Quantum

Geometry of Interaction

Ichiro Hasuo
University of Tokyo (JP)

Naohiko Hoshino
RIMS, Kyoto University (JP)

What's Done

* The Categorical GoI workflow
* GoI = "Geometry of Interaction"
* General, standard construction of denotational models
* Applied to quantum computation
* Quantum λ-calculus $=$ linear λ-cal. + quantum constructs
* with insights from theory of coalgebra
* Outcome: first adequate denotational semantics for a full quantum language (with! and recursion)

Hasuo (Tokyo)

Quantum λ-calculus

Classical	Quantum
(Boolean) circuit	Quantum circuit

[^0]
Quantum λ-Calculus:

Prototype of Quantum Functional Languages

* Why (high-level) language?
\rightarrow structured programming
* Discovery of new algorithms
* Program verification
* Why functional language?
\rightarrow Mathematically nice and clean
* Aids (denotational) semantics
* Transfer from classical to quantum

Quantum λ-Calculus:

Prototype of Quantum Functional Languages

* Linear λ-calculus
* "No cloning" by linearity:
* Classical data (duplicable) via!
* + Quantum primitives
* State preparation
* Unitary transformation
* Measurement

Quantum λ-Calculus:
Prototype of Quantum Functional Languages

* Why denotational semantics?
\rightarrow For quantum communication as well as for quantum computation
* "Absolute security" via e.g. quantum key distr.
* Being tested for real-world usege
* Comm. protocols are notoriously error-prone; quantum primitives make it worse

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Denotational Semantics for Quantum λ

* In Hilb ?
* Not that easy. Classical data?
* [Selinger\&Valiron'08] Den. sem. for the !-free fragment
* [Selinger\&Valiron'09] Operational semantics (nice!)
* [Current Work]
* The first model for the full fragment (with! and recursion)
* Categorical GoI:
useful for "Quantum Data, Classical Control"

Part 1

Categorical GoI

(Geometry of Interaction)

Critical Acclaim (?) for:

I. Hasuo \& N. Hoshino, Semantics of Higher-Order Quantum Computation via Geometry of Interaction

* "[T]he amount of material ... goes far beyond the 10 page limit ... Now, I understand that self-
containedness is an impossible objective in cases like this, but ..." -Reviewer 3
* "This is clearly a 30-page paper (or more) than has been compressed into 10 pages." -Reviewer 4
* Now their pain is yours!!

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
* Disclaimer (and sincere apologies):
* I'm no linear logician!
* In this talk:
* Its categorical formulation [Abramsky,Haghverdi\&Scott'O2]
* "The GoI Animation"

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

The GoI Animation

* Function application $\llbracket M N \rrbracket$
* by "parallel composition + hiding"

Hasuo (Tokyo)

Categorical GoI

* Axiomatics of GoI in the categorical language
* Abstraction \& genericity, which we exploit
* Our main reference (recommended!):
* [AHSO2] S. Abramsky, E. Haghverdi, and P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002
* Especially its technical report version (Oxford CL), since it's more detailed

The Categorical GoI Workflow

The Categorical GoI

 Workflow Weak linear category $\operatorname{Int}(C)$

What we use（ingredient）
 GoI situation

Defn．（GoI situation［AHS02］）
A GoI situation is a triple（ $\mathbb{C}, \boldsymbol{F}, \boldsymbol{U}$ ）where
－ $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category （TSMC）；
－ $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor， equipped with the following retractions（which are monoidal natural transformations）

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplicatior } \\
\boldsymbol{d}: \text { id } \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
c: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I} ；
－$U \in \mathbb{C}$ is an object（called reflexive object），equipped with the following retractions．

$$
\begin{aligned}
j: U \otimes U & \triangleleft U: k \\
I & \triangleleft U \\
u: F U & \triangleleft U: v
\end{aligned}
$$

GoI situation

Defn．（Gol situation［AHS02］
A GoI situation
 natural transformations

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \text { id } \triangleleft \boldsymbol{F}: d^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

$$
\text { Here } \boldsymbol{K}_{I} \text { is the constant functor into the monoidal unit } I_{\text {; }} \text { it }
$$

$$
\begin{aligned}
& \text { - } U \in \mathbb{C} \text { is an object (call } \\
& \text { the following retractions }
\end{aligned}
$$

$$
j: U \otimes U \triangleleft U: k
$$

$$
\begin{gathered}
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

＊Monoidal category (\mathbb{C}, \otimes, I)
＊String diagrams

$$
\xrightarrow[{A \xrightarrow{A \xrightarrow{f} B \xrightarrow{g} C}} C]{ } C
$$

