Coalgebras and Higher-Order Computation: a GoI Approach

Ichiro Hasuo University of Tokyo (JP)

FSCD 2016, Porto, 24 Jun 2016

Collaborators

Friday, June 24, 16

Collaborators

Naohiko Hoshino

(Kyoto U)

Hasuo (Tokyo)

Friday, June 24, 16

Collaborators Koko Muroya

(Tokyo => Birmingham)

Naohiko Hoshino

(Kyoto U)

Collaborators Koko Muroya

(Tokyo => Birmingham)

Naohiko Hoshino

(Kyoto U)

Hasuo (Tokyo)

Bart Jacobs (Nijmegen)

Collaborators Koko Muroya

(Tokyo => Birmingham)

Naohiko Hoshino

(Kyoto U)

Friday, June 24, 16

Bart Jacobs (Nijmegen)

Toshiki Kataoka (Tokyo)

Hasuo (Tokyo)

References

 [LICS 2011] IH and Naohiko Hoshino. Semantics of Higher-Order Quantum Computation via Geometry of Interaction.

(Extended ver. to appear in Annals Pure & Appl. Logic)

* [CSL-LICS 2014]

Naohiko Hoshino, Koko Muroya and IH. Memoryful Geometry of Interaction: From Coalgebraic Components to Algebraic Effects.

[POPL 2016] Koko Muroya, Naohiko Hoshino and IH.
 Memoryful Geometry of Interaction II: Recursion and Adequacy.

[LOLA 2014] Koko Muroya, Toshiki Kataoka, IH and Naohiko Hoshino. Compiling Effectful Terms to Transducers: Prototype Implementation of Memoryful Geometry of Interaction (Preliminary Report).

Hasuo (Tokyo)

[Math. Str. in Comp. Sci. 2011]

IH and Bart Jacobs. Traces for Coalgebraic Components.

* J.-Y. Girard, at Logic Colloquium '88

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides "denotational" semantics (w/ operational flavor) for linear λ -term M

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides "denotational" semantics (w/ operational flavor) for linear λ -term M

* As a compilation technique

[Mackie, POPL'95] [Pinto, TLCA'01] [Ghica et al., POPL'07, POPL'11, ICFP'11, ...]

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides "denotational" semantics (w/ operational flavor) for linear λ -term M

* As a compilation technique

[Mackie, POPL'95] [Pinto, TLCA'01] [Ghica et al., POPL'07, POPL'11, ICFP'11, ...]

* Function application $\llbracket MN rbracket$

* by "parallel composition + hiding"

Friday, June 24, 16

Friday, June 24, 16

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

Categorical GoI

- * Axiomatics of GoI in the categorical language
- * Our main reference:
 - [AHS02] S. Abramsky, E. Haghverdi, and P. Scott,
 Geometry of interaction and linear combinatory
 algebras, Math. Str. Comp. Sci, 2002
 - Especially its technical report version (Oxford CL), since it's a bit more detailed
- * See also:
 - * IH and Naohiko Hoshino. Semantics of Higher-Order Quantum Computation via Geometry of Interaction. Extended ver. of [LICS'11], to appear in Annals Pure & Applied Logic. <u>arxiv.org/abs/1605.05079</u>

Hasuo (Tokyo)

Traced monoidal category ${\ensuremath{\mathbb C}}$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

 $\mathsf{tr}(f)$

Hasuo (Tokyo)

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Applicative str. + combinators

Hasuo (Tokyo)

Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Applicative str. + combinators

Hasuo (Tokyo)

Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

Model of typed calculus

Traced monoidal category $\ensuremath{\mathbb{C}}$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

- Applicative str. + combinators
- Model of untyped calculus
- * PER, ω -set, assembly, ...
- * "Programming in untyped λ "

Hasuo (Tokyo)

Linear category

Model of typed calculus

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

- Applicative str. + combinators
- Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

- PER, ω -set, assembly, ...
 - "Programming in untyped λ "

Hasuo (Tokyo)

Model of typed calculus

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
Kx ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

Hasuo (Tokyo)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
Wx ! y=x ! y ! y	Contraction
D ! x=x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

What we want (outcome)

* Model of untyped linear λ

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

> * Model of untyped linear λ

* a ∈ A ≈
 closed linear λ-term

(LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Composition, Cut
Exchange
Identity
Weakening
Contraction
Dereliction
Comultiplication
Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

What we want (outcome)

- * Model of untyped linear λ
- * a ∈ A ≈ closed linear λ-term

* No S or K (linear!)

