
Quantum
Geometry of Interaction

Ichiro Hasuo
University of Tokyo (JP)

Talk based on:
I. Hasuo & N. Hoshino,
Semantics of Higher-Order Quantum Computation via Geometry of Interaction,
In Proc. Logic in Computer Science (LICS), June 2011.

Naohiko Hoshino
RIMS, Kyoto University (JP)

1

Hasuo (Tokyo)

What’s Done
The Categorical GoI workflow

GoI = “Geometry of Interaction”

General, standard construction of denotational models

Applied to quantum computation

Quantum λ-calculus =
linear λ-cal. + quantum constructs

with insights from theory of coalgebra

Outcome: first adequate denotational semantics for a
full quantum language (with ! and recursion)

2

Hasuo (Tokyo)

Plan
The categorical GoI workflow
[Abramsky, Haghverdi, Scott, Jacobs, Longley, Lenisa, Hoshino, ...]

GoI + realizability

Generic —— still concrete and dynamic

Coalgebraic view ! let’s do something fancy

Elements of quantum computation

Not much, really!

The calculus qλl Based on [Selinger-Valiron’09]

The denotational model
3

Hasuo (Tokyo)

Quantum λ-calculus

Quantum λ:
prototype of quantum functional language

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming
language

int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}

Quantum
programming
language

[Null-Lobur] [beachhandball.es]

[Selinger-Valiron]

4

Hasuo (Tokyo)

Quantum λ-Calculus:
Prototype of Quantum Functional Languages

Why (high-level) language?
! structured programming

Discovery of new algorithms

Program verification

Why functional language?
! Mathematically nice and clean

Aids (denotational) semantics

Transfer from classical to quantum

5

Hasuo (Tokyo)

Why denotational semantics?
! For quantum communication as well as for
quantum computation

“Absolute security” via e.g. quantum key distr.

Being tested for real-world usege

Comm. protocols are notoriously error-prone;
quantum primitives make it worse

Quantum λ-Calculus:
Prototype of Quantum Functional Languages

6

Hasuo (Tokyo)

Linear λ-calculus
“No cloning” by linearity:

Classical data (duplicable) via !

+ Quantum primitives

State preparation

Unitary transformation

Measurement

Quantum λ-Calculus:
Prototype of Quantum Functional Languages

7

Hasuo (Tokyo)

Classical control

Quantum data

“Quantum Data,
Classical Control”

Illustration by N. Hoshino

1
√
2

+
1
√
2

8

Hasuo (Tokyo)

Denotational Semantics
for Quantum λ

In Hilb ?
Not that easy. Classical data?

[Selinger&Valiron’08] Den. sem. for the !-free fragment

[Selinger&Valiron’09] Operational semantics (nice!)

[Current Work]

The first model for the full fragment
(with ! and recursion)

Categorical GoI:
useful for “Quantum Data, Classical Control”

9

Hasuo (Tokyo)

Critical Acclaim (?) for:
 I. Hasuo & N. Hoshino, Semantics of Higher-Order
Quantum Computation via Geometry of Interaction

“[T]he amount of material ... goes far beyond the 10-
page limit ... Now, I understand that self-
containedness is an impossible objective in cases like
this, but ...” —Reviewer 3

“This is clearly a 30-page paper (or more) than has
been compressed into 10 pages.” —Reviewer 4

Now their pain is yours!!
10

Categorical GoI
(Geometry of Interaction)

Part 1

11

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Disclaimer (and sincere apologies):

I’m no linear logician!

In this talk:

Its categorical formulation
[Abramsky,Haghverdi&Scott’02]

“The GoI Animation”

12

Hasuo (Tokyo)

The GoI Animation
�M� = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

"

token

13

Hasuo (Tokyo)

The GoI Animation
Function application

by “parallel composition + hiding”

�MN�

14

M N

...

... ...

...

...

...

...

...

MN

�MN�
=

“parallel composition + hiding”
(cf. games)

15

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

!
!
!

