Generic Theory for Traces and Simulations

Ichiro Hasuo Radboud University Nijmegen The Netherlands June 13, 2006

Conventional view

Conventional view

Introduction Theory of coalgebras in Sets Conventional view Coalgebras in Kleisli categories Toward a generic Mathematics for systems' behavior modulo bisimulation theory of traces and simulations interpretation in Sets coalgebraic notion References Coalgebras in Kleisli FXcategories coalgebra system Trace semantics via coinduction X Simulations as lax/oplax morphism of coalgebras coalgebra morphisms Conclusions and future $FX \longrightarrow FY$ behavior preserving map work i.e. functional bisimulation coinduction FX - - - - ightarrow FZ**beh** gives behavior final modulo bisimilarity beh

Introduction Conventional view Coalgebras in Kleisli	Can the "theory of coalgebra" be more generic?
categories Toward a generic theory of traces and simulations References	 Interpretation of coalgebraic notions, in other categories Can we handle semantics other than bisimilarity?
Coalgebras in Kleisli categories Trace semantics via coinduction	
coalgebra morphisms Conclusions and future work	

•	
Introduction Conventional view	Can the "theory of coalgebra" be more generic?
categories	
Toward a generic theory of traces and simulations	Interpretation of coalgebraic notions, in other categories?
References	Can we handle semantics other than bisimilarity?
Coalgebras in Kleisli categories	
Trace semantics via coinduction	
Simulations as lax/oplax coalgebra morphisms	This talk : the theory of coalgebras
Conclusions and future	In Kleisli categories
work	For trace semantics and simulations

Introduction		in Sota	in Klaidi aatagany
Conventional view			in rieisii calegory
Coalgebras in Kleisli	semantics to be captured	bisimilarity	
categories Toward a generic theory of traces and simulations References	coalgebra $egin{array}{c} FX \ \uparrow \ X \end{array}$	system	
Coalgebras in Kleisli			
Trace semantics via coinduction Simulations as lax/oplax coalgebra morphisms Conclusions and future work	morphism of coalgebras $FX \longrightarrow FY$ $\uparrow \qquad \uparrow$ $X \longrightarrow Y$	functional bisimulation	
	$egin{array}{c} coinduction \ oldsymbol{F}oldsymbol{X} otar oldsymbol{F}oldsymbol{Z} \ \uparrow &\cong\uparrow ext{final} \ oldsymbol{X} otar oldsymbol{Z} \ oldsymbol{beh} \end{array}$	beh gives bisimilarity	4

Toward a generic theory of traces and simulations

Introduction

Conventional view Coalgebras in Kleisli categories

Toward a generic theory of traces and simulations

References

Coalgebras in Kleisli categories

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Conclusions and future work

generic theory of traces and simulations

employing theory of coalgebras.

In other words: we present

- Generalizes existing work such as [Lynch-Vaandrager'95] on simulations and traces
- Genericity: both **non-determinism** and **probabilism** are handled in a uniform manner
- Results such as: soundness of forward simulation

$$egin{pmatrix} FX \ c\uparrow \ X \end{pmatrix} \sqsubseteq_{ ext{fwd}} egin{pmatrix} F \ d
lap{} \ J \end{bmatrix}$$

$egin{array}{c} FY \ d\uparrow \ V \end{array} ight) =$

 $\mathbf{tr}_{c} \sqsubseteq \mathbf{tr}_{d}$ (trace inclusion)

is via coinduction!

References

Introduction

- Conventional view Coalgebras in Kleisli categories
- Toward a generic theory of traces and simulations

References

- Coalgebras in Kleisli categories
- Trace semantics via coinduction
- Simulations as lax/oplax coalgebra morphisms
- Conclusions and future work

Ichiro Hasuo, Bart Jacobs and Ana Sokolova. Generic Trace Theory. Proc. CMCS 2006.

Ichiro Hasuo.

Generic Forward and Backward Simulations. Proc. CONCUR 2006.

Introduction	
Coalgebras in Kleisli categories	
Coalgebraic modelling of systems	
Example 1	
Example 2 (skip!)	
Kleisli category $\mathcal{K}\ell(T)$ for monad T	
Coalgebras in Kleisli category	
Trace semantics via))
coinduction	
Simulations as lax/oplax coalgebra morphisms	
Conclusions and future work	

Coalgebraic modelling of systems

Introduction	For trace se
Coalgebras in Kleisli categories	we separate
Coalgebraic modelling of systems	
Example 1	
Example 2 (skip!)	In Sets
Kleisli category $\mathcal{K}\ell(T)$ for monad T	
Coalgebras in Kleisli category	TFX
Trace semantics via coinduction	c
Simulations as lax/oplax coalgebra morphisms	
Conclusions and future	X

For trace semantics and simulations, we separate **branching type** and **transition type**.

T: a **monad** with suitable order, specifying branching type.

- **F**: a functor, specifying transition type.
- $FT \Rightarrow TF$, distributive law.

Let's look at examples...