Combinatory completeness:
 e.g.

$$\lambda xyz. zxy$$

designates an elem. of A

What we use (ingredient)

Hasuo (Tokyo)

GoI situation

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

e : $FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \mathrel{\lhd} F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d\ :\ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d\ :\ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

 $\frac{A \xrightarrow{f} B \xrightarrow{g} B \xrightarrow{g} C}{A \xrightarrow{g \circ f} C}$

 $\frac{A \xrightarrow{f} B \quad C \xrightarrow{g} D}{A \otimes C \xrightarrow{f \otimes g} B \otimes D}$

 $h \circ (f \otimes g)$

 \boldsymbol{h}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \ : \ FF \lhd F \ : \ e'$	Comultiplication
$d~:~\mathrm{id} \lhd F~:~d'$	Dereliction
$c ~:~ F \otimes F \lhd F ~:~ c'$	Contraction
$w~:~K_{I} \lhd F~:~w'$	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Traced monoidal category

* "feedback"

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial functions $\mathbb{N} \longrightarrow \mathbb{N}$

* Category Pfn of partial functions

* Arr. A partial function

$$\frac{X \to Y \text{ in } \mathbf{Pfn}}{X \rightharpoonup Y, \text{ partial function}}$$

* Category Pfn of partial functions

* **Obj.** A set X

* Arr. A partial function

 $\frac{X \to Y \text{ in } \mathbf{Pfn}}{X \rightharpoonup Y, \text{ partial function}}$

* is traced symmetric monoidal

How?

*

How?

How?

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in Pfn}}$

How?

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

Hasuo (Tokyo)

Friday, June 24, 16

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in Pfn}}$

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

* Trace operator:

tr(f) = $f_{XY} \sqcup \left(igcup_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

Tokyo)

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in Pfn}}$

* Trace operator:

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

How?

- Execution formula (Girard)
- Partiality is essential (infinite loop)

Tokyo)

tr(f) = $f_{XY} \sqcup \left(\coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Traced sym. monoidal cat.

* Where one can "feedback"

* Why for GoI?

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\mathbf{F} : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d~:~\mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Traced sym. monoidal cat.

Where one can "feedback"

Why for GoI?

Leading example: Pfn

N

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e~:~FF \lhd F~:~e'$	Comultiplication
$d~:~\mathrm{id} \lhd F~:~d'$	Dereliction
$c ~:~ F \otimes F \lhd F ~:~ c'$	Contraction
$w~:~K_{I} \lhd F~:~w'$	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Defn. (Retraction) A *retraction* from X to Y,

 $f:X \lhd Y:g$,

is a pair of arrows

"embedding"

"projection"

such that $g \circ f = \mathrm{id}_X$.

***** Functor F

* For obtaining $!: A \to A$

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e~:~FF \lhd F~:~e'$	Comultiplication
$d~:~\mathrm{id} \lhd F~:~d'$	Dereliction
$c ~:~ F \otimes F \lhd F ~:~ c'$	Contraction
$w ~:~ K_I \lhd F ~:~ w'$	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** The reflexive object U

* Retr. $U \otimes U \xrightarrow{j} U$ \boldsymbol{k}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* The reflexive object U

* Retr. $U \otimes U \subset U$

 \boldsymbol{k}

Defn. (GoI situation [AHS02]) A *GoI situation* is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

* Why for GoI?

* Example in Pfn:

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

* Why for GoI?

* Example in Pfn: $\mathbb{N} \in \mathbf{Pfn}$, with $\mathbb{N} + \mathbb{N} \cong \mathbb{N}$, $\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$

GoI Situation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$:	e'	Comultiplication
$d~:~\mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Categorical axiomatics of the "GoI animation"

* Example:

(Pfn, $\mathbb{N} \cdot _$, \mathbb{N})

tr(f) tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Categorical axiomatics of the "GoI animation"

(Pfn, $\mathbb{N} \cdot _, \mathbb{N}$)

tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the relowing retractions (which are monoidal natural transformations).