$h \circ(f \otimes g)$

GoI situation

Defn．（Goo situation［AHSO2］
Gol situation is at triple（G）

－$F: \mathrm{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor，
equipped with the following retractions（which are monoidal equipped with the following retractions（which are monoidal
natural transformationss）．

```
e:FF\triangleleftF: 庳利 Comultiplication
d: id \triangleleftF: 媓 Dereliction
: K}\mp@subsup{K}{I}{}\triangleleft\boldsymbol{F}:\mp@subsup{w}{}{\prime}\quad\mathrm{ Weakening
```

Here \boldsymbol{K}_{I} is the constant functor into the monoidal unit I
－$U \in \mathbb{C}$ is an object（called reflexive object），equipped with the following retraction

$$
\begin{aligned}
: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{aligned}
$$

＊Traced monoidal category
＊＂feedback＂

$$
\frac{A \otimes C \xrightarrow{f} B \otimes C}{A \xrightarrow{\operatorname{tr}(f)} B}
$$

that is

String Diagram vs． ＂Pipe Diagram＂

＊In this talk，I use two ways of depicting partial functions $\mathbb{N} \rightharpoonup \mathbb{N}$

Traced Sym. Monoidal Category (Pfn,,+ 0)

* Category Pfn of partial functions
* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\boldsymbol{X} \rightharpoonup \boldsymbol{Y}, \text { partial function }}} \quad \stackrel{\boldsymbol{X} \mid}{\boldsymbol{f}}
$$

* is traced symmetric monoidal

GoI situation

* Traced sym. monoidal cat.
* Where one can "feedback"

$$
\underbrace{A \mid}_{B \mid C} \left\lvert\, \begin{array}{cc}
A \mid \\
\operatorname{li}_{B} \mid & \stackrel{\operatorname{tr}}{\operatorname{tr}(f)}
\end{array}\right.
$$

* Why for GoI?

Traced Sym. Monoidal Category

(Pfn,,+ 0)

* Given $\quad X+Z \xrightarrow{f} Y+Z$ in $\mathbf{P f n}$
* | x | | Z |
| :---: | :---: | :---: |
| | | |
| | | z |
| | | f |
* Trace operator:

Similar for $\boldsymbol{f}_{\boldsymbol{X Z}}, \boldsymbol{f}_{Z Y}, \boldsymbol{f}_{Z Z}$

* Execution formula
* Partiality is essential (infinite loop)

$$
\operatorname{tr}(f)=
$$

$$
f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
$$

(Tokyo)

GoI situation

Defn. (Gol situation [AHS02]

$-F: \mathbb{C} \rightarrow \underset{\text { equipped with the following retractions (which are monoldal }}{\boldsymbol{C}}$ natural t

$$
\begin{array}{rll}
e: F F \triangleleft F: e^{\prime} & & \text { Comultiplication } \\
d: \text { id } \triangleleft \boldsymbol{F}: d^{\prime} & & \text { Dereliction } \\
: \boldsymbol{F} \otimes F \triangleleft F: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{array}
$$ ${ }_{I}$ is the

Here K_{I} is the constant functor into the monoidal unit $I_{\text {; }}$;

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.
$j: U \otimes U \triangleleft U: k$
$u: F U \triangleleft U: v$
* Traced sym. monoidal cat.
* Where one can "feedback"

$$
\stackrel{A \mid}{\substack{A}} \stackrel{\operatorname{tr}}{\longmapsto} \underbrace{A \mid}_{B \mid} \operatorname{tr}(f)
$$

* Why for GoI?

* Leading example: Pfn

Hasuo (Tokyo)

GoI situation

Defn. (Gol situation [AHSO2]
A Gol sitit
(
$\begin{array}{r}-\underset{(T S M C)}{\mathbb{C}}=(\mathbb{C}, \otimes, I) \text { is a traced symmetric monoidal category } \\ \\ \hline\end{array}$

equipped with the foliowing
natural transformations).

$$
\begin{array}{rlrl}
e: \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & \text { Comultiplication } \\
d: \text { id } \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & \text { Weakening } \\
\boldsymbol{K}_{I} \text { is the constant functor into the monoidal un }
\end{array}
$$

C is an obiect (called refleriz

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.
$: U \otimes U \triangleleft U: k$
$u: F U \triangleleft U: v$
Defn. (Retraction)
A retraction from \boldsymbol{X} to \boldsymbol{Y},

$$
f: X \triangleleft Y: g
$$

is a pair of arrows

such that $g \circ f=\mathrm{id}_{\boldsymbol{X}}$

* Functor F
* For obtaining ! : $A \rightarrow A$

Hasuo (Tokyo)

