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Two presentations:

(Operator-) Algebraic [Girard]

Token machines/
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Categorical GoI
Axiomatics of GoI in the categorical language
Our main reference:

[AHS02]  S. Abramsky, E. Haghverdi, and P. Scott, 
Geometry of interaction and linear combinatory 
algebras, Math. Str. Comp. Sci, 2002
Especially its technical report version (Oxford CL), 
since it’s a bit more detailed

See also: 

IH and Naohiko Hoshino. Semantics of Higher-Order 
Quantum Computation via Geometry of Interaction. 
Extended ver. of [LICS’11], to appear in Annals Pure & 
Applied Logic. arxiv.org/abs/1605.05079
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Linear Combinatory Algebra 
(LCA)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 �⇥ A

• a unary operator
! : A �⇥ A

• (combinators) distinguished elements B,C, I,K,W,D, �, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

� !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds
stronger than · does.
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F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds
stronger than · does.

Model of              
untyped linear λ
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closed linear λ-term

No S or K (linear!)

Combinatory completeness: 
e.g.

designates an elem. of A

�xyz. zxy

What 
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GoI situation
What we use (ingredient)

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Friday, June 24, 16
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Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

(C,⌦, I)
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• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

(C,⌦, I)
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GoI situation
Monoidal category

String diagrams

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

(C,⌦, I)

A
f�! B B

g�! C

A
g�f�! C

A

B

C

g

f

gf

h

h � (f ⌦ g)

A

B

C
gf

D

A
f�! B C

g�! D

A ⌦ C
f⌦g�! B ⌦ D
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GoI situation
Traced monoidal category

“feedback”

that is

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

A ⌦ C
f�! B ⌦ C

A
tr(f)�! B

tr7�!f
A

B

C

C

A

B

tr(f)
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Hasuo (Tokyo)
Pipe diagram

I use two ways of depicting partial 
functions

String Diagram vs. 
“Pipe Diagram”

N * N

String diagram

JMK

N

N
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Pipe diagram

I use two ways of depicting partial 
functions

String Diagram vs. 
“Pipe Diagram”

N * N

String diagram

JMK

N

N

In the monoidal category
(Pfn,+, 0)

Friday, June 24, 16
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Traced Sym. Monoidal Category  

Category Pfn of partial functions

Obj.  A set X

Arr.  A partial function

X ! Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)
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Traced Sym. Monoidal Category  

Category Pfn of partial functions

Obj.  A set X

Arr.  A partial function

is traced symmetric monoidal

X ! Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)
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Traced Sym. Monoidal Category  

                             How?

 

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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Traced Sym. Monoidal Category  

                             How?

 
f

X

Y

Z

Z

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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Traced Sym. Monoidal Category  

                             How?

 
f

X

Y

Z

Z

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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Traced Sym. Monoidal Category  

                             How?

 
f

X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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Traced Sym. Monoidal Category  

                             How?

 

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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Traced Sym. Monoidal Category  

                             How?

 

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY t
 
a

n2N
fZY � (fZZ)

n � fXZ

!

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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Traced Sym. Monoidal Category  

                             How?

 

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY t
 
a

n2N
fZY � (fZZ)

n � fXZ

!

Execution formula (Girard)

Partiality is essential (infinite loop)

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn
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GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)
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[|  M|] [|  N|]

...

... ...

...

...

...

JMNK
=

[|  MN|]
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[|  M|] [|  N|]

...

... ...

...

...

...

JMNK
=

[|  MN|]

 in string diagramJMK JNK
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GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Leading example: Pfn

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)

M N M

N

M

N

= = tr[ ]
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GoI situation

Functor F

For obtaining  ! : A → A

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Defn. (Retraction)

A retraction from X to Y ,

f : X C Y : g ,

is a pair of arrows

Xid 99

f
((
Y

g
hh

such that g � f = idX .

“embedding”

“projection”
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GoI situation
The reflexive object U

 Retr. 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

U ⌦ U

j
))U

k

hh
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GoI situation
The reflexive object U

 Retr. 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

U ⌦ U

j
))U

k

hh

          ,         with

                 =  id

j k

j

k
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GoI situation
The reflexive object U

Why for GoI? 

Example in Pfn: 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k M N
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GoI situation
The reflexive object U

Why for GoI? 

Example in Pfn: 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k M N

Friday, June 24, 16



Hasuo (Tokyo)

GoI situation
The reflexive object U

Why for GoI? 