De

Co

For !, via

- $e \ : \ FF \lhd F \ : \ e' \ d \ : \ \mathrm{id} \lhd F \ : \ d'$
- $c : F \otimes F \triangleleft F : c'$
- $w \ : \ K_I \lhd F \ : \ w'$ We

Here K_I is the constant functor into the functor into

• $U \in \mathbb{C}$ is an object (called *reflexive object*) the following retractions.

Categorical axiomatics of the "GoI animation"

Example:

 $(Pfn, \mathbb{N} \cdot _, \mathbb{N})$

- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the blowing retractions (which are monoidal natural transformations).
 - $e : FF \triangleleft F : e'$ d : id $\triangleleft F$: d'
 - $c : F \otimes F \triangleleft F : c'$ Co $w \; : \; K_I \lhd F \; : \; w'$ We

Here K_I is the constant functor into the

• $U \in \mathbb{C}$ is an object (called *reflexive object*) the following retractions.

> $j : U \otimes U \triangleleft U : k$ $I \lhd U$ $u : FU \triangleleft U : v$

De

For !, via

 $(\mathbf{Pfn}, \mathbb{N} \cdot , \mathbb{N})$

Hasuo (Tokyo)

the "GoI animation"

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U, U)$ carries a canonical LCA structure.

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

 $\begin{bmatrix} U \\ f \end{bmatrix} \in \mathbb{C}(U,U)$

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

 $\bigstar \ !f \ := \ u \circ Ff \circ v$

***** Combinator Bxyz = x(yz)

Figure 7: Composition Combinator B

from [AHS02]

3

 $\overline{3} = \overline{1}$

Hasuo (Tokyo)

***** Combinator Bxyz = x(yz)

***** Combinator Bxyz = x(yz)

Figure 7: Composition Combinator B

from [AHS02]

***** Combinator Bxyz = x(yz)

Summary: Categorical GoI

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e : FF \lhd F : e'$ Comultiplication $d : id \lhd F : d'$ Dereliction $c : F \otimes F \lhd F : c'$ Contraction $w : K_I \lhd F : w'$ Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

 Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

* Strategy: find a TSMC!

* "Wave-style" examples

★ ⊗ is Cartesian product(-like)

* in which case,

trace \approx fixed point operator [Hasegawa/Hyland]

* An example:
$$ig((\omega ext{-Cpo}, imes,1),\ (_)^{\mathbb{N}},\ A^{\mathbb{N}}ig)$$

* (... less of a dynamic flavor)

Friday, June 24, 16
Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

- * "Particle-style" examples
 - * Obj. $X \in C$ is set-like; \otimes is coproduct-like
 - * The GoI animation is valid
 - * Examples:
 - * Partial functions (()

$$(\mathbf{Pfn},+,0), \mathbb{N} \cdot _, \mathbb{N}$$

- * Binary relations $((\text{Rel},+,0), \mathbb{N} \cdot _, \mathbb{N})$
- * "Discrete stochastic relations" $((DSRel, +, 0), \mathbb{N} \cdot _, \mathbb{N})$

Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

Why Categories of sets and (functions with different branching/partiality) Examples Content THE [AHS02]

Why Categories of sets and (functions with different branching/partiality) Examples

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- Pfn (partial functions)
 - * Pipes can be stuck
 - Rel (relations)
 - * Pipes can branch
 - * DSRel
 - Pipes can branch probabilistically

Hasuo (Tokyo)

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
 - Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

Hasuo (Tokyo)

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
 - DSRel
 - Pipes can branch probabilistically

Hasuo (Tokyo)

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

A Coalgebraic View

Theory of coalgebra =

Categorical theory of state-based dynamic systems (LTS, automaton, Markov chain, ...)

In my thesis (2008):

* Coalgebras in a Kleisli category Kl(T)

 $rac{X o Y ext{ in } \mathcal{K}\ell(T)}{\overline{X o TY ext{ in Sets}}}$

★ → Generic theory of trace and simulations

Why Categor Categories of sets and (functions with different branching/partiality) Examples of sets and

Why Catego Kl(T) for different branching monads T Example

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10]) Given a "branching monad" T on **Sets**, the monoidal category

 $(\mathcal{K}\ell(T),+,0)$

is

• a *unique decomposition category* [Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor. $((\mathcal{K}\ell(T), +, 0), \mathbb{N} \cdot , \mathbb{N})$ is a GoI situation.