16

Hasuo (Tokyo)

Categorical GoI
Axiomatics of GoI in the categorical language

Abstraction & genericity, which we exploit

Our main reference (recommended!):

[AHS02] S. Abramsky, E. Haghverdi, and
P. Scott, “Geometry of interaction and linear
combinatory algebras,” MSCS 2002

Especially its technical report version
(Oxford CL), since it’s more detailed

17

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Int-constr. [Joyal,Street&Verity96]

Weak linear category Int(C)

18

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

19

Hasuo (Tokyo)

Linear Combinatory Algebra
(LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 −→ A

• a unary operator

! : A −→ A

• (combinators) distinguished elements B,C, I,K,W,D, δ, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

δ !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds

stronger than · does.

Model of
untyped linear λ
a ∈ A !
closed linear λ-term
No S or K (linear!)

Combinatory
completeness: e.g.

designates elem. of A

λxyz. zxy

What
we want (outcome)

20

Hasuo (Tokyo)

GoI situation
What we use (ingredient)

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

21

Hasuo (Tokyo)

GoI situation
Monoidal category

String diagrams

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

(C,⊗, I)

A
f−→ B B

g−→ C

A
g◦f−→ C

A

B

C

g

f

gf

h

h ◦ (f ⊗ g)

A

B

C
gf

D

A
f−→ B C

g−→ D

A ⊗ C
f⊗g−→ B ⊗ D

22

Hasuo (Tokyo)

GoI situation
Traced monoidal category

“feedback”

that is

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

A ⊗ C
f−→ B ⊗ C

A
tr(f)−→ B

tr�−→f
A

B

C

C

A

B

tr(f)

23

Hasuo (Tokyo)
Pipe diagram

In this talk, I use two ways of depicting
partial functions

String Diagram vs.
“Pipe Diagram”

N � N

String diagram

�M�

N

N

In the monoidal category
(Pfn,+, 0)

24

Hasuo (Tokyo)

Traced Sym. Monoidal Category

Category Pfn of partial functions

Obj. A set X

Arr. A partial function

is traced symmetric monoidal

X → Y in Pfn
X � Y, partial function f

X

Y

(Pfn,+, 0)

25

Hasuo (Tokyo)

Traced Sym. Monoidal Category

Given

Trace operator:

X + Z
f−→ Y + Z in Pfn

f
X

Y

Z

Z

fXY (x) :=

�
f(x) if f(x) ∈ Y

⊥ o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY �
�
�

n∈N
fZY ◦ (fZZ)

n ◦ fXZ

�

Execution formula

Partiality is essential (infinite loop)

(Pfn,+, 0)

26

Hasuo (Tokyo)

GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

tr�−→f
A

B

C

C

A

B

tr(f)

27

M N

...

... ...

...

...

...

�MN�
=

MN

 in string diagramM N

28

Hasuo (Tokyo)

GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Leading example: Pfn

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

tr�−→f
A

B

C

C

A

B

tr(f)

M N M

N

M

N

= = tr()

29

Hasuo (Tokyo)

GoI situation

Functor F

For obtaining ! : A → A

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

Defn. (Retraction)
A retraction from X to Y ,

f : X � Y : g ,

is a pair of arrows

Xid ��

f
��
Y

g
��

such that g ◦ f = idX .

“embedding”

“projection”

30

Hasuo (Tokyo)

GoI situation
Functor F

For obtaining ! : A → A

Pictorially:

Example in Pfn:

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

F�−→f fff
...

N · : Pfn �� Pfn

X
f�� �−→

N · X
N · f��

Y N · Y

(n, x)
�
���

n, f(x)
�

31

Hasuo (Tokyo)

GoI situation
The reflexive object U

 Retr.

Retr.

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

U ⊗ U

j
��U

k

��

 , with

 = id

j k

j

k

FU
u

��
U

v
��

u v
...

32

Hasuo (Tokyo)

GoI situation
The reflexive object U

Why for GoI?

Example in Pfn:

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

 , j k

u v

M N

N ∈ Pfn, with

N + N ∼= N,
N · N ∼= N

33

Hasuo (Tokyo)

Categorical axiomatics of
the “GoI animation”

Example:

GoI Situation: Summary
Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

 , j k

u v

M N

tr�−→f
A

B

C

C

A

B

tr(f)

For ! , via

F�−→f fff
...

(Pfn, N · , N)

· · · · · ·

· · ·
34

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

35

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

∈ C(U,U)

g f=

g · f
:= tr

�
(U ⊗ f) ◦ k ◦ g ◦ j

�

=
f

g

36

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

∈ C(U,U)

! f := u ◦ Ff ◦ v

=

U

v

u

Ff
FU

FU

U

=

37

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]

38

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

39

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

40

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

41

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

42

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

43

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
Nice dynamic interpretation of
(linear) computation!!

