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Can the “theory of coalgebra” be more generic?

� Interpretation of coalgebraic notions, in other categories?
� Can we handle semantics other than bisimilarity?



Coalgebras in Kleisli categories

Introduction

Conventional view
Coalgebras in Kleisli
categories
Toward a generic
theory of traces and
simulations

References

Coalgebras in Kleisli
categories

Trace semantics via
coinduction

Simulations as lax/oplax
coalgebra morphisms

Conclusions and future
work

3 / 26

Can the “theory of coalgebra” be more generic?

� Interpretation of coalgebraic notions, in other categories?
� Can we handle semantics other than bisimilarity?

This talk : the theory of coalgebras

� In Kleisli categories
� For trace semantics and simulations
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In other words: we present

generic theory of traces and simulations

employing theory of coalgebras.

� Generalizes existing work such as [Lynch-Vaandrager’95]
on simulations and traces

� Genericity: both non-determinism and probabilism are
handled in a uniform manner

� Results such as: soundness of forward simulation




FX

X

c



 vfwd





FY

Y
d



 =⇒
trc v trd

(trace inclusion)

is via coinduction!
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For trace semantics and simulations,
we separate branching type and transition type.

In Sets

TFX

X

c

� T : a monad with suitable order,
specifying branching type.

� F : a functor,
specifying transition type.

� FT ⇒ TF , distributive law.

Let’s look at examples...
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(Non-deterministic) LTS with explicit termination

x a

a

y b

X

as a coalgebra

P(1 + Σ×X) { (a, x), (a, y)} { (b, y), X}

X x y

� Branching: non-deterministic,
modelled by the powerset monad P .

� Transition: either

� output symbol + next state, or
� termination X

modelled by the functor 1 + Σ × .
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Probabilistic LTS with explicit termination

x
(a, 1

3
)

(a, 1
3
)

1
3

y

1
2

(a, 1
2
)

z(a, 1) X

Compared to the previous one,

� The transition type is the same, 1 + Σ × .
� Branching: probabilistic,

modelled by the subdistribution monad D

DX = {probability (sub)distributions over X}

= {d : X → [0, 1] |
∑

x∈X

d(x) ≤ 1}
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Probabilistic LTS with explicit termination

x
(a, 1

3
)

(a, 1
3
)

1
3

y

1
2

(a, 1
2
)

z(a, 1) X

D(1 + Σ × X)

[

(a, z) 7→ 1/3
(a, y) 7→ 1/3

X 7→ 1/3

]

[

(a, y) 7→ 1/2
X 7→ 1/2

]

X

c

x y
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� Objects are sets (same as Sets)

� Arrows:
X Y in K`(T )

X TY in Sets

� Arrows in K`(T ) are functions with structured output. [Moggi]
� T ’s effect is hidden in K`(T ).

Examples

� X → Y in K`(P)
⇐⇒ function X → PY “non-deterministic function”
⇐⇒ relation between X and Y

� X → Y in K`(D)
⇐⇒ function X → DY “probabilistic function”

mapping x 7→ (prob. distribution over Y )
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X Y in K`(T )

X TY in Sets
hence

TFX

X

c in Sets =

FX

X

c in K`(T )

� Branching is “absorbed in the base category K`(T )”
� [Power-Turi, CTCS’99]
� Now a system is an F -coalgebra!
� We can apply theory of coalgebras in K`(T ):

what is

� coinduction?
� morphism of coalgebras?
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Coinduction in K`(T ):

FX FZ

X

system c

Z

final coalg.∼=

Questions

� What is the final coalgebra in K`(T )?

Answer [CMCS’06] Initial F -algebra in Sets!

� What is the unique map via coinduction?

Answer [CMCS’06] Trace semantics!

This holds for

� a wide variety of functors F and
� monads T with a suitable order structure, such as P and D.
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Coinduction in K`(P):

1 + Σ × X 1 + Σ × Σ∗

X

system c

trc
Σ∗

final coalg.∼=

The commutation amounts to
the standard (co)inductive definition of traces:

� 〈〉 ∈ trc(x) iff X ∈ c(x)

� a · s ∈ trc(x) iff
∃x′ ∈ X. (a, x′) ∈ c(x) ∧ s ∈ trc(x

′)
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It is convenient to have start states explicit.
Now a system is:

in K`(T )

FX

X

c

1

s
, that is, in Sets





TX

1

s ,
TFX

X

c





Examples

�

PX

1

s : set of possible start states

�

DX

1

s : probability distribution over possible start states
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are identified as lax morphisms of coalgebras!

FX

In K`(T )

Ff
FY

X

c

f

w

Y

d

1
s t

w

� d ◦ f v Ff ◦ c,
as functions X ⇒ TFY

� (s, c) simulates (t, d)

� Yields trace inclusion:
tr(t,d) v tr(s,c)

Let’s take a closer look...