Example in Pfn: 

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k M N

N ⇥ Pfn, with

N + N �= N,
N · N �= N
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

(Pfn, N · , N)

Friday, June 24, 16



Hasuo (Tokyo)

Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

tr7�!f
A

B

C

C

A

B

tr(f)

(Pfn, N · , N)
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

          ,        j k

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)

· · · · · ·

· · ·
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Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.
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Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...
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Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)
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Categorical GoI:
Constr. of an LCA

 

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)

g f=

g · f
:= tr

�
(U � f) ⇥ k ⇥ g ⇥ j

�

=
f

g
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Categorical GoI:
Constr. of an LCA

 

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)

! f := u � Ff � v

=

U

v

u

Ff
FU

FU

U

=
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
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Categorical GoI:
Constr. of an LCA
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Categorical GoI:
Constr. of an LCA
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Categorical GoI:
Constr. of an LCA
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Categorical GoI:
Constr. of an LCA
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
Nice dynamic interpretation of 
(linear) computation!!
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Summary: 
Categorical GoI

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v
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Outline
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI 
[Abramsky, Haghverdi & Scott, MSCS’02]
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Outline
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI 
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/ 
T-branching 
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN
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Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Strategy: find a TSMC!

“Wave-style” examples

⊗ is Cartesian product(-like)

in which case, 

trace  ≈  fixed point operator [Hasegawa/Hyland]

An example: 

(... less of a dynamic flavor)

�
(�-Cpo,⇥, 1), ( )

N, AN �

M N
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“Particle-style” examples

Obj. X∈C is set-like; ⊗ is coproduct-like

The GoI animation is valid

Examples:

Partial functions

Binary relations

“Discrete stochastic                               
relations”

M N

�
(Pfn,+, 0), N · , N

�

�
(Rel,+, 0), N · , N

�

�
(DSRel,+, 0), N · , N

�

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]
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Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn  (partial functions)

Rel  (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
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A Coalgebraic View
Theory of coalgebra =                       
Categorical theory of state-based dynamic systems 
(LTS, automaton, Markov chain, ...)

In my thesis (2008): 

Coalgebras in a Kleisli category Kl(T)

➜ Generic theory of trace and simulations

X ! Y in K`(T )

X ! TY in Sets
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Examples Other Than Pfn

Pfn  (partial functions)

Rel  (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and                 
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Kl(T) for different branching 
monads T  
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Thm. ([Jacobs,CMCS10])
Given a “branching monad” T on Sets, the
monoidal category

(K`(T ),+, 0)

is

• a unique decomposition category

[Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor.�
(K`(T ),+, 0), N · , N

�
is a GoI situation.

Branching Monad: Source of 
Particle-Style GoI Situations
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Thm. ([Jacobs,CMCS10])
Given a “branching monad” T on Sets, the
monoidal category

(K`(T ),+, 0)

is

• a unique decomposition category

[Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor.�
(K`(T ),+, 0), N · , N

�
is a GoI situation.

Branching Monad: Source of 
Particle-Style GoI Situations

Monads in 
[Hasuo,Jacobs&Sokolova07]

Kl(T) is Cpo⊥-enriched

like L, P, D

Particle-style: trace via 
the execution formula

tr(f) =

fXY t
 
a

n2N
fZY � (fZZ)

n � fXZ

!
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
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(linear λ + prep./Unitary/meas.)
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Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
TSMC

Fancy
monad

Model for (a variant of) the 
Selinger-Valiron 
quantum λ-calculus 
(linear λ + prep./Unitary/meas.)
[Hasuo & Hoshino, LICS’11 & APAL’16]

via the quantum branching monad
... with considerable complication :(

where
J� ` M : ⌧ K : J�K �! (J⌧ K ( R) ( R

R =

⇢

•

•

•
...

•
...

p1 q1•

•
...

•
...

p0 q0

p" q"
���� p↵, q↵ 2 [0, 1]

�
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
TSMC

Fancy
monad

Model for (a variant of) the 
Selinger-Valiron 
quantum λ-calculus 
(linear λ + prep./Unitary/meas.)
[Hasuo & Hoshino, LICS’11 & APAL’16]

via the quantum branching monad
... with considerable complication :(

where
J� ` M : ⌧ K : J�K �! (J⌧ K ( R) ( R

R =

⇢

•

•

•
...

•
...

p1 q1•

•
...