44

Hasuo (Tokyo)

Summary:
Categorical GoI

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

45

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn

Strategy: find a TSMC!

“Wave-style” examples

⊗ is Cartesian product(-like)

in which case,

trace ! fixed point operator [Hasegawa/Hyland]

An example:

(... less of a dynamic flavor)

�
(ω-Cpo,×, 1), ()N, AN �

M N

46

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn

“Particle-style” examples

Obj. X∈C is set-like; ⊗ is coproduct-like

The GoI animation is valid

Examples:

Partial functions

Non-det. functions (i.e. relations)

Probabilistic functions
(“discrete stochastic relations”)

M N

�
(Pfn,+, 0), N · , N

�

�
(Rel,+, 0), N · , N

�

�
(DSRel,+, 0), N · , N

�

47

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn

Pfn (partial functions)

Rel (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

Categories of sets and
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

48

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

"

Pfn (partial functions)

Pipe can be stuck

Rel (relations)

Pipe can branch

DSRel

Pipe can branch
probabilistically

!

!

!
"" 1

3

2

3

11
1

49

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn

Pfn (partial functions)

Rel (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

M N

Essential to have
subdistribution,
for infinite loops

50

Hasuo (Tokyo)

The Coauthor
Naohiko Hoshino

DSc
Kyoto U. (JP), 2011

Supervisor:
Masahito “Hassei” Hasegawa

Assist. Prof.,
RIMS, Kyoto U. (2011-)

51

Hasuo (Tokyo)

A Coalgebraic View
Theory of coalgebra =
Categorical theory of state-based dynamic
systems (LTS, automaton, Markov chain, ...)

In my thesis (2008):

Coalgebras in a Kleisli category Kl(B)

! Generic theory of “trace semantics”

X → Y in K�(B)

X → BY in Sets

52

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn

Pfn (partial functions)

Rel (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

Categories of sets and
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Kl(B) for different branching
monads B

53

Hasuo (Tokyo)

Branching Monad: Source of
Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the
monoidal category

(K�(B),+, 0)

is

• a unique decomposition category
[Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor.�
(K�(B),+, 0), N· , N

�
is a GoI situation.

Monads in
[Hasuo,Jacobs&Sokolova07]

Kl(B) is Cpo⊥-enriched

like L, P, D

Particle-style: trace via
the execution formula

tr(f) =

fXY �
�
�

n∈N
fZY ◦ (fZZ)

n ◦ fXZ

�

54

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
TSMC

Fancy
monad

55

Hasuo (Tokyo)

What is Fancy,
Nowadays?

Biology?

Hybrid systems?

Both discrete and continuous data, typically in
cyber-physical systems (CPS)

! Our approach via non-standard analysis
[Suenaga&Hasuo,ICALP11]

Quantum?

Yes this worked!

56

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Coalgebraic trace semantics

Branching monad B

57

Realizability:
from Untyped to Typed

Part 2

58

Hasuo (Tokyo)

Realizability
Dates back to Kleene

Cf. the Brouwer-Heyting-Kolmogorov (BHK)
interpretation

A p’f of A∧B is a pair: (p’f of A, p’f of B)

A p’f of A→B is a function carrying
(p’f of A) to (p’f of B)

Proof = “realizer”

59

Hasuo (Tokyo)

Realizability
Our technical view on realizability: a construction

from a combinatory algebra,

of a categorical model of a typed calculus

Here: construct a linear category from an LCA

References:

[AL05] S. Abramsky and M. Lenisa, “Linear realizability and
full completeness for typed lambda-calculi,” APAA 2005.

[Hos07] N. Hoshino, “Linear realizability,” CSL 2007.

60

Hasuo (Tokyo)

Realizability
Either by ω-sets (intuitive) or
by PERs (tech. convenient)

Defn.
Given an LCA A, an ω-set is a pair

�
S, r : S → P+(A)

�

where

• S is a set;

• for each x ∈ S, the nonempty subset
r(x) ⊆ A is the set of realizers.