#

$

%

Forward simulations

19 / 26

In K`(P): Note an arrow is a relation

1 + Σ × X 1 + Σ × Y

X

c www

x

Y

d
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In K`(P): Note an arrow is a relation

1 + Σ × X

x
a

→ x′

1 + Σ × Y

x
a

→ x′

...
y′

X

c www

x

Y

d
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In K`(P): Note an arrow is a relation

1 + Σ × X 1 + Σ × Y
x...
y

a
→ y′

X

c www

x

Y

d

x...
y
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In K`(P): Note an arrow is a relation

1 + Σ × X

x
a

→ x′

1 + Σ × Y

⇐=

x
a

→ x′

...
y′

x...
y

a
→ y′

X

c www

x

Y

d

x...
y

Hence
x...
y

a
→ y′

implies
x

a
→ ∃x′

...
...

y
a

→ y′

.
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Theorem (t, d) vfwd (s, c) =⇒ tr(t,d) v tr(s,c) .

FX FY

X

c

f

w

Y

d

1

s
w

t

tr(t,d) = trd ◦ t v trd ◦ f◦ s v trc ◦ s = tr(s,c) .
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Theorem (t, d) vfwd (s, c) =⇒ tr(t,d) v tr(s,c) .

FY FA

Y

d

trd
A

∼= final

1

t
tr(t,d)

tr(t,d) = trd ◦ t

v trd ◦ f◦ s v trc ◦ s = tr(s,c) .



2

Simulations yield trace inclusion (soundness)

20 / 26

Theorem (t, d) vfwd (s, c) =⇒ tr(t,d) v tr(s,c) .

FX FY FA

X

c

f

w

Y

d

trd
A

∼= final

1

s
w

t
tr(t,d)

tr(t,d) = trd ◦ t v trd ◦ f◦ s

v trc ◦ s = tr(s,c) .



3

Simulations yield trace inclusion (soundness)

20 / 26

Theorem (t, d) vfwd (s, c) =⇒ tr(t,d) v tr(s,c) .

FX FY FA

X

c

f

w

Y

d

trd
A

∼= final

1

s
w

t
tr(t,d)

trcw ww

tr(t,d) = trd ◦ t v trd ◦ f◦ s v trc ◦ s = tr(s,c) .

� Proposition [Fiore’96/Plotkin]
Trace map is the biggest lax coalgebra morphism.
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Similarly, backward simulations
as oplax morphisms of coalgebras:

FX

In K`(T )

Ff
FY

X

c

f

vvv

Y

d

1
s t

vvv

� vvv instead of w

� (t, d) simulates (s, c)

� For example:
x

a
→ x′

...
y′

implies
x

a
→ x′

...
...

∃y
a

→ y′

� Again yields trace inclusion:
tr(s,c) v tr(t,d)

Also: completeness result for hybrid “backward-forward”
simulations.



Backward simulations

Introduction

Coalgebras in Kleisli
categories

Trace semantics via
coinduction

Simulations as lax/oplax
coalgebra morphisms

Explicit start states

Forward simulations
Simulations yield trace
inclusion (soundness)

Backward simulations
Toward a generic
theory

Conclusions and future
work

21 / 26

Similarly, backward simulations
as oplax morphisms of coalgebras:

FX

In K`(T )

Ff
FY

X

c

f

vvv

Y

d

1
s t

vvv

� vvv instead of w

� (t, d) simulates (s, c)

� For example:
x

a
→ x′

...
y′

implies
x

a
→ x′

...
...

∃y
a

→ y′

� Again yields trace inclusion:
tr(s,c) v tr(t,d)
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� In summary : in Kleisli categories,

� trace semantics via coinduction

� forward/backward simulations as lax/oplax coalgebra
morphisms

� soundness/completeness of simulations

� Genericity : valid for

� monad T , type of branching :
P (non-determinism) or D (probabilism)

� functor F , type of transition :
shapely (i.e. almost polynomial)
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� Practical implication : for a given type of systems,

� definition of forward/backward simulations
by instantiating coalgebraic definition,

� for which soundness/completeness comes for free.

� Cf. In formal verification, finding a simulation is a common
technique to establish trace inclusion.

� Especially, a gap from non-deterministic systems to its
probabilistic version is trivial.

� E.g. Probabilistic version of
“anonymity simulation” [Kawabe et al ’06] (ongoing work)
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in Sets in Kleisli category
semantics to be captured bisimilarity trace equivalence

coalgebra
FX

X

system system

morphism of coalgebras
FX FY

X Y

functional
bisimulation

lax
FX

w
FY

X Y
:

forward simulation
oplax
FX

v
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X Y
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X
beh
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� Theory of coalgebras, employed in Kleisli categories

� Generic theory of traces and simulations

� Soundness/completeness for free

Future work

� Infinite traces [Jacobs, CMCS’04]
� Internal actions
� Linear-time logic using X Aop

(Ongoing work with A. Kurz)
� Process calculi and compositionality (bialgebraic view?)
� Semantics between trace sem. and bisimilarity, in the van

Glabbeek spectrum (Cf. B. Klin)
� As an instance of the bigger “systems and tests” view, via
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