Branching Monad: Source of Particle-Style GoI Situations

Branching Monad: Source of Particle-Style GoI Situations

Hasuo (Tokyo)

Traced monoidal category C + other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy TSMC

Fancy LCA

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy monad

Fancy TSMC

Fancy LCA

Challenge: Memorizing Effects

Already w/ nondeterminism!

Challenge: Memorizing Effects

* Nondeterministic choice is resolved

→ we must stick to it!

(GoI is inherently CBN...)

 $(\lambda x. x + x)(3 \sqcup 5) \longrightarrow_{ ext{CBV}} 6 ext{ or } 10$

Challenge: Memorizing Effects

* Nondeterministic choice is resolved

→ we must stick to it!

Is CBV to blame? (GoI is inherently CBN...)

 $(\lambda x. x + x)(3 \sqcup 5) \longrightarrow_{\mathrm{CBV}} 6 \text{ or } 10$

* Not really: it's also hard to get $(M \sqcup N)L = ML \sqcup NL$

Challenge: Memorizing Effects

- * Nondeterministic choice is resolved
 - → we must stick to it!
- Is CBV to blame? (GoI is inherently CBN...)

$$(\lambda x. x + x)(3 \sqcup 5) \longrightarrow_{\mathrm{CBV}} 6 \text{ or } 10$$

Hasuo (Tokyo)

* Not really: it's also hard to get $(M \sqcup N)L = ML \sqcup NL$

* Mathematically:

Given
$$\begin{bmatrix} A & C & A & C \\ f & g \\ B & C & B & C \end{bmatrix}$$
: $A + C \longrightarrow \mathcal{P}(B + C)$,
 $\operatorname{tr}(f \cup g) \neq \operatorname{tr}(f) \cup \operatorname{tr}(g)$

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

Outline

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

* Equip piping with internal states, or memory

Equip piping with internal states, or memory

* not
$$[3 \sqcup 5]: \mathbb{N} \longrightarrow \mathcal{P}\mathbb{N}$$
 , $q \longmapsto \{3, 5\}$

but a transducer (Mealy machine)

 $\llbracket 3 \sqcup 5 \rrbracket \colon X \times \mathbb{N} \longrightarrow \mathcal{P}(X \times \mathbb{N}) \ , \quad q/3 \underbrace{ \langle s_l \rangle}_{s_0} \underbrace{ q/3 }_{s_0} \underbrace{ q/5 }_{s_r} g/5$

Equip piping with internal states, or memory

* not
$$[3 \sqcup 5]: \mathbb{N} \longrightarrow \mathcal{P}\mathbb{N}$$
 , $q \longmapsto \{3, 5\}$

but a transducer (Mealy machine)

 $\llbracket 3 \sqcup 5 \rrbracket \colon X \times \mathbb{N} \longrightarrow \mathcal{P}(X \times \mathbb{N}) \ , \quad q/3 \underbrace{ \langle s_l \rangle}_{s_0} \underbrace{ q/3 }_{s_0} \underbrace{ q/5 }_{s_r} g/5$

* Equip piping with internal states, or memory

* not
$$[\![3 \sqcup 5]\!] \colon \mathbb{N} \longrightarrow \mathcal{P}\mathbb{N} \ , \ q \longmapsto \{3,5\}$$

but a transducer (Mealy machine)

 $\llbracket 3 \sqcup 5 \rrbracket \colon X imes \mathbb{N} \longrightarrow \mathcal{P}(X imes \mathbb{N}) \;, \quad q/3 (s_l) \xrightarrow{q/3} (s_0) \xrightarrow{q/5} (s_r) q/5$

* Not a new idea:

* Slices in GoI for additives [Laurent, TLCA'01]

* Resumption GoI [Abramsky, CONCUR'96]

Hasuo (Tokyo)

* That is...

a traversing token rearranges piping!