Could as well be a partial
combinatory algebra. Its
examples:

N with n⋅m = comp(n,m)

{ closed λ-terms }

a ∈ r(x) :

“realizes” x, or

“witnesses
existence of” x

61

Hasuo (Tokyo)

Realizability
PER = eq. rel. - refl.

An eq. rel. when
restricted to |X|

PER to ω-set:

Also: ω-set to PER

Defn.
A partial equivalence relation (PER) X is a
transitive and symmetric relation on A.

|X| := {a | (a, a) ∈ X}
= {a | ∃b. (a, b) ∈ X}
= {a | ∃b. (b, a) ∈ X}

is the domain of X. �
|X|/X, |X|/X r−→ P+(A)

�

with [a]
r�−→ {b | (a, b) ∈ X}

62

Hasuo (Tokyo)

PERA:
The Category of PERs

Obj. A PER X on A

Arr. The homset is

Thus:

Often put:

PERA(X,Y)

=
�
c ∈ A

��� (x, x�) ∈ X =⇒ (cx, cx�) ∈ Y
�

�
(c, c�)

�� ∀x ∈ |X|. (cx, c�x) ∈ Y
�

All the valid codes c
(well-dfd?)

Modulo
“the same function”

[c] : X −→ Y (with c ∈ A)

PERA(X,Y) =
�
(c, c�)

��� (x, x�) ∈ X =⇒ (cx, c�x�) ∈ Y
�

63

Hasuo (Tokyo)

Type Constructors in
PERA

Linear category [Benton&Wadler,LICS’96][Bierman,TLCA’95]

Categorical model of linear logic/linear λ,
with

Monoidal closed with

Linear exponential comonad !

Thm. ([AL05])
If A is an affine LCA, then PERA is a linear category.
Furthermore, PERA has finite products and coproducts.

�, I,� Not ⊗,
for distinction

with full K: Kxy=x

64

Hasuo (Tokyo)

Type Constructors in
PERA

How to get operators

Like “programming in untyped λ”!

Cf. Combinaroty completeness

�,×,+, . . .

n := λfx.f(f · · · (fx) · · ·) Church numeral

K := KI

P := λxyz.zxy Paring

Pl := λw.wK Left projection

Pl := λw.wK Right projection

Pl(Pxy) = x

Pr(Pxy) = y

65

Hasuo (Tokyo)

X � Y :=
�
(Pxy,Px�y�)

��� (x, x�) ∈ X ∧ (y, y�) ∈ Y
�

X × Y :=
� �

Pk1(Pk2u), Pk
�
1(Pk

�
2u

�)
� ���

(k1u, k
�
1u

�) ∈ X ∧ (k2u, k
�
2u

�) ∈ Y
�

!X :=
�
(!x, !x�)

��� (x, x�) ∈ X
�

X + Y :=
�
(PKx,PKx�)

��� (x, x�) ∈ X
�

∪
�
(PKy,PKy�)

��� (y, y�) ∈ Y
�

X � Y :=
�
(c, c�)

��� (x, x�) ∈ X =⇒ (cx, c�x�) ∈ Y
�

Type Constructors in
PERA

X ∈ PERA

X ⊆ A × A, sym., trans.multiplicative
and

additive
and

CPS-style. k!, k":
“access methods”

66

Hasuo (Tokyo)

Summary:
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

�−→
Linear category PERA

 (a,c ∈A)

Type constructors via “programming in untyped λ”
Symmetric monoidal closed

Finite product, coproduct

X
[c]

�� Y

[a] � �� [c · a]

�, I,� Not ⊗,
for distinction

67

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Coalgebraic trace semantics

Branching monad B

f
U

U

∈ C(U,U)

g · f = g f

68

Hasuo (Tokyo)

Summary:
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

Linear category PERA

 (a,c ∈A)

Type constructors via “programming in untyped λ”
Symmetric monoidal closed

Finite product, coproduct

X
[c]

�� Y

[a] � �� [c · a]

�, I,� Not ⊗,
for distinction

�−→

U

U

c

U

U

a

X

� �

�� Y
� �

� �� [c · a] =
� �

c a

69

Time to Wake Up!!

70

Quantum Computation
in 5 min.

Part 3

71

Hasuo (Tokyo)

What You Need to Know
Not much, really!