GoI situation

Defn. (Gol situation [AHSO2])
A Gol situation is a triple (C
A Gol situation is a triple (C, $\boldsymbol{C}, \boldsymbol{U}$) where
$-\underset{\text { (TSMC); }}{\mathbb{C}=(\mathbb{C}, \otimes, I) \text { is a traced symmetric monoidal category }}$
$-F: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
$e: F F \triangleleft F: e^{\prime}$
$\boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \quad$ Derelction
$\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} \quad$ Weakening

- Here K_{J} is the constant functor into the monoidal unit $I_{\text {i }}$
- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with
the following retractions

$$
\begin{aligned}
& j: U \otimes U \triangleleft U \\
& I \triangleleft U
\end{aligned}
$$

$u: F U \triangleleft U: v$

* Functor F
* For obtaining ! : $A \rightarrow A$
* Pictorially:

GoI situation

Defn. (Goo situation [AHSO2]) A Gol situation is a triple ($\mathbb{C}, \boldsymbol{F}, \boldsymbol{U}$) where

- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functo equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{array}{rll}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & \text { Comultiplication } \\
\boldsymbol{d}: \text { id } \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & \text { Dereliction } \\
: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & \text { Weakening }
\end{array}
$$

- $U \in \mathbb{C}$ is an object (called reflerive object), equipped with - $\mathrm{U} \in \mathrm{C}$ is an object (calle
* The reflexive object U
* Retr. $\boldsymbol{U} \otimes \boldsymbol{U}_{\frac{1}{2}}^{\boldsymbol{j}} \boldsymbol{J}$

* Retr.

GoI situation

Defn. (GoI situation [AHS02])
A Gol situation is a triple (C, F, U)
A Gol situation is a triple ($\mathbb{C}, \boldsymbol{F}, \boldsymbol{U}$) where
$-\underset{(T S M C)}{\mathbb{C}=(\mathbb{C}, \otimes, I) \text { is a traced symmetric monoidal category }}$

- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetri
equipped with the following retractions (which are monoid natural transformations)
$e: F F \triangleleft F: e^{\prime} \quad$ Comultiplication
d : id $\triangleleft F: d$
$: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: c$
$w: K_{I} \triangleleft \boldsymbol{F}$
Here K_{I} is the constant functo
- $U \in \mathrm{C}$ is an object (called reflexiv/ hect), equipped with the following retractions.
$j: U \otimes U \triangleleft U: k$
(4)
* The reflexive object U
* Why for GoI?

* Example in Pfn:

$$
\begin{aligned}
\mathbb{N} \in & \text { Pfn, with } \\
& \mathbb{N}+\mathbb{N} \cong \mathbb{N}, \\
& \mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}
\end{aligned}
$$

The Categorical GoI Workflow

Traced monoidal category C + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSO2]

Linear combinatory algebra

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset $\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})$

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{U}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

* Applicative str.
* ! operator
* Combinators B, C, I, ...

$$
\begin{aligned}
& \text { * } g \cdot f \\
& :=\operatorname{tr}((U \otimes f) \circ k \circ g \circ j)
\end{aligned}
$$

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset $\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})$
carries a canonical LCA structure.

$$
\left.\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \right\rvert\, \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

* $!f:=u \circ F f \circ v$
* Applicative str.
* ! operator
* Combinators B, C, I, ...

$$
=\frac{\boldsymbol{F} \boldsymbol{F}=}{\boldsymbol{v}^{U}}=
$$

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
from [AHSO2]

Hasuo (Tokyo)

Categorical GoI:
 Constr. of an LCA

* Combinator Bxyz=x(yz)

Summary:
 Categorical GoI

Defn. (GoI situation [AHS02])
A GoI situation is a triple ($\mathbb{C}, \boldsymbol{F}, \boldsymbol{U}$) where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal

$$
\begin{aligned}
e: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \text { id } \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here K_{I} is the constant functor into the monoidal unit \boldsymbol{I}.

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{aligned}
j: U \otimes U & \triangleleft U: k \\
I & \triangleleft U \\
u: F U & \triangleleft U: v
\end{aligned}
$$

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset $\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})$
carries a canonical LCA structure.
\square

Why Categorical Generalization?: Examples Other Than Pfn

* in which case,
trace \approx fixed point operator [Hasegava/Hylyand]
* An example: $\quad\left((\omega-C p o, \times, \mathbf{1}),\left(_\right)^{\mathbb{N}}, A^{\mathbb{N}}\right)$
* (... less of a dynamic flavor)

Why Categorical Generalization?: Examples Other Than Pfn

* "Particle-style" examples
* Obj. $\mathrm{X} \in \mathrm{C}$ is set-like; \otimes is coproduct-like
* The GoI animation is valid
* Examples
* Partial functions $\left((\mathbf{P f n},+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$
* Non-det. functions (i.e. relations)
* Probabilistic functions
$\left((\operatorname{Rel},+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$ ("discrete stochastic relations")
$\left.\left((\text { DSRel },+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)_{47}\right)$
* Strategy: find a TSMC!
* "Wave-style" examples
* \otimes is Cartesian product(-like)