* We introduce memory in a structured manner...

the "traced monoidal category" of transducers

$\overline{\mathrm{Trans}(T)}$	<u>Objects:</u>	sets A, B, \ldots $A \longrightarrow B$ in $\operatorname{Trans}(T)$
	<u>Arrows:</u>	$(X, X \times A \xrightarrow{c} T(X \times B), x_0 \in X), T$ -transducer

* We introduce memory in a structured manner...

the "traced monoidal category" of transducers

Hasuo (Tokyo)

Hasuo (Tokyo)

* Given:

- * a monad T on Sets,
 - s.t. Kl(T) is Cppo-enriched
- st an alg. signature Σ with

algebraic operations on T

$$\left\{ \alpha_{A,B} \colon (A \Rightarrow TB)^{|\alpha|} \longrightarrow (A \Rightarrow TB) \right\}_{A \in \text{Sets}, B \in \mathcal{K}\ell(T)}$$

* For the calculus: λ_c + (alg. opr. from Σ) + (co)products + arith.

* We give

* Given:

- * a monad T on Sets,
 s.t. Kl(T) is Cppo-enriched
- * an alg. signature Σ with

algebraic operations on T [Plotkin & Power]

- Exception $1 + E + (_)$
 - with 0-ary opr. $\mathbf{raise}_{e} \ (e \in E)$
- Nondeterminism ${\cal P}$
 - with binary opr. \sqcup
- Probability $\boldsymbol{\mathcal{D}}$, where
 - $\mathcal{D}X = \{d\colon X
 ightarrow [0,1] \mid \sum_x d(x) \leq 1\}$
 - with binary opr. $\sqcup_p \ (p \in [0,1])$
- Global state $(1 + S \times _)^S$
 - with |V|-ary $lookup_l$ and unary $update_{l,v}$

$$\left\{ \alpha_{A,B} \colon (A \Rightarrow TB)^{|\alpha|} \longrightarrow (A \Rightarrow TB) \right\}_{A \in \text{Sets}, B \in \mathcal{K}\ell(T)}$$

* For the calculus: λ_c + (alg. opr. from Σ) + (co)products + arith.

* We give

* Given:

- * a monad T on Sets,
 s.t. Kl(T) is Cppo-enriched
- * an alg. signature Σ with

algebraic operations on T [Plotkin & Power]

- Exception $1 + E + (_)$
 - with 0-ary opr. $raise_e \ (e \in E)$
- Nondeterminism ${\cal P}$
 - with binary opr. \sqcup
- Probability $\boldsymbol{\mathcal{D}}$, where
 - $\mathcal{D}X = \{d\colon X o [0,1] \mid \sum_x d(x) \leq 1\}$
 - with binary opr. $\sqcup_p \ (p \in [0,1])$
- Global state $(1 + S \times _)^S$
 - with |V|-ary $lookup_l$ and unary $update_{l,v}$

$$\left\{ \alpha_{A,B} \colon (A \Rightarrow TB)^{|\alpha|} \longrightarrow (A \Rightarrow TB) \right\}_{A \in \text{Sets}, B \in \mathcal{K}\ell(T)}$$

* For the calculus: λ_c + (alg. opr. from Σ) + (co)products + arith.

* Given:

- * a monad T on Sets,
 s.t. Kl(T) is Cppo-enriched
- * an alg. signature Σ with

algebraic operations on T [Plotkin & Power]

- Exception $1 + E + (_)$
 - with 0-ary opr. $raise_e \ (e \in E)$
- Nondeterminism ${\cal P}$
 - with binary opr. \sqcup
- Probability $\boldsymbol{\mathcal{D}}$, where

$$\mathcal{D}X = \{d\colon X o [0,1] \mid \sum_x d(x) \leq 1\}$$

- with binary opr. $\sqcup_p \; (p \in [0,1])$
- Global state $(1 + S \times _)^S$
 - with |V|-ary $lookup_l$ and unary $update_{l,v}$

$$\left\{ \alpha_{A,B} \colon (A \Rightarrow TB)^{|\alpha|} \longrightarrow (A \Rightarrow TB) \right\}_{A \in \operatorname{Sets}, B \in \mathcal{K}\ell(T)}$$

For the calculus: λ_c + (alg. opr. from Σ) + (co)products + arith.