•
...

p0 q0

p" q"
���� p↵, q↵ 2 [0, 1]

�

Records measurement 
outcomes

R as a suitable final 
coalgebra in the 
realizability category
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Challenge: Memorizing Effects
Nondeterministic choice is resolved 
➜ we must stick to it!

Is CBV to blame? 
(GoI is inherently CBN...)

(�x. x + x)(3 t 5) �!CBV 6 or 10
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Challenge: Memorizing Effects
Nondeterministic choice is resolved 
➜ we must stick to it!

Is CBV to blame? 
(GoI is inherently CBN...)

Not really: it’s also hard to get

Mathematically:

(M t N)L = ML t NL

(�x. x + x)(3 t 5) �!CBV 6 or 10

f
A

B

C

C

A

B

C

C

g : A + C �! P(B + C), ,

tr(f [ g) 6= tr(f) [ tr(g)

Given
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Outline
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI 
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/ 
T-branching 
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN
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Outline
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”

Categorical GoI 
[Abramsky, Haghverdi & Scott, MSCS’02]

GoI w/ 
T-branching 
[IH & Hoshino, LICS’11]

ÏÏf
f : N ! TN

ÏÏf f : X ⇥ N !
T (X ⇥ N)

x 2 X

Memoryful GoI 
[Hoshino, Muroya & IH, 
CSL-LICS’14 & POPL’16]
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Memoryful GoI
s

Friday, June 24, 16



Hasuo (Tokyo)

Equip piping with
internal states, or memory

not

but a transducer (Mealy machine)

Memoryful GoI

J3 t 5K : N �! PN , q 7�! {3, 5}

J3 t 5K : X ⇥ N �! P(X ⇥ N) , slq/3
88

s0
q/3
oo

✏✏ q/5
// sr q/5
gg

s
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Equip piping with
internal states, or memory

not

but a transducer (Mealy machine)

Not a new idea: 

Slices in GoI for additives [Laurent, TLCA’01]

Resumption GoI [Abramsky, CONCUR’96]

Memoryful GoI
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J3 t 5K : X ⇥ N �! P(X ⇥ N) , slq/3
88
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oo
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gg
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Memoryful GoI
That is... 
a traversing token rearranges piping!
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We introduce memory in a structured manner... 
➜ 
the “traced monoidal category” of transducers

Memoryful GoI

Trans(T ) Objects: sets A,B, . . .

Arrows:
A �! B in Trans(T )

�
X, X ⇥ A

c! T (X ⇥ B), x0 2 X

�
, T -transducer
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Trans(T) by Coalgebraic 
Component Calculus
[Barbosa ’03][IH & Jacobs ’11] Trans(T ) Objects: sets A,B, . . .
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Trans(T) by Coalgebraic 
Component Calculus
[Barbosa ’03][IH & Jacobs ’11]
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Trans(T) by Coalgebraic 
Component Calculus
[Barbosa ’03][IH & Jacobs ’11]
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Fix: quotient modulo
behavioral equivalence 
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Given:

a monad T on Sets, 
s.t. Kl(T) is Cppo-enriched
an alg. signature Σ with 
algebraic operations on T
[Plotkin & Power]

For the calculus: λc + (alg. opr. from Σ) + (co)products + arith.

We give

The Memoryful GoI Framework

n

↵A,B : (A ) TB)|↵| �! (A ) TB)
o

A2Sets,B2K`(T )
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Given:

a monad T on Sets, 
s.t. Kl(T) is Cppo-enriched
an alg. signature Σ with 
algebraic operations on T
[Plotkin & Power]

For the calculus: λc + (alg. opr. from Σ) + (co)products + arith.

We give

The Memoryful GoI Framework

n

↵A,B : (A ) TB)|↵| �! (A ) TB)
o

A2Sets,B2K`(T )

• Exception 1 + E + ( )

– with 0-ary opr. raise

e

(e 2 E)

• Nondeterminism P
– with binary opr. t

• Probability D, where

DX = {d : X ! [0, 1] |
P

x

d(x)  1}
– with binary opr. t

p

(p 2 [0, 1])

• Global state (1 + S ⇥ )

S

– with |V |-ary lookup

l

and unary update

l,v
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Trans(T) by Coalgebraic 
Component Calculus
[Barbosa ’03][IH & Jacobs ’11]
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        , an alg. operation

Missing Ingredient I: Alg. Opr.
↵ 2 ⌃n

A

B

(X1,c1,x1)

A

B

(Xn,cn,xn)α(         , ... ,         )

