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In other words: we present

generic theory of traces and simulations

employing theory of coalgebras.

Generalizes existing work such as [Lynch-Vaandrager'95]
on simulations and traces

Genericity: both non-determinism and probabilism are
handled in a uniform manner

Results such as: soundness of forward simulation
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Probabilistic LTS with explicit termination

(a, %)

Compared to the previous one,

B The transition type is the same, 1 4+ 32 X .
B Branching: probabilistic,
modelled by the subdistribution monad D

DX = {probability (sub)distributions over X }

={d: X = [0,1]| Y d(z) <1}

xeX 10/ 26
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Kleisli category /C¢('T") for monad T’

B Objects are sets (same as Sets)
X —Y inIC(T)

B Arrows:

X —TY inSets

O Arrows in ]C€(T") are functions with structured output. [Moggi]
O T"s effect is hidden in ICE(T").
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B Arrows:

X —TY inSets

O Arrows in ]C€(T") are functions with structured output. [Moggi]
O T"s effect is hidden in ICE(T").

Examples

B X — Yin ICK(P)
<— function X — PY “non-deterministic function”
<—> relation between X and Y

B X — Y inKé¢D)
<—> function X — DY “probabilistic function”
mapping « +— (prob. distribution over Y")
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hence
X —TY inSets
TEX FX
CT in Sets = CT in ICE('T")
X X

Branching is “absorbed in the base category IC¢(T")”
[Power-Turi, CTCS’99]

Now a system is an F'-coalgebra!

We can apply theory of coalgebras in }C€(T"):

what is

[1 coinduction?
[0  morphism of coalgebras?
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B What is the final coalgebra in IC€(T")?
Answer [CMCS’06] Initial F'-algebra in Sets!

B What is the unique map via coinduction?
Answer [CMCS’06] Trace semantics!

This holds for

B a wide variety of functors F' and

B monads T with a suitable order structure, such as P and D. (4126
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Coinduction in IC¢(P):

1+ X
system CT
X

X X———-——~- -1 4 2 X X"
%’T final coalg.
______ tr, >

The commutation amounts to
the standard (co)inductive definition of traces:

B () € tre(x)

iff v € c(x)

B a-s€Etre(x) Iiff

Jx’ € X.

(a,x’) € c(x) N s € tre(x))
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PX
O Ts :setof possible start states
1

DX
] Ts . probability distribution over possible start states
1 17 /26
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Let’s take a closer look...
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Forward simulations

In ICE(P): Note an arrow is a relation

1+¥X X —14+E¥XY :
CT - Td Yy —y
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Forward simulations

In ICE(P): Note an arrow is a relation
r — x r — o
p—
x
1+ X X—14+X XY : .
CT - T J y = v
X *Y
. X
Yy
x r — Iz’
Hence : . implies

y 5y yiy 19/26



Simulations yield trace inclusion (soundness)

Theorem (t,d) Cewa (8,¢) = tria C trse) -

FX » F'Y
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d ~| final
Yooy, A
¢
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1
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Simulations yield trace inclusion (soundness)
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Simulations yield trace inclusion (soundness)

Theorem (t,d) Cewa (8,¢) = tria C trse) -

treqy = trgqot C trgo fos L trros = trg,) .

B Proposition [Fiore’96/Plotkin]
Trace map is the biggest lax coalgebra morphism. 20 /26
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n KE(T) B L instead of _]
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Also: completeness result for hybrid “backward-forward”
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[]
[]

[]

Toward a generic theory

B Insummary : in Kleisli categories,

trace semantics via coinduction

forward/backward simulations as lax/oplax coalgebra
morphisms

soundness/completeness of simulations

B Genericity : valid for

[]

[]

monad T', type of branching :
P (non-determinism) or D (probabilism)

functor F', type of transition :
shapely (i.e. almost polynomial)
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B Practical implication : for a given type of systems,

[]

definition of forward/backward simulations
by instantiating coalgebraic definition,

for which soundness/completeness comes for free.

Cf. In formal verification, finding a simulation is a common
technique to establish trace inclusion.

Especially, a gap from non-deterministic systems to its
probabilistic version is trivial.

E.g. Probabilistic version of
“anonymity simulation” [Kawabe et al '06] (ongoing work)
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Conclusions and future work

B Theory of coalgebras, employed in Kleisli categories
B Generic theory of traces and simulations

[0 Soundness/completeness for free
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Conclusions and future work

Introductiof : MW Theory of coalgebras, employed in Kleisli categories
Coalgebras in Kleisli :

— : W Generic theory of traces and simulations

Trace semantics via N

ailiuction [0 Soundness/completeness for free

Simulations as lax/oplax ¢
coalgebra morphisms

Con;lusions and future ; Futu re WOI‘k
Summary M Infinite traces [Jacobs, CMCS’04]
Conclusions and future

e . M Internal actions
: W Linear-time logic using CXCAOI’)
(Ongoing work with A. Kurz)
B Process calculi and compositionality (bialgebraic view?)

B Semantics between trace sem. and bisimilarity, in the van
Glabbeek spectrum (Cf. B. Klin)

B As an instance of the bigger “systems and tests” view, via

(X AP
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