizability)
==> categorical model
* Thm. Adequacy
* "Correct-by-construction" compilation!

[Hoshino, Muroya \& IH, CSL-LICS'14 \& POPL'16]

Retracing some paths in Process Algebra

Samson Abramsky
Laboratory for the Foundations of Computer Science
University of Edinburgh

1 Introduction

The very existence of the CONCUR conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75] ${ }^{1}$, which led in a fairly direct line to his enormously influential work on CCS [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some different paths could have been taken, which, it can be argued, lead to a more unified approach to the semantics of computation, and moreover one which may be better suited to modelling today's concurrent, object-oriented languages, and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of transducers, i.e. structures

$$
\left(Q, X, Y, q_{0}, \delta\right)
$$

CONCUR'96

Retracing some paths in Process Algebra

Samson Abramsky
Laboratory for the Foundations of Computer Science
University of Edinburgh

1 Introduction

The very existence of the CONCUR conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75] ${ }^{1}$, which led in a fairly direct line to his enormously influential work on CCS [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some different paths could have been taken, which, it can be argued, lead to a more unified approach to the semantics of computation, and moreover one which may be better suited to modelling today's concurrent, object-oriented languages, and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of transducers, i.e. structures

$$
\left(Q, X, Y, q_{0}, \delta\right)
$$

CONCUR'96

Retracing some paths in Process Algebra

Samson Abramsky
Laboratory for the Foundations of Computer Science
University of Edinburgh

1 Introduction

The very existence of the concur conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75] ${ }^{1}$, which led in a fairly direct line to his enormously influential work on CCS [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some different paths could have been taken, which, it can be argued, lead to a more unified approach to the semantics of computation, and moreover one which may be better suited to modelling today's concurrent, object-oriented languages, and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of transducers, i.e. structures

$$
\left(Q, X, Y, q_{0}, \delta\right)
$$

CONCUR'96

Retracing some paths in Process Algebra

Samson Abramsky
Laboratory for the Foundations of Computer Science

University of Edinburgh

1 Introduction

Thank you for your attention! Ichiro Hasuo (Dept. CS, U Tokyo) http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

The very existence of the CONCUR conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75] ${ }^{1}$, which led in a fairly direct line to his enormously influential work on CCS [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some different paths could have been taken, which, it can be argued, lead to a more unified approach to the semantics of computation, and moreover one which may be better suited to modelling today's concurrent, object-oriented languages, and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of transducers, i.e. structures

$$
\left(Q, X, Y, q_{0}, \delta\right)
$$

CONCUR'96