$$rac{\Gammadash M_1: au \quad \cdots \quad \Gammadash M_{|lpha|}: au}{\Gammadash lpha(M_1,\dots,M_{|lpha|}): au} \; lpha \in \Sigma$$

Hasuo (Tokyo)

* Given:

- * a monad T on Sets,
 s.t. Kl(T) is Cppo-enriched
- * an alg. signature Σ with

algebraic operations on T [Plotkin & Power]

- Exception $1 + E + (_)$
 - with 0-ary opr. $\mathbf{raise}_{e} \ (e \in E)$
- Nondeterminism ${\cal P}$
 - with binary opr. \Box
- Probability $\boldsymbol{\mathcal{D}}$, where

$$\mathcal{D}X = \{d\colon X o [0,1] \mid \sum_x d(x) \leq 1\}$$

- with binary opr. $\sqcup_p \ (p \in [0,1])$
- Global state $(1 + S \times _)^S$
 - with |V|-ary $lookup_l$ and unary $update_{l,v}$

$$\left\{ \alpha_{A,B} \colon (A \Rightarrow TB)^{|\alpha|} \longrightarrow (A \Rightarrow TB) \right\}_{A \in \text{Sets}, B \in \mathcal{K}\ell(T)}$$

* For the calculus: λ_c + (alg. opr. from Σ) + (co)products + arith.

Missing Ingredient I: Alg. Opr.

* $\alpha \in \Sigma_n$ an alg. operation

Missing Ingredient I: Alg. Opr.

* $\alpha \in \Sigma_n$ an alg. operation

Missing Ingredient I: Alg. Opr.

Missing Ingredient II: Recursion

Obviously a fixed point
Fixed-point induction

Missing Ingredient II: Recursion

Obviously a fixed point
Fixed-point induction

Theorem The two coincide. (for any suitable T!)

Hasuo (Tokyo)

The Memoryful GoI Framework

* Given:

- * a monad T on Sets,
 s.t. Kl(T) is Cppo-enriched
- * an alg. signature Σ with

algebraic operations on T[Plotkin & Power]

- Exception $1 + E + (_)$
 - with 0-ary opr. $\mathbf{raise}_{e} \ (e \in E)$
- Nondeterminism ${\cal P}$
 - with binary opr. \sqcup
- Probability $\boldsymbol{\mathcal{D}}$, where
 - $\mathcal{D}X = \{d\colon X
 ightarrow [0,1] \mid \sum_x d(x) \leq 1\}$
 - with binary opr. $\sqcup_p \ (p \in [0,1])$
- Global state $(1 + S \times _)^S$
 - with |V|-ary $lookup_l$ and unary $update_{l,v}$

$$\left\{ \alpha_{A,B} \colon (A \Rightarrow TB)^{|\alpha|} \longrightarrow (A \Rightarrow TB) \right\}_{A \in \operatorname{Sets}, B \in \mathcal{K}\ell(T)}$$

* For the calculus: λ_c + (alg. opr. from Σ) + (co)products

The Memoryful GoI Framework

k Given:

- * a monad T on Sets,
 s.t. Kl(T) is Cppo-enriched *
- * an alg. signature Σ with algebraic operations on T [Plotkin & Power]

- Exception $1 + E + (_)$
 - with 0-ary opr. $raise_e \ (e \in E)$
- Nondeterminism ${\cal P}$
 - with binary opr. \Box
- *Probability* **D**, where
 - $\mathcal{D}X = \{d\colon X o [0,1] \mid \sum_x d(x) \leq 1\}$
 - with binary opr. $\sqcup_{\boldsymbol{p}} (\boldsymbol{p} \in [0, 1])$
- Global state $(1 + S \times _)^S$
 - with |V|-ary $lookup_l$ and unary $update_{l,v}$

$$\left\{ lpha_{A,B} \colon (A \Rightarrow TB)^{|lpha|} \longrightarrow (A \Rightarrow TB)
ight\}_{A \in \operatorname{Sets}, B \in \mathcal{K}\ell(T)}$$

* For the calculus: λ_c + (alg. opr. from Σ) + (co)products

...

...