Introduction

Coalgebras	in	Kleisli
categories		

Coalgebraic modelling of systems

Example 1

Example 2 (skip!) Kleisli category $\mathcal{K}\ell(T)$ for monad TCoalgebras in Kleisli category

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Conclusions and future work

(Non-deterministic) LTS with explicit termination

Example 2 (skip!)


```
Simulations as lax/oplax coalgebra morphisms
```

```
Conclusions and future work
```


Compared to the previous one,

- For the transition type is the same, $1+\Sigma imes$ _ .
- Branching: probabilistic,

modelled by the subdistribution monad ${\cal D}$

 $oldsymbol{\mathcal{D}} X = \{ ext{probability (sub)distributions over } X\} \ = \{d: X o [0,1] \mid \sum_{x \in X} d(x) \leq 1\}$

Example 2 (skip!)

Kleisli category $\mathcal{K}\ell(T)$ for monad T

Objects are sets (same as
$$\operatorname{Sets}$$
)
Arrows: $X \longrightarrow Y$ in $\mathcal{K}\ell(T)$
 $X \longrightarrow TY$ in Sets

Arrows in $\mathcal{K}\ell(T)$ are functions with **structured output**. [Moggi] \Box *T*'s effect is hidden in $\mathcal{K}\ell(T)$.

Kleisli category $\mathcal{K}\overline{\ell(T)}$ for monad T

Objects are sets (same as Sets)

$$X \longrightarrow Y$$
 in $\mathcal{K}\ell(T)$
Arrows in $\mathcal{K}\ell(T)$ are function

Arrows in $\mathcal{K}\ell(T)$ are functions with **structured output**. [Moggi] \Box *T*'s effect is hidden in $\mathcal{K}\ell(T)$.

Examples

$$egin{aligned} X o Y & ext{in} \, \mathcal{K}\ell(\mathcal{P}) \ & \iff & ext{function} \, X o \mathcal{P}Y & ext{`non-deterministic function''} \ & \iff & ext{relation between } X ext{ and } Y \end{aligned}$$

$$egin{aligned} X o Y ext{ in } \mathcal{K}\ell(\mathcal{D}) \ & \iff & ext{function } X o \mathcal{D}Y & ext{``probabilistic function''} \ & ext{mapping } x \mapsto (ext{prob. distribution over } Y) \end{aligned}$$

Introduction $X {\longrightarrow} Y$ in $\mathcal{K}\ell(T)$ Coalgebras in Kleisli hence categories Coalgebraic modelling $X \longrightarrow TY$ in Sets of systems Example 1 Example 2 (skip!) TFXFXKleisli category $\mathcal{K}\ell(T)$ for monad Tin Sets in $\mathcal{K}\ell(T)$ C С Coalgebras in Kleisli category XXTrace semantics via coinduction Simulations as lax/oplax coalgebra morphisms Branching is "absorbed in the base category $\mathcal{K}\ell(T)$ " Conclusions and future work

- I [Power-Turi, CTCS'99]
- Now a system is an F-coalgebra!
- We can apply theory of coalgebras in $\mathcal{K}\ell(T)$: what is
 - □ coinduction?
 - □ morphism of coalgebras?

Introduction
Coalgebras in Kleisli
categories
Trace semantics via coinduction
Coinduction in Kleisli
and a second second

category

Example

Simulations as lax/oplax coalgebra morphisms

Conclusions and future work

Trace semantics via coinduction [CMCS'06]

Coinduction in Kleisli category

Coinduction in Kleisli category

Introduction
Coalgebras in Kleisli
categories
Trace semantics via
coinduction

Coinduction in Kleisli category

Example

Simulations as lax/oplax coalgebra morphisms

Conclusions and future work

Coinduction in $\mathcal{K}\ell(\mathcal{P})$:

The commutation amounts to the standard (co)inductive definition of traces:

$$\ \ \, \blacksquare \ \ \, \langle\rangle\in {\rm tr}_c(x) \quad {\rm iff} \quad \checkmark\in c(x)$$

$$\begin{array}{ccc} \bullet & a \cdot s \in \mathsf{tr}_c(x) & \text{iff} \\ \exists x' \in X. & (a,x') \in c(x) \ \land \ s \in \mathsf{tr}_c(x') \end{array}$$

Introduction	٦.
muouuouoi	

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Explicit start states

Forward simulations Simulations yield trace inclusion (soundness)

Backward simulations Toward a generic theory

Conclusions and future work

Simulations as lax/oplax coalgebra morphisms [CONCUR'06]

Explicit start states

Introduction

Coalgebras in Kleisli categories

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Explicit start states

Forward simulations Simulations yield trace inclusion (soundness)

Backward simulations Toward a generic theory

Conclusions and future work

are identified as lax morphisms of coalgebras!

 $\begin{array}{c|c} d \circ f \sqsubseteq Ff \circ c, \\ \text{as functions } X \rightrightarrows TFY \end{array}$

(s,c) simulates (t,d)

Yields trace inclusion: $tr_{(t,d)} \sqsubseteq tr_{(s,c)}$

Let's take a closer look...