Why Categd categories of sets and (functions with different branching/partiality) Exanple

* Pfn (partial functions)
(Potential) non-termination
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\frac{\overline{\boldsymbol{X}-\boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}}$ where $\mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}$
*
* Rel (relations)
$\boldsymbol{X} \rightarrow \boldsymbol{Y}$ in Rel
$\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relatio }}$
where \mathcal{P} is the powerset monad
$\boldsymbol{X} \rightarrow \mathcal{P} Y$ in Sets

DSRel

$X \rightarrow Y$ in DSRel
$X \rightarrow \mathcal{D} Y$ in Sets

where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Non-determinism
nad

$$
\text { where } \mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}
$$

Different Branching in The GoI Animation

Pfn (partial functions)

* Pipe can be stuck

Rel (relations)

* Pipe can branch

DSRel

* Pipe can branch probabilistically

Why Categorical Generalization?: Examples Other Than Pfn

* Pfn (partial functions)

* Rel (relations)
$\boldsymbol{X} \rightarrow \boldsymbol{Y}$ in Rel
$\frac{\overline{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}{\overline{\boldsymbol{X} \rightarrow \mathcal{P} \boldsymbol{Y} \text { in Sets }}}$ where \mathcal{P} is the powerset monad

* DSRel
$\underset{X \rightarrow \boldsymbol{Y} \text { in DSRel }}{\boldsymbol{X}}$
$X \rightarrow \mathcal{D} Y$ in Sets
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$ Essential to have subdistribution, for infinite loops

The Coauthor

* Naohiko Hoshino
* DSc
* Kyoto U. (JP), 2011
* Supervisor:

Masahito "Hassei" Hasegawa

* Assist. Prof.,

RIMS, Kyoto U. (2011-)

A Coalgebraic View

* Theory of coalgebra =

Categorical theory of state-based dynamic systems (LTS, automaton, Markov chain, ...)

* In my thesis (2008):
* Coalgebras in a Kleisli category $\operatorname{Kl(B)}$

$$
\begin{aligned}
& \boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathcal{K} \ell(\boldsymbol{B}) \\
& \hline \bar{X} \rightarrow \boldsymbol{B} \boldsymbol{Y} \text { in Sets }
\end{aligned}
$$

* \rightarrow Generic theory of "trace semantics"

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad"

Given a "branching monad" \boldsymbol{B} on Sets, the
monoidal category
Monads in
[Hasuo,Jacobs\&Sokolova07]

* $\mathrm{KI}(\mathrm{B})$ is Cpo_{\perp}-enriched
* like $\mathcal{L}, \mathcal{P}, \mathcal{D}$
is

$$
(\mathcal{K} \ell(B),+, 0)
$$

- a unique decomposition [Haghverdi, PhD00], hence is
- a traced symmetric monoidal category.

Cor.
$((\mathcal{K l}(\boldsymbol{B}),+, \mathbf{0}), \mathbb{N} \cdot, \mathbb{N})$ is a GoI situation.

$$
\begin{aligned}
& \text { Particle-style: trace via } \\
& \text { the execution formula } \\
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

Hasuo (Tokyo)

What is Fancy, Nowadays?

* Biology?
* Hybrid systems?
* Both discrete and continuous data, typically in cyber-physical systems (CPS)
* \rightarrow Our approach via non-standard analysis [Suenaga\&Hasuo,ICALP11]
* Quantum?
* Yes this worked!

Realizability

* Dates back to Kleene

* Cf. the Brouwer-Heyting-Kolmogorov (BHK) interpretation
* $A p^{\prime} f$ of $A \wedge B$ is a pair: ($p^{\prime} f$ of $A, p^{\prime} f$ of B)
* $A p^{\prime} f$ of $A \rightarrow B$ is a function carrying (p ' f of A) to ($p^{\prime} f$ of B)
* Proof = "realizer"

Part 2

Realizability:

from Untyped to Typed

Realizability

* Our technical view on realizability: a construction
* from a combinatory algebra,
* of a categorical model of a typed calculus
* Here: construct a linear category from an LCA

* References:

* [ALO5] S. Abramsky and M. Lenisa, "Linear realizability and full completeness for typed lambda-calculi," APAA 2005.
* [Hos07] N. Hoshino, "Linear realizability," CSL 2007.