=

0

BBBBBBBB@

{⇤} + X1 + · · · + Xn ,

⇤

xn

cn

· · ·xi

ci

· · ·x1

c1

, ⇤

1

CCCCCCCCA
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Fresh initial 
state
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        , an alg. operation

Missing Ingredient I: Alg. Opr.
↵ 2 ⌃n
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B

(X1,c1,x1)
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B

(Xn,cn,xn)α(         , ... ,         )

=

0

BBBBBBBB@

{⇤} + X1 + · · · + Xn ,

⇤

xn

cn

· · ·xi

ci

· · ·x1

c1

, ⇤

1

CCCCCCCCA

Fresh initial 
state

T-branching given by
n

↵A,B : (A ) TB)|↵| �! (A ) TB)
o

A2Sets,B2K`(T )
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Missing Ingredient II: Recursion

Muroya (U. Tokyo)

Component Calculus for Recursion

15

Girard style 
fixed point operator

Mackie style 
fixed point operator

c

A

A

N×A

N×A

c c c . . . c

c̃
∗

A

c̃′
∗

A

d̃′
∗

A

d̃
∗

A

ẽ
∗

A

ẽ′
∗

A

A

A

N × A

N × A

N × A

N × A

N × N × A

N × N × A

N × A

N × A

Obviously a fixed point
Fixed-point induction

Finitary string diagram
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Missing Ingredient II: Recursion

Muroya (U. Tokyo)

Component Calculus for Recursion

15

Girard style 
fixed point operator

Mackie style 
fixed point operator
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ẽ′
∗

A

A

A

N × A

N × A

N × A

N × A

N × N × A

N × N × A

N × A

N × A

Obviously a fixed point
Fixed-point induction

Finitary string diagram

Theorem  The two coincide. (for any suitable T!)

Friday, June 24, 16



Hasuo (Tokyo)

Given:

a monad T on Sets, 
s.t. Kl(T) is Cppo-enriched
an alg. signature Σ with 
algebraic operations on T
[Plotkin & Power]

For the calculus: λc + (alg. opr. from Σ) + (co)products

We give

The Memoryful GoI Framework

n

↵A,B : (A ) TB)|↵| �! (A ) TB)
o

A2Sets,B2K`(T )

• Exception 1 + E + ( )

– with 0-ary opr. raise

e

(e 2 E)

• Nondeterminism P
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Let ` M : nat. Then, as elem. of T (N),
 !†
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z
.

N
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L` M : nat M
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Opr. sem.:
Plotkin-Power 
effect-value. E.g.
�� 3 t (5 t div)

�� =

t

t

?5

3
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Interpretation

(exploiting free conti. Σ-alg.)
J K : E↵Val⌃N �! T (N)
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Trans(T) by Coalgebraic 
Component Calculus
[Barbosa ’03][IH & Jacobs ’11]
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Our Tool TtT Developed by Koko Muroyahttp://koko-m.github.io/TtT/
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Summary
Coalgebra meets higher-order computation

in Geometry of Interaction [Girard, LC’88]

“GoI Animation”
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Retracing some paths in Process Algebra

Samson Abramsky
Laboratory for the Foundations of Computer Science

University of Edinburgh

1 Introduction

The very existence of the concur conference bears witness to the fact that
“concurrency theory” has developed into a subject unto itself, with substan-
tially different emphases and techniques to those prominent elsewhere in the
semantics of computation.

Whatever the past merits of this separate development, it seems timely
to look for some convergence and unification. In addressing these issues, I
have found it instructive to trace some of the received ideas in concurrency
back to their origins in the early 1970’s. In particular, I want to focus on
a seminal paper by Robin Milner [Mil75]1, which led in a fairly direct line
to his enormously influential work on ccs [Mil80, Mil89]. I will take (to the
extreme) the liberty of of applying hindsight, and show how some different
paths could have been taken, which, it can be argued, lead to a more unified
approach to the semantics of computation, and moreover one which may
be better suited to modelling today’s concurrent, object-oriented languages,
and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner’s starting point was the classical automata-theoretic notion of trans-
ducers, i.e. structures

(Q,X, Y, q0, δ)

where Q is a set of states, q0 ∈ Q the initial state, X the set of inputs, Y
the set of outputs, and

δ : Q×X ⇀ Y ×Q

1Similar ideas appeared independently in the work of Hans Bekić [Bek71].

1

CONCUR’96
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1

CONCUR’96
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