19 / 26

Theorem

$$(t,d) \sqsubseteq_{\mathrm{fwd}} (s,c) \implies \mathsf{tr}_{(t,d)} \sqsubseteq \mathsf{tr}_{(s,c)}$$

Theorem

$$(t,d) \sqsubseteq_{\mathrm{fwd}} (s,c) \implies \mathsf{tr}_{(t,d)} \sqsubseteq \mathsf{tr}_{(s,c)}$$

 $\mathsf{tr}_{(t,d)} = \mathsf{tr}_d \circ t \sqsubseteq \mathsf{tr}_d \circ \mathbf{f} \circ s \sqsubseteq \mathsf{tr}_c \circ s = \mathsf{tr}_{(s,c)} \; .$

Proposition [Fiore'96/Plotkin]

Trace map is the biggest lax coalgebra morphism.

Backward simulations

Introduction		
Coalgebras	in	Kleisli

categories

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Explicit start states

Forward simulations Simulations yield trace inclusion (soundness)

Backward simulations Toward a generic theory

Conclusions and future work

Similarly, backward simulations as **oplax morphisms of coalgebras**:

Again yields trace inclusion: $\mathbf{tr}_{(s,c)} \sqsubseteq \mathbf{tr}_{(t,d)}$

Backward simulations

Introduction Coalgebras in Kleisli categories Trace semantics via

coinduction

Simulations as lax/oplax coalgebra morphisms

Explicit start states

Forward simulations Simulations yield trace inclusion (soundness)

Backward simulations Toward a generic theory

Conclusions and future work

Similarly, backward simulations as **oplax morphisms of coalgebras**:

Also: **completeness result** for hybrid "backward-forward" simulations.

Introduction	
--------------	--

Coalgebras in Kleisli categories

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Explicit start states

Forward simulations Simulations yield trace inclusion (soundness)

Backward simulations Toward a generic theory

Conclusions and future work

In summary : in Kleisli categories,

- trace semantics via coinduction
- forward/backward simulations as lax/oplax coalgebra morphisms
 - soundness/completeness of simulations

Genericity : valid for

- \mathcal{P} monad T, type of branching : \mathcal{P} (non-determinism) or \mathcal{D} (probabilism)
- functor *F*, type of transition : shapely (i.e. almost polynomial)

Introduction	
Coalgebras in Kleisli categories	
Trace semantics via coinduction	
Simulations as lax/oplax coalgebra morphisms	
Explicit start states	
Forward simulations Simulations yield trace inclusion (soundness)	
Backward simulations	1
Toward a generic theory	
Conclusions and future work	

Practical implication : for a given type of systems,

definition of forward/backward simulations
 by instantiating coalgebraic definition,

Coalgebras in Kleisli
categories
Trace semantics via
coinduction

Introduction

Simulations as lax/oplax coalgebra morphisms

Explicit start states

Forward simulations Simulations yield trace inclusion (soundness)

Backward simulations

Toward a generic theory

Conclusions and future work

Practical implication : for a given type of systems,

- definition of forward/backward simulations
 by instantiating coalgebraic definition,
- □ for which soundness/completeness comes **for free**.
- Cf. In formal verification, finding a simulation is a common technique to establish trace inclusion.

	r	1	t	r	С)	d	ι	Į	С	ti	İ	0	ľ	٦	

Coalgebras in Kleisli categories

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Explicit start states

Forward simulations Simulations yield trace inclusion (soundness)

Backward simulations

Toward a generic theory

Conclusions and future work

Practical implication : for a given type of systems,

- definition of forward/backward simulations
 by instantiating coalgebraic definition,
- □ for which soundness/completeness comes for free.
- Cf. In formal verification, finding a simulation is a common technique to establish trace inclusion.
- Especially, a gap from non-deterministic systems to its probabilistic version is trivial.
 - E.g. Probabilistic version of

"anonymity simulation" [Kawabe et al '06] (ongoing work)

Introduction

Coalgebras in Kleisli categories

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Conclusions and future work

Summary

Conclusions and future work

Conclusions and future work

Summary

Conclusions and future work

Introduction	•
Coalgebras in Kleisli	•
Trace semantics via coinduction	•
Simulations as lax/oplax coalgebra morphisms	•
Conclusions and future work	
Summary Conclusions and future work	
	•

- Theory of coalgebras, employed in Kleisli categories
- Generic theory of traces and simulations
- □ Soundness/completeness for free

Conclusions and future work

Introduction

Coalgebras in Kleisli categories

Trace semantics via coinduction

Simulations as lax/oplax coalgebra morphisms

Conclusions and future work

Summary

Conclusions and future work

- Theory of coalgebras, employed in Kleisli categories
- Generic theory of traces and simulations
 - Soundness/completeness for free

Future work

- Infinite traces [Jacobs, CMCS'04]
- Internal actions
- Linear-time logic using $\mathcal{X} \longrightarrow \mathcal{A}^{op}$ (Ongoing work with A. Kurz)
- Process calculi and compositionality (bialgebraic view?)
- Semantics between trace sem. and bisimilarity, in the van Glabbeek spectrum (Cf. B. Klin)

As an instance of the bigger "systems and tests" view, via $\mathcal{X} \longrightarrow \mathcal{A}^{op}$