Realizability

* Either by $\boldsymbol{\omega}$-sets (intuitive) or by PERs (tech. convenient)

Could as well be a partial combinatory algebra. Its examples:

* \mathbb{N} with $n \cdot m=\operatorname{comp}(n, m)$
* $\{$ closed λ-terms $\}$
$\left(S, \quad r: S \rightarrow \mathcal{P}_{+}(A)\right)$
where
- \boldsymbol{S} is a set;
- for each $\boldsymbol{x} \in \boldsymbol{S}$, the nonempty subset $r(x) \subseteq \boldsymbol{A}$ is the set of realizers.

$$
\begin{aligned}
& a \in r(x): \\
& \text { * "realizes" } x \text {, or } \\
& \text { * "witnesses } \\
& \quad \begin{array}{l}
\text { existence of" } x
\end{array}
\end{aligned}
$$

Realizability

Defn.
A partial equivalence relation $(P E R) \boldsymbol{X}$ is a transitive and symmetric relation on \boldsymbol{A}.

$$
\begin{aligned}
|X| & :=\{a \mid(a, a) \in X\} \\
& =\{a \mid \exists b .(a, b) \in X\} \\
& =\{a \mid \exists b .(b, a) \in X\}
\end{aligned}
$$

is the domain of \boldsymbol{X}.
\square

* $P E R$ = eq. rel. - refl.
* An eq. rel. when restricted to $|X|$
* PER to ω-set:
$\left(|X| / X, \quad|X| / X \xrightarrow{r} \mathcal{P}_{+}(A)\right)$
with $\quad[a] \stackrel{r}{\longmapsto}\{b \mid(a, b) \in X\}$
* Also: w-set to PER

Hasuo (Tokyo)

PER $_{A}$:

The Category of PERs

* Obj. A PER X on A

Modulo "the same function"

* Arr. The homset is
 (well-dfd?)
$\operatorname{PER}_{A}(X, Y)$

$=\left\{c \in A \mid\left(x, x^{\prime}\right) \in X \Longrightarrow\left(c x, c x^{\prime}\right) \in Y\right\}$
$\left\{\left(c, c^{\prime}\right)|\forall x \in| X \mid \cdot\left(c x, c^{\prime} x\right) \in Y\right\}$
* Thus: $[c]: X \longrightarrow Y$ (with $c \in A$)
* Often put: $\operatorname{PER}_{A}(X, Y)=\left\{\left(c, c^{\prime}\right) \mid\left(x, x^{\prime}\right) \in X \Longrightarrow\left(c x, c^{\prime} x^{\prime}\right) \in Y\right\}$

Type Constructors in

with full K : $\mathrm{K} x y=x$ PER $_{A}$

Thm. ([L05])
If \boldsymbol{A} is an affine LCA , then $\mathbf{P E R}_{\boldsymbol{A}}$ is a linear category.
Furthermore, $\mathbf{P E R}_{\boldsymbol{A}}$ has finite products and coproducts.

* Categorical model of linear logic/linear λ, with
* Monoidal closed with \boxtimes, I, \multimap
* Linear exponential comonad!

Type Constructors in $\mathbf{P E R}_{A}$

* How to get operators $\boxtimes, \times,+, \ldots$
* Like "programming in untyped λ^{\prime} !

Summary: Realizability

* Type constructors via "programming in untyped λ^{\prime}
* Symmetric monoidal closed $\boxtimes, \mathbf{I}, \multimap$ Not \otimes,
* Finite product, coproduct

Type Constructors in

$\binom{$ multiplicative }{ and } DA BR $\frac{X \in \text { PER }_{A}}{\overline{X \subseteq A \times A, \text { sym., trans. }}}$
and

$$
X \boxtimes Y:=\left\{\left(\mathbf{P} x y, \mathbf{P} x^{\prime} y^{\prime}\right) \mid\left(x, x^{\prime}\right) \in X \wedge\left(y, y^{\prime}\right) \in Y\right\}
$$

$$
X \times Y:=\left\{\left(\mathbf{P} k_{1}\left(\mathbf{P} k_{2} u\right), \mathbf{P} k_{1}^{\prime}\left(\mathbf{P} k_{2}^{\prime} u^{\prime}\right)\right) \mid\right.
$$

$$
\begin{array}{rc}
\begin{array}{c}
\text { additive } \\
\text { and }
\end{array} & \left.\left(k_{1} u, k_{1}^{\prime} u^{\prime}\right) \in X \wedge\left(k_{2} u, k_{2}^{\prime} u^{\prime}\right) \in \boldsymbol{Y}\right\} \\
!X & :=\left\{\left(!x,!x^{\prime}\right) \mid\left(x, x^{\prime}\right) \in X\right\}
\end{array} \begin{array}{cc}
\text { CPS-style. } k_{1}, k_{2}: \\
\text { "access methods" }
\end{array}
$$

$$
\cup\left\{\left(\mathrm{PK} y, \mathrm{PK} y^{\prime}\right) \mid\left(y, y^{\prime}\right) \in Y\right\}
$$

$$
X \multimap Y:=\left\{\left(c, c^{\prime}\right) \mid\left(x, x^{\prime}\right) \in X \Longrightarrow\left(c x, c^{\prime} x^{\prime}\right) \in Y\right\}
$$

Categorical GoI [AHsO2]

Linear combinatory algebra

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C + other constructs \rightarrow "GoI situation" [AHSO2]

The Categorical GoI

 WorkflowC

Part 3

Quantum Computation in 5 min .

