

Outline

- Fibration esp. Clarn-fibr. For observabilizy Structur Ls - Fibrational Coinduction for bisim. -life notions - Codensiry Lifting "Canonical functor lifting based on observations" Codensiry Bisimilariry Ganes - Usage 1 : Komorida+, lics19

References

- [Katsunata, Sato, CALCO'[5]
- [Sprunger, Karsumata, Dubut, Hasno, CMCS'18]
- [Komorida, Katsumata, Hu, Klin, Hasuo, LICS'19]
- [komorida, Karsumata, Kupke, Rot,
 Jacobs, Hasuo, preprint]

Fibration

- Ref.: Categorical Logic & Type theory, Bart Jacobs, 1929, Elsevier
- We focus on Clarn fibrations:

Prop. Cartesion littings
induce functors

$$f^{+}: E_{T} \rightarrow IE_{X}$$

The fiber over X
obj. P s.r. $pl = x$
arr. u s.r. $pu = 1d_{X}$
Def. E
 I_{P} is a Charn-fil. if
 I_{B}
- each fiber E_{X} is a Compl. lattice
- each freindexing f^{+} preserve $\prod_{(heart)}$

Cllath-Fib. Examples
PMeth
J
Sets

$$d_{1}$$
: (x, d)
 T_{1} -biak pseudometric
 $arr. Non expansive maps$
 $f:(x,d) \rightarrow (T,e)$
 $e \in (f_{x}, f_{x}') \leq d(x, x')$
 $f:(x,d) \rightarrow (T,e)$
 $e \in (f_{x}, f_{x}') \leq d(x, x')$
 $f:(x,d) \rightarrow (T,e)$
 $e \in (f_{x}, f_{x}') \leq d(x, x')$
 $f:(x,d) \rightarrow (T,e)$
 $f:(x,d)$

Outline

- Fibration esp. Clarn-fibr. For observabilizy Structur Ls - Fibrational Coinduction for bisim. - like notions - Codensiry Lifting "Canonical functor lifting based on observations" Codensiry Bisimilariry Ganes - Usage 1 : Komorida+, lics19

Fibrational Coinduction

- Predicate Transformer C*F

-(c*F)P : "observability induced by Pone step ahead"

Outline

- Fibration esp. Clarn-fibr. For observabilizy Structur Ls - Fibrational Coinduction for bisim. -life notions - Codensiry Lifting "Canonical functor lifting based on observations" Codensiry Bisimilariry Ganes - Usage 1 : Komorida+, lics19

- History

 [Katsumata & Sato, CALCO'15]: introduction
 [Sprunger, Katsumata, Dubut, Hasuo, CMCS'18]: elaboration
 [Komorida, Katsumata, Hu, Klin, Hasuo, LICS'19]: intuitions and combination with games

Codensiry Lifting

Given a FE with P FGC FGC, FGC

define $IE \xrightarrow{f^{\Omega, r}} E$ by

$$F^{\Omega,\tau}(P) = \prod (\tau \circ F(pf))^*(\Omega)$$

$$f: P \to \Omega$$

in E

Given a *IE* Clarn-fil. *JP* with FGC

define $IE \xrightarrow{f^{n,r}} E by$

observability ett.

Q win

$$F^{\Omega,\tau}(P) = \prod_{\substack{i \in P \to \Omega \\ i \in E}} (\tau \circ F(pf))^*(\Omega)$$
the coarsest if $F: P \to \Omega$

$$F: P \to \Omega$$

Outline

- Fibration esp. Clarn-fibr. For observabilizy Structur Ls - Fibrational Coinduction for bisim. -life notions - Codensiry Lifting "Canonical functor lifting based on observations" Codensiry Bisimilariry Ganes - Usage 1 : Komorida+, lics19

- Conventionally ;

TABLE ITHE GAME FOR PROBABILISTIC BISIMILARITY FROM [13]

position	player	possible moves
$(x,y) \in X^2$	S	$Z \subseteq X$ s.t. $c(x)(Z) \neq c(y)(Z)$
$Z \subseteq X$	D	$(x',y') \in X^2$ s.t. $x' \in Z \land y' \not\in Z$

Codensity Bisin'llavity Ganes
Def. In IE
$$\Re$$

 \downarrow
 FGC $F\Omega \rightarrow \Omega$
 $\stackrel{\text{Here}}{\underset{F_{x} \rightarrow F\Omega}{}} \stackrel{\text{where}}{\underset{F_{x} \rightarrow F\Omega}{}} \stackrel{\text{where}}{\underset{F_{x} \rightarrow F\Omega}{}} \stackrel{\text{where}}{\underset{F_{x} \rightarrow F\Omega}{}} \stackrel{\text{with}}{\underset{F_{x} \rightarrow F\Omega}{}} \stackrel{\text{there}}{\underset{F_{x} \rightarrow F\Omega}{}}$

position	pl.	possible moves
$P \in \mathbb{E}_X$	S	$k \in \mathbb{C}(X, \Omega)$ s.t.
		$ au \circ Fk \circ c : (X, P) i (\Omega, \mathbf{\Omega})$
$k \in \mathbb{C}(X, \Omega)$	D	$P' \in \mathbb{E}_X \text{ s.t. } k : (X, P') \not\rightarrow (\Omega, \Omega)$