Our principal reference:

M.A. Nielsen and I.L. Chuang.
Quantum Computation and
Quantum Information. CUP, 2000

Its Chap. 3 & Chap. 8

Hilbert space formulation

Quantum operation formalism
(Kraus)

No need for the Bloch sphere #
72

Hasuo (Tokyo)

Some Principles
A state of a 1-qubit system
= a normalized vector

with

Various notations for base:

|ϕ� = α|0� + β|1� ∈ C2

1
√
2

+
1
√
2 ��|ϕ�

��2 = |α|2 + |β|2 = 1

�
|0�, |1�

�
,
�
|+�, |−�

�
,
�
| ↑�, | ↓�

�
, . . .

73

Hasuo (Tokyo)

Some Principles

Composed system: ⊗, not ×.

not

but

C2 × C2 × C2 ∼= C6, with base
� |01� |02� |03�

|11� |12� |13�

�

1
√
2

+
1
√
2

⊗
1
√
2

+
1
√
2

1
√
2

+
1
√
2

⊗

C2 ⊗ C2 ⊗ C2 ∼= C8,

with base
� |000� |001� |010� |011�

|100� |101� |110� |111�

�

74

Hasuo (Tokyo)

Some Principles

Composed system: ⊗, not ×.

Source of power of quantum comp./comm.

N-qubit ! 2N-dim (not 2N-dim)

Entanglement; superposition

1
√
2

+
1
√
2

⊗
1
√
2

+
1
√
2

1
√
2

+
1
√
2

⊗

75

Hasuo (Tokyo)

Three Quantum
Primitives

Preparation

Unitary transformation

Measurement

�−→
1

+0

�−→
1
√
2

+
1
√
2

1

+0

1
√
2

+
1
√
2

�−→�−→

1

2

1

2
76

Hasuo (Tokyo)

Three Quantum
Primitives

Preparation

Creates/“prepares” a quantum state
(typically |0!)

�−→
1

+0

77

Hasuo (Tokyo)

Three Quantum
Primitives

Unitary transformation

Unitary matrix:

Invertible. “Rotation”

Also for N-dim systems (of course)

�−→
1
√
2

+
1
√
2

1

+0

α|0� + β|1� =

�
α
β

�
U�−→ U

�
α
β

�

UU† = U†U = I

78

Hasuo (Tokyo)

Three Quantum
Primitives

Measurement
When one measures

1
√
2

+
1
√
2

�−→�−→

1

2

1

2
α|0� + β|1�

with
prob. |α|2

 is observed, and

the state becomes

|0�

|0�

 is observed, and

the state becomes

|1�

|1�
with
prob. |β|2

state
reduction

Also: for other dimensions, bases

79

Hasuo (Tokyo)

Entanglement

1
√
2
|00� +

1
√
2
|11�

1
√
2
|00� +

1
√
2
|11�

|00� with prob.
1

2

|11� with prob.
1

2

qubit1 qubit2

qubit1 qubit2

measure!!

qubit1 qubit2

80

Hasuo (Tokyo)

Density Matrix,
Quantum Operation
Advanced, mathematically convenient formalisms

State vector ! density matrix

Use in place of

Can also represent mixed states, e.g.

Quantum operation (QO) [Kraus]

{QOs} = {any combinations of preparation, Unitary
transf., measurement}

But no classical control (like case-distinction)

Used in [Selinger,MSCS’04] and other

|00� with prob.
1

2

|11� with prob.
1

2

|ϕ��ϕ| |ϕ�

81

Hasuo (Tokyo)

Density Matrix,
Quantum Operation

For specialists:
we allow trace
" 1

So that
probabilities
are implicitly
carried by
density
matrices

Defn.

• An m-dimensional density matrix is an m×m matrix ρ ∈
Cm×m which is positive and satisfies tr(ρ) ∈ [0, 1].

– Notation: Dm = {m-dim. density matrices}

• A quantum operation (QO) is a mapping E : Dm → Dn

subject to the following axioms.

1. (Trace condition) tr[E(ρ)] ∈ [0, 1] for any ρ ∈ Dm.

2. (Linearity) Let (ρi)i∈I be a family of m-dim. den-

sity matrices; and (pi)i∈I be a probability subdistribu-

tion (meaning
�

i pi ≤ 1). Then: E
��

i∈I piρi

�
=�

i∈I piE(ρi) .