Time to Wake Up!!

What You Need to Know

* Not much, really!
* Our principal reference:
* M.A. Nielsen and I.L. Chuang Quantum Computation and Quantum Information. CUP, 2000
* Its Chap. 3 \& Chap. 8
* Hilbert space formulation
* Quantum operation formalism (Kraus)
* No need for the Bloch sphere

Some Principles

* A state of a 1-qubit system = a normalized vector

$$
|\varphi\rangle=\alpha|0\rangle+\beta|1\rangle \in \mathbb{C}^{2}
$$

* with $\||\varphi\rangle \|^{2}=|\alpha|^{2}+|\beta|^{2}=1$ * Various notations for base: $\{|0\rangle,|1\rangle\},\{|+\rangle,|-\rangle\},\{|\uparrow\rangle,|\downarrow\rangle\}, \ldots$

Some Principles

* not	$\mathbb{C}^{2} \times \mathbb{C}^{2} \times \mathbb{C}^{2} \cong \mathbb{C}^{6}, \quad$ with base $\quad\left\{\begin{array}{l}\left\|0_{1}\right\rangle \\ \left\|1_{1}\right\rangle\end{array}\right.$	$\left.\begin{array}{ll}\left\|0_{2}\right\rangle & \left\|0_{3}\right\rangle \\ \left\|\mathbf{1}_{2}\right\rangle & \left\|1_{3}\right\rangle\end{array}\right\}$
* but	$\left.\begin{array}{l} \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{8}, \\ \text { with base }\left\{\begin{array}{lll} \|000\rangle & \|001\rangle & \|010\rangle \\ \|100\rangle & \|101\rangle & \|110\rangle \end{array}\|111\rangle\right. \end{array}\right\} .$	Hasuo (Tokyo)

Some Principles

* Composed system: \otimes, not \times.
* Source of power of quantum comp./comm.
* N -qubit $\rightarrow 2^{\mathrm{N}}$-dim (not 2 N -dim)
* Entanglement; superposition

Three Quantum Primitives

* Preparation
* Unitary transformation
* Measurement

Three Quantum

 Primitives $\bullet \mapsto$* Preparation
* Creates/"prepares" a quantum state (typically |0〉)

Three Quantum Primitives

* Unitary transformation

$$
\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta} \quad \stackrel{U}{\longmapsto} \quad U\binom{\alpha}{\beta}
$$

* Unitary matrix: $\boldsymbol{U} \boldsymbol{U}^{\dagger}=\boldsymbol{U}^{\dagger} \boldsymbol{U}=\boldsymbol{I}$
* Invertible. "Rotation"
* Also for N -dim systems (of course)

Three Quantum Primitives

* Measurement

When one measures

$$
\alpha|0\rangle+\beta|1\rangle
$$

[^1]with

* the state becomes $\mid 0$
prob. $|\alpha|^{2}$

[^2]
Entanglement

Density Matrix, Quantum Operation

* Advanced, mathematically convenient formalisms
* State vector \rightarrow density matrix
* Use $|\varphi\rangle\langle\varphi|$ in place of $|\varphi\rangle$
* Can also represent mixed states, e.g. $|00\rangle$ with prob. $\frac{1}{2}$
$|11\rangle$ with prob. $\frac{1}{2}$
* Quantum operation (QO) [Kraus]
* $\{Q O s\}=$ \{any combinations of preparation, Unitary transf., measurement\}
* But no classical control (like case-distinction)
* Used in [Selinger,MSCS'04] and other

Quantum Computation. Summary

* A quantum state $=a$ vector $|\varphi\rangle$
* Composition by \otimes
\rightarrow Dimension grows exponentially
* Three primitives:
* Preparation
* Unitary transformation
* Measurement (\rightarrow st. reduction)

Unified to quantum operation (QO)

Density Matrix, Quantum Operation

Defn.