 $(\Gamma \vdash M : \tau)$

We give

$$rac{\Gammadash M_1: au \ \cdots \ \Gammadash M_{|lpha|}: au}{\Gammadash lpha(M_1,\ldots,M_{|lpha|}): au} \ lpha \in$$

asuo (Tokyo

Trans(T) by Coalgebraic Component Calculus

QuickTime Player File Edit View Window Help	Developed by Koko Muroya <u>http://koko-m.github.io/TtT/</u>
TtT × + (*) (*) koko-m.github.io/TtT/ *	で 合自 Q Search
TtT (Terms to Transducers)	
((rec(nipLoopSimple X) (choose(0.4) X (nipLoopSimple X))) o)	

This is a simulation tool of the <u>memoryful Gol</u> framework. Implemented by <u>Koko Muroya</u>, using <u>Processing.js</u> v1.4.8 and <u>PEG.js</u> v0.8.0.

Summary

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

Summary

Coalgebra meets higher-order computation in Geometry of Interaction [Girard, LC'88]

GoI + algebraic effects [Plotkin & Power]

computation

Girard, LC'88]

GOL W/ T-branching [IH & Hoshino, LICS'11]

[Hoshino, Muroya & IH, CSL-LICS'14 & POPL'16]

Hasuo (Tokyo)

Categorical GoI

[Abramsky, Haghverdi & Scott, MSCS'02]

GoI + algebraic effects [Plotkin & Power] * via T-branching transducers Compositional translation $(\Gamma \vdash M : \tau)$ ==> implementation TtT * (Categorical GoI + realizability) ==> categorical model * Thm. Adequacy * "Correct-by-construction" compilation!

Categorical GoI [Abramsky, Haghverdi & Scott, MSCS'02

Girard, LC'88]

T-branching [IH & Hoshino, LICS'11]

[Hoshino, Muroya & IH, CSL-LICS'14 & POPL'16]

Hasuo (Tokyo)

Samson Abramsky Laboratory for the Foundations of Computer Science University of Edinburgh

1 Introduction

The very existence of the CONCUR conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75]¹, which led in a fairly direct line to his enormously influential work on CCS [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some different paths could have been taken, which, it can be argued, lead to a more unified approach to the semantics of computation, and moreover one which may be better suited to modelling today's concurrent, object-oriented languages, and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of $transducers,\ i.e.$ structures

CONCUR'96

Hasuo (Tokyo)

 (Q, X, Y, q_0, δ)

Samson Abramsky Laboratory for the Foundations of Computer Science University of Edinburgh

1 Introduction

The very existence of the CONCUR conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75]¹, which led in a fairly direct line to his enormously influential work on CCS [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some different paths could have been taken, which, it can be argued, lead to a more unified approach to the semantics of computation, and moreover one which may be better suited to modelling today's concurrent, object-oriented languages, and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of $transducers,\ i.e.$ structures

CONCUR'96

Hasuo (Tokyo)

 (Q, X, Y, q_0, δ)

Samson Abramsky Laboratory for the Foundations of Computer Science University of Edinburgh

1 Introduction

The very existence of the CONCUR conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75]¹, which led in a fairly direct line to his enormously influential work on CCS [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some different paths could have been taken, which, it can be argued, lead to a more unified approach to the semantics of computation, and moreover one which may be better suited to modelling today's concurrent, object-oriented languages, and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of $transducers,\ i.e.$ structures

CONCUR'96

Hasuo (Tokyo)

 (Q, X, Y, q_0, δ)

Samson Abramsky Laboratory for the Foundations of Computer Science University of Edinburgh

1 Introduction

The very existence of the CONCUR conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially different emphases and techniques to those prominent elsewhere in the semantics of computation.

Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75]¹, which led in a fairly direct line to his enormously influential work on CCS [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some different paths could have been taken, which, it can be argued, lead to a more unified approach to the semantics of computation, and moreover one which may be better suited to modelling today's concurrent, object-oriented languages, and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner's starting point was the classical automata-theoretic notion of $transducers,\ i.e.$ structures

 (Q, X, Y, q_0, δ)

Thank you for your attention! Ichiro Hasuo (Dept. CS, U Tokyo) http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

CONCUR'96

Hasuo (Tokyo)