<u>Thu</u>: TEAE: - PEEx is a winning prosition for Duplicator - PE $U(x^{4}F^{\Omega,T})$ Trimming Codensity Games

Dot. A generating set & EEx is s.t. VPEEX. JACY. P= LIA. S is a fibered separator if Def. leg.in YTEC. YP.QEET. [HarnokC'18]) C>S $\gamma \stackrel{f}{\longrightarrow} \zeta$ Prop. Sf*P|Feg} Gf*P|Peg} E: fibered separator] GEES, generating set] f vv a generating ser of IEx

TABLE IIThe Game for (Probabilistic) Bisimulation Metric,
Adapting [13]

position	P	possible moves
(x,y,arepsilon)	S	$f: X \to [0, 1]$
$\in X^2 \times [0,1]$		such that $ E_{c(x)}[f] - E_{c(y)}[f] > \varepsilon$
$f \colon X \to [0,1]$	D	$(x', y', \varepsilon') \in X^2 \times [0, 1]$
		$ $ such that $ f(x') - f(y') > \varepsilon'$

TABLE XI

CODENSITY BISIMILARITY GAME FOR CONVENTIONAL BISIMILARITY

position	pl.	possible moves
$(x,y) \in X \times X$	S	$k \in \mathbf{Set}(X,2)$ s.t.
		$\exists x' \in c(x). \; k(x') = op$
		$ \Leftrightarrow \exists y' \in c(y). \ k(y') = \top $
$k \in \mathbf{Set}(X,2)$	D	(x'', y'') s.t. $k(x'') \neq k(y'')$

TABLE XII

CODENSITY BISIMILARITY GAME FOR DETERMINISTIC AUTOMATA AND THEIR LANGUAGE EQUIVALENCE

position	pl.	possible moves
$(x,y) \in X \times X$	S	If $\pi_1(x) \neq \pi_1(y)$ then S wins If $\pi_1(x) = \pi_1(y)$ then $a \in \Sigma$ and $k \in \mathbf{Set}(X, 2)$ s.t. $k(\pi_2(x)(a)) \neq k(\pi_2(u)(a))$
$a \in \Sigma$ and $k \in \mathbf{Set}(X, 2)$	D	$(x'',y'') \in X \times X \text{ s.t. } k(x'') \neq k(y'')$

TABLE XIII CODENSITY BISIMILARITY GAME FOR DETERMINISTIC AUTOMATA AND BISIMULATION TOPOLOGY

position	pl.	possible moves
$\mathcal{O} \in \mathbf{Top}_X$	S	$a \in \{\varepsilon\} \cup \Sigma \text{ and } k \in \mathbf{Set}(X, 2)$
		s.t. $\tau_a \circ (A_{\Sigma}k) \circ c : (X, \mathcal{O}) \xrightarrow{\cdot} (2, \mathbf{\Omega}_a)$
$a \in \{\varepsilon\} \cup \Sigma$	D	$\mathcal{O}' \in \mathbf{Top}_X$
and $k \in \mathbf{Set}(X,2)$		s.t. $k : (X, \mathcal{O}') \xrightarrow{\cdot} (2, \mathbf{\Omega}_a)$

TABLE XIV

CODENSITY BISIMILARITY GAME FOR NONDETERMINISTIC AUTOMATA AND THEIR BISIMILARITY

position	pl.	possible moves
$(x,y) \in X \times X$	S	If $\pi_1(x) \neq \pi_1(y)$ then S wins
		If $\pi_1(x) = \pi_1(y)$ then
		$a \in \Sigma$ and $k \in \mathbf{Set}(X, 2)$
		s.t. $\exists x' \in \pi_2(x)(a)$. $k(x') = \top$
		$\Leftrightarrow \exists y' \in \pi_2(y)(a). \; k(y') = \top$
$a \in \Sigma$ and	D	$(x'',y'') \in X \times X$ s.t. $k(x'') \neq k(y'')$
$k \in \mathbf{Set}(X,2)$		

Outline

- Fibration esp. Clarn-fibr. For observabilizy Structur Ls - Fibrational Coinduction for bisim. - like notions - Codensiry Lifting "Canonical functor lifting based on observations" Codensiry Bisimilariry Ganes - Usage 1 : Komorida+, lics19

- Refs.

[Koenig, Mika-Michalski, CONCUR'18] [Wild, Schröder, Pattinson, König, LICS'18 & IJCAI'19] [Clerc, Fijalkow, Klin, Panangaden, I&C'19]

(Technical details omitted... Stay tuned for our forthcoming paper!)

Outline

- Fibration esp. Clarn-fibr. For observabilizy Structur Ls - Fibrational Coinduction for bisim. - like notions - Codensiry Lifting "Canonical functor lifting based on observations" Codensiry Bisimilariry Ganes - Usage 1 : Komorida+, lics19

Other Recent Lines of Work

- Search-based testing by stochastic optimization and logic [EMSOFT'18, CAV'19]
- Martingales and automated analysis of probabilistic programs [TACAS'19]
- Monitoring by (parametric) timed automata [EMSOFT'18, ICECCS'18, CAV'19]
- Relational extension of differential dynamic logic
 [TACAS'20]
- Weighted-automata extraction from recurrent neural networks [AAAI'20]