- An \boldsymbol{m}-dimensional density matrix is an $\boldsymbol{m} \times \boldsymbol{m}$ matrix $\boldsymbol{\rho} \in$ $\mathbb{C}^{m \times m}$ which is positive and satisfies $\operatorname{tr}(\rho) \in[0,1]$.
- Notation: $D_{m}=\{m$-dim. density matrices $\}$
- A quantum operation $(Q O)$ is a mapping $\mathcal{E}: \boldsymbol{D}_{\boldsymbol{m}} \rightarrow \boldsymbol{D}_{\boldsymbol{n}}$ subject to the following axioms.

1. (Trace condition) $\operatorname{tr}[\mathcal{E}(\rho)] \in[0,1]$ for any $\rho \in \boldsymbol{D}_{\boldsymbol{m}}$.
2. (Linearity) Let $\left(\rho_{i}\right)_{i \in I}$ be a family of \boldsymbol{m}-dim. density matrices; and $\left(\boldsymbol{p}_{i}\right)_{i \in I}$ be a probability subdistribution (meaning $\left.\sum_{i} \boldsymbol{p}_{\boldsymbol{i}} \leq \mathbf{1}\right)$. Then: $\mathcal{E}\left(\sum_{i \in I} \boldsymbol{p}_{\boldsymbol{i}} \boldsymbol{\rho}_{\boldsymbol{i}}\right)=$ $\sum_{i \in I} p_{i} \mathcal{E}\left(\rho_{i}\right)$
3. (Complete positivity) An arbitrary "extension" of \mathcal{E} of the form $\mathcal{I}_{k} \otimes \mathcal{E}: M_{k} \otimes M_{m} \rightarrow M_{k} \otimes M_{n}$ carries a positive matrix to a positive one.

- Notation: $\mathbf{Q O}_{\boldsymbol{m}, \boldsymbol{n}}=\{$ QOs from \boldsymbol{m}-dim. to \boldsymbol{n}-dim. $\}$
* For specialists: we allow trace ≤ 1
* So that probabilities are implicitly carried by density matrices

Part 4

Quantum GoI

The Language $q \lambda 1$

* Roughly: linear $\lambda+$ quantum primitives
* "Quantum data, classical control"
* No superposed threads
* Based on [Selinger\&Valiron'09]
* With slight modifications
* Notably: quantum \otimes vs. linear logic \boxtimes
* The same in [Selinger\&Valiron'09]
\rightarrow clean type system, aids programming
* But... problem with GoI-style semantics

2-qbit \cong qbit \otimes qbit $A, B::=n \text {-qbit }\|!A\| A \multimap B\|\top\| A \boxtimes B \mid A+B,$ $\text { with conventions qbit }:=1 \text {-qbit and bit }:=\top+\top .$ The terms of $\mathbf{q} \boldsymbol{\lambda}_{\boldsymbol{\ell}}$ are: $\begin{aligned} & M, N, P::= \\ & x\left\|\lambda x^{A} \cdot M\right\| M N\|\langle M, N\rangle\| * \mid \\ & \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \text { in } N \mid \operatorname{let} *=M \text { in } N \mid \\ & \text { inj } \ell_{\ell}^{B} M\left\|\operatorname{inj}_{r}^{A} M\right\| \\ & \operatorname{match} P \text { with }\left(x^{A} \mapsto M \mid y^{B} \mapsto N\right) \mid \\ & \text { letrec } f^{A} x=M \text { in } N \mid \\ & \text { new }\|\mathbf{0}\rangle\left\|\operatorname{meas}_{i}^{n+1}\right\| U \mid \mathrm{cmp}_{m, n}, \\ & \text { with conventions tt }:=\operatorname{inj}_{\ell}^{\top}(*) \text { and ff }:=\operatorname{inj}_{r}^{\top}(*) \text {. } \end{aligned}$		