3. (Complete positivity) An arbitrary “extension” of E of

the form Ik ⊗ E : Mk ⊗Mm → Mk ⊗Mn carries a

positive matrix to a positive one.

– Notation: QOm,n = {QOs from m-dim. to n-dim. }
82

Hasuo (Tokyo)

Quantum Computation:
Summary

A quantum state = a vector |φ〉

Composition by ⊗
! Dimension grows exponentially

Three primitives:

Preparation

Unitary transformation

Measurement (! st. reduction)

Generalized to
density matrix

}
Unified to quantum

operation (QO)

83

Quantum GoI

Part 4

84

Hasuo (Tokyo)

The Language qλl
Roughly: linear λ + quantum primitives

“Quantum data, classical control”

 No superposed threads

Based on [Selinger&Valiron’09]

With slight modifications

Notably: quantum ⊗ vs. linear logic

The same in [Selinger&Valiron’09]
! clean type system, aids programming

But... problem with GoI-style semantics

�

85

Hasuo (Tokyo)

The Language qλl
The types of qλ� are:

A,B ::= n-qbit | !A | A � B | � | A � B | A + B ,

with conventions qbit := 1-qbit and bit := � + � .

The terms of qλ� are:

M,N, P ::=
x | λxA .M | MN | �M,N � | ∗ |
let �xA , yB� = M inN | let ∗ = M inN |
injB� M | injAr M |
matchP with (xA �→ M | yB �→ N) |
letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n ,

with conventions tt := inj�� (∗) and ff := inj�r (∗) .

Different from quantum ⊗
(Unlike [Selinger-Valiron’09]);

same as the one in PER
2-qbit ∼= qbit ⊗ qbit

Recursion

Quantum
primitives

86

Hasuo (Tokyo)

A <: A�

!∆, x : A � x : A� (Ax.1)
!Ac <: A
!∆ � c : A

(Ax.2)

∆ � M : !n A
∆ � injB� M : !n(A + B)

(+.I1)

∆ � N : !n B
∆ � injAr N : !n(A + B)

(+.I2)

!∆,Γ1 � P : !n(A + B)
!∆,Γ2, x : !n A � M : C
!∆,Γ2, y : !n B � N : C

!∆,Γ1,Γ2

� matchP with (x!n A �→ M | y!n B �→ N) : C

(+.E), (†)

x : A,∆ � M : B

∆ � λxA.M : A � B
(�.I1)

x : A, !∆ � M : B

!∆ � λxA.M : !n(A � B)
(�.I2)

!∆,Γ1 � M : A � B !∆,Γ2 � N : A
!∆,Γ1,Γ2 � MN : B

(�.E), (†)

!∆,Γ1 � M1 : !n A1 !∆,Γ2 � M2 : !n A2

!∆,Γ1,Γ2 � �M1,M2� : !n(A1 � A2)
(�.I), (†)

!∆ � ∗ : !n � (�.I)

!∆,Γ2, x1 : !n A1, x2 : !n A2 � N : A
!∆,Γ1 � M : !n(A1 � A2)

!∆,Γ1,Γ2 � let �x!n A1
1 , x!n A2

2 � = M inN : A
(�.E), (†)

!∆,Γ1 � M : � !∆,Γ2 � N : A
!∆,Γ1,Γ2 � let ∗ = M inN : A

(�.E), (†)
!∆,Γ, f : !(A � B) � N : C

!∆, f : !(A � B), x : A � M : B

!∆,Γ � letrec fA�Bx = M inN : C
(rec), (†)

Anew|0� := qbit
A

meas
n+1
i

:= (n + 1)-qbit � (bit � n-qbit) for n ≥ 1

Ameas11
:= qbit � bit

AU := n-qbit � n-qbit for a 2n × 2n matrix U
Acmpm,n

:= (m-qbit � n-qbit) � (m + n)-qbit

n = 0 ⇒ m = 0 (∗)
!n k-qbit <: !m k-qbit

(k-qbit) n = 0 ⇒ m = 0
!n � <: !m � (�)

A1 <: B1 A2 <: B2 (∗)
!n(A1 � A2) <: !m(B1 � B2)

(�) with � ∈ {�,+}

B1 <: A1 A2 <: B2 (∗)
!n(A1 � A2) <: !m(B1 � B2)

(�)

Measurements

Implicit linearity tracking
via subtyping <:
e.g. !A <: A, !A <: !!A
(following [Selinger-Valiron’09])