Operational Semantics

$$
\begin{aligned}
& E\left[\left(\lambda x^{A} \cdot M\right) V\right] \rightarrow_{1} E[M[V / x]] \\
& \boldsymbol{E}\left[\operatorname{let}\left\langle\boldsymbol{x}^{\boldsymbol{A}}, \boldsymbol{y}^{\boldsymbol{B}}\right\rangle=\langle\boldsymbol{V}, \boldsymbol{W}\rangle \text { in } \boldsymbol{M}\right] \rightarrow_{1} E[\boldsymbol{M}[\boldsymbol{V} / \boldsymbol{x}, \boldsymbol{W} / \boldsymbol{y}]] \\
& \boldsymbol{E}[\text { let } *=* \text { in } M] \rightarrow_{1} \boldsymbol{E}[\boldsymbol{M} \\
& \boldsymbol{E}\left[\text { match }\left(\operatorname{inj}_{\ell}^{B} \boldsymbol{V}\right) \text { with }\left(\boldsymbol{x}^{!^{n} A} \mapsto \boldsymbol{M} \mid \boldsymbol{y}^{!^{n} B} \mapsto \boldsymbol{N}\right)\right. \text {] } \\
& \boldsymbol{E}\left[\operatorname { m a t c h } (\operatorname { i n j } ^ { \boldsymbol { A } } \boldsymbol { V }) \text { with } \left(\boldsymbol{x}^{!^{n} \boldsymbol{A}} \mapsto \boldsymbol{M} \mid \boldsymbol{y}^{!^{n}} \boldsymbol{\rightarrow}_{\boldsymbol{B}} \boldsymbol{E}[\boldsymbol{M}[\boldsymbol{V} / \boldsymbol{x}]]\right.\right. \\
& \rightarrow_{1} E[N[V / y] \\
& \boldsymbol{E}\left[\text { letrec } \boldsymbol{f}^{\boldsymbol{A} \rightarrow \boldsymbol{B}} \boldsymbol{x}=\boldsymbol{M} \text { in } \boldsymbol{N}\right. \text {] } \\
& \rightarrow_{1} E\left[N\left[\lambda x^{A} \text {.letrec } f^{A \multimap B} \boldsymbol{x}=M \text { in } M / f\right]\right. \\
& \left.\boldsymbol{E}\left[\text { meas }_{i}^{n+1}(\text { new } \rho)\right] \rightarrow_{1} \boldsymbol{E}\left[\left\langle\mathrm{tt}, \text { new }\left\langle\mathbf{0}_{\boldsymbol{i}}\right| \boldsymbol{\rho} \mid \mathbf{0}_{\boldsymbol{i}}\right\rangle\right\rangle\right] \\
& \left.\boldsymbol{E}\left[\text { meas }_{i}^{n+1}(\text { new } \rho)\right] \rightarrow_{1} \boldsymbol{E}\left[\left\langle\text { ff, new }\left\langle\mathbf{1}_{i}\right| \boldsymbol{\rho} \mid \mathbf{1}_{i}\right\rangle\right\rangle\right] \\
& \boldsymbol{E}\left[\text { meas }_{1}^{1} \text { (new } \boldsymbol{\rho} \text {) }\right] \rightarrow\langle 0| \rho|0\rangle \boldsymbol{E}[\mathrm{tt}] \\
& E\left[\text { meas }_{1}^{1}(\text { new } \rho)\right] \rightarrow\langle 1| \rho|1\rangle E[\mathrm{ff}] \\
& \boldsymbol{E}[\boldsymbol{U}(\text { new } \boldsymbol{\rho})] \boldsymbol{\rightarrow}_{1} \boldsymbol{E}[\text { new }(\boldsymbol{U} \boldsymbol{\rho})] \\
& \boldsymbol{E}\left[\mathrm{cmp}_{\boldsymbol{m}, \boldsymbol{n}}\langle\text { new } \rho, \text { new } \boldsymbol{\sigma}\rangle\right] \rightarrow_{1} \boldsymbol{E}[\text { new }(\boldsymbol{\rho} \otimes \boldsymbol{\sigma})]
\end{aligned}
$$

* Standard small-step one, CBV, but with probabilistic branching (measurement)

The Language $q \lambda l$

* Roughly: linear $\lambda+$ quantum primitives
* "Quantum data, classical control"
* No superposed threads
* Based on [Selinger\&Valiron'09]
* With slight modifications
* Notably: quantum \otimes vs. linear logic \boxtimes
* The same in [Selinger\&Valiron'09]
\rightarrow clean type system, aids programming
* But... problem with GoI-style semantics

The Categorical GoI Workflow

Branching monad B	Quantum branching monad
Coalgebraic trace semantics	
Traced monoidal category C	Quantum
+other constructs \rightarrow "GoI situation" [AHSO2]	TSMC
Linear combinatory algebra	Quantum LCA
Realizability	

The Quantum Branching Monad

$$
\left.\mathcal{D} Y=\{c: Y \rightarrow[0,1]) \sum_{y \in Y} c(y) \leq 1\right\}
$$

Indeed...

* The monad Qqualifies as a "branching monad"
* The quantum GoI workflow leads to a linear category $\mathbf{P E R}_{Q}$
* From which we construct an adequate denotational model

End of the Story?

* No! All the technicalities are yet to come:
* CPS-style interpretation (for partial measurement)
* Result type: a final coalgebra in $\mathbf{P E R}_{Q}$
* Admissible PERs for recursion
* ...
* On the next occasion :-)

Hasuo (Tokyo)

[^0]: * Quantum λ :
 prototype of quantum functional language

[^1]: * $|0\rangle$ is observed, and

[^2]: * $|1\rangle$ is observed, and
 * the state becomes $|\mathbf{1}\rangle$