Bookkeeping
(due to ⊗ vs.) �

87

Hasuo (Tokyo)

Operational Semantics

Standard small-step one, CBV, but with probabilistic
branching (measurement)

E[(λxA.M)V] →1 E[M [V/x]]
E[let �xA, yB� = �V,W � inM] →1 E[M [V/x,W/y]]
E[let ∗ = ∗ inM] →1 E[M]
E[match (injB� V) with (x!n A �→ M | y!n B �→ N)]

→1 E[M [V/x]]
E[match (injAr V) with (x!n A �→ M | y!n B �→ N)]

→1 E[N [V/y]]
E[letrec fA�Bx = M inN]

→1 E[N [λxA.letrec fA�Bx = M inM/f]]
E[measn+1

i (new ρ)] →1 E[� tt, new �0i|ρ|0i� �]
E[measn+1

i (new ρ)] →1 E[� ff, new �1i|ρ|1i� �]
E[meas11(new ρ)] →�0|ρ|0� E[tt]
E[meas11(new ρ)] →�1|ρ|1� E[ff]
E[U(new ρ)] →1 E[new (Uρ)]
E[cmpm,n�new ρ, newσ�] →1 E[new (ρ ⊗ σ)]

88

Hasuo (Tokyo)

The Language qλl
Roughly: linear λ + quantum primitives

“Quantum data, classical control”

 No superposed threads

Based on [Selinger&Valiron’09]

With slight modifications

Notably: quantum ⊗ vs. linear logic

The same in [Selinger&Valiron’09]
! clean type system, aids programming

But... problem with GoI-style semantics

�

89

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum
branching
monad

90

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

"

Pfn (partial functions)

Pipe can be stuck

Rel (relations)

Pipe can branch

DSRel

Pipe is
probabilistically
branched

!

!

!
"" 1

3

2

3

11
1

Kl(L), non-termination

Kl(P), non-determinism

Kl(D), probability

91

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

Not just a token/
particle, but

quantum state!

“Quantum Data”

“Classical Control”

Not just a token/
particle, but

quantum state!

“in which pipe”

(measurement ! case-distinction)
leads a token to different pipes

92

Hasuo (Tokyo)

Compare with

The Quantum Branching
Monad

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

(trace of matrix ! probability)

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

PY =
�
c : Y → 2

�

DY =
�
c : Y → [0, 1]

���
�

y∈Y

c(y) ≤ 1
�

93

Hasuo (Tokyo)

The Quantum
Branching Monad

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

Given
determines a quantum operation

Subject to the trace condition

x ∈ X, y ∈ Y, m ∈ N, n ∈ N

�
f(x)(y)

�

m,n
: Dm → Dn

Any opr. on
quantum data:
combination of

• preparation
• unitary transf.
• measurement

X → Y in K�(Q)

X → QY in Sets

f

94

Hasuo (Tokyo)

The Quantum
Branching Monad

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

...

...

Given
determines a quantum
operation (f(x)(y))m,n

trace cond.:

x ∈ X, y ∈ Y, m ∈ N, n ∈ N

x

y y��

y,n

Pr

� �
≤ 1

Token led
to y

with dim. n

entrance exit
in.

dim.
out.
dim.

measure (and others)

ρ ∈ Dm

for each n

�
f(x)(y)

�

m,n
(ρ) ∈ Dn

X → Y in K�(Q)

X → QY in Sets

f

95

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

Not just a token/
particle, but

quantum state!

“Quantum Data”

“Classical Control”

Not just a token/
particle, but

quantum state!

“in which pipe”

(measurement ! case-distinction)
leads a token to different pipes

96

Hasuo (Tokyo)

Indeed...
The monad Q qualifies as a
“branching monad”

The quantum GoI workflow leads
to a linear category PERQ

From which we construct an
adequate denotational model

97

Hasuo (Tokyo)

End of the Story?
No! All the technicalities are yet to come:

CPS-style interpretation (for partial
measurement)

Result type: a final coalgebra in PERQ

Admissible PERs for recursion

...

On the next occasion :-)

98

Hasuo (Tokyo)

Conclusion: the Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum
branching
monad

Thank you for your attention!Ichiro Hasuo (Dept. CS, U Tokyo)http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

99

