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What’s Done
The Categorical GoI workflow

GoI = “Geometry of Interaction”

General, standard construction of denotational models

Applied to quantum computation

Quantum λ-calculus =                                
linear λ-cal. + quantum constructs

with insights from theory of coalgebra

Outcome: first adequate denotational semantics for a 
full quantum language (with ! and recursion)
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Plan
The categorical GoI workflow                                  
[Abramsky, Haghverdi, Scott, Jacobs, Longley, Lenisa, Hoshino, ...]

GoI + realizability

Generic —— still concrete and dynamic

Coalgebraic view ! let’s do something fancy

Elements of quantum computation

Not much, really!

The calculus qλl Based on [Selinger-Valiron’09]

The denotational model
3
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Quantum λ-calculus

Quantum λ:                           
prototype of quantum functional language

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming 
language

int i,j; 
int factorial(int k)  
{    
    j=1;    
    for (i=1; i<=k; i++)      
        j=j*i;    
    return j;  
} 

Quantum
programming 
language

[Null-Lobur] [beachhandball.es]

[Selinger-Valiron]
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Quantum λ-Calculus: 
Prototype of Quantum Functional Languages

Why (high-level) language?                              
! structured programming

Discovery of new algorithms

Program verification

Why functional language?                                     
! Mathematically nice and clean

Aids (denotational) semantics

Transfer from classical to quantum
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Why denotational semantics?                           
! For quantum communication as well as for 
quantum computation

“Absolute security” via e.g. quantum key distr.

Being tested for real-world usege

Comm. protocols are notoriously error-prone; 
quantum primitives make it worse

Quantum λ-Calculus: 
Prototype of Quantum Functional Languages
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Linear λ-calculus
“No cloning” by linearity:

Classical data (duplicable) via !

+ Quantum primitives

State preparation

Unitary transformation

Measurement

Quantum λ-Calculus: 
Prototype of Quantum Functional Languages
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Classical control

Quantum data

“Quantum Data, 
Classical Control”

Illustration by N. Hoshino

1
√
2

+
1
√
2
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Denotational Semantics
for Quantum λ

In Hilb ?
Not that easy. Classical data? 

[Selinger&Valiron’08] Den. sem. for the !-free fragment

[Selinger&Valiron’09] Operational semantics (nice!)

[Current Work] 

The first model for the full fragment                    
(with ! and recursion)

Categorical GoI:                                             
useful for “Quantum Data, Classical Control”
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Critical Acclaim (?) for:
 I. Hasuo & N. Hoshino, Semantics of Higher-Order 
Quantum Computation via Geometry of Interaction

“[T]he amount of material ... goes far beyond the 10-
page limit ... Now, I understand that self-
containedness is an impossible objective in cases like 
this, but ...”   —Reviewer 3

“This is clearly a 30-page paper (or more) than has 
been compressed into 10 pages.”  —Reviewer 4

Now their pain is yours!!
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Categorical GoI
(Geometry of Interaction)

Part 1
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GoI:                         
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Disclaimer (and sincere apologies): 

I’m no linear logician!

In this talk:

Its categorical formulation
[Abramsky,Haghverdi&Scott’02]

“The GoI Animation”
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The GoI Animation
�M� = (N � N, a partial function )

= “piping”

[|  M|]

...    (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

"

token
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The GoI Animation
Function application 

by “parallel composition + hiding”

�MN�

14

M N

...

... ...

...

...

...

...

...

MN

�MN�
=

“parallel composition + hiding”
(cf. games)
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M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

!
!
!
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Categorical GoI
Axiomatics of GoI in the categorical language

Abstraction & genericity, which we exploit

Our main reference (recommended!):

[AHS02]  S. Abramsky, E. Haghverdi, and        
P. Scott, “Geometry of interaction and linear 
combinatory algebras,” MSCS 2002

Especially its technical report version       
(Oxford CL), since it’s more detailed
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The Categorical GoI 
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Int-constr. [Joyal,Street&Verity96]

Weak linear category Int(C)
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The Categorical GoI 
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus
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Linear Combinatory Algebra 
(LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 −→ A

• a unary operator

! : A −→ A

• (combinators) distinguished elements B,C, I,K,W,D, δ, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

δ !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds

stronger than · does.

Model of              
untyped linear λ
a ∈ A    !                 
closed linear λ-term
No S or K (linear!)

Combinatory 
completeness: e.g.

designates elem. of A

λxyz. zxy

What 
we want (outcome)
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GoI situation
What we use (ingredient)

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

21
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GoI situation
Monoidal category

String diagrams

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

(C,⊗, I)

A
f−→ B B

g−→ C

A
g◦f−→ C

A

B

C

g

f

gf

h

h ◦ (f ⊗ g)

A

B

C
gf

D

A
f−→ B C

g−→ D

A ⊗ C
f⊗g−→ B ⊗ D
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GoI situation
Traced monoidal category

“feedback”

that is

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

A ⊗ C
f−→ B ⊗ C

A
tr(f)−→ B

tr�−→f
A

B

C

C

A

B

tr(f)
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Pipe diagram

In this talk, I use two ways of depicting 
partial functions

String Diagram vs. 
“Pipe Diagram”

N � N

String diagram

�M�

N

N

In the monoidal category
(Pfn,+, 0)

24
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Traced Sym. Monoidal Category  

Category Pfn of partial functions

Obj.  A set X

Arr.  A partial function

is traced symmetric monoidal

X → Y in Pfn
X � Y, partial function f

X

Y

(Pfn,+, 0)

25
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Traced Sym. Monoidal Category  

Given 

 

Trace operator:

X + Z
f−→ Y + Z in Pfn

f
X

Y

Z

Z

fXY (x) :=

�
f(x) if f(x) ∈ Y

⊥ o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY �
�
�

n∈N
fZY ◦ (fZZ)

n ◦ fXZ

�

Execution formula

Partiality is essential (infinite loop)

(Pfn,+, 0)
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GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

tr�−→f
A

B

C

C

A

B

tr(f)

27

M N

...

... ...

...

...

...

�MN�
=

MN

 in string diagramM N
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GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Leading example: Pfn

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

tr�−→f
A

B

C

C

A

B

tr(f)

M N M

N

M

N

= = tr( )
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GoI situation

Functor F

For obtaining  ! : A → A

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

Defn. (Retraction)
A retraction from X to Y ,

f : X � Y : g ,

is a pair of arrows

Xid ��

f
��
Y

g
��

such that g ◦ f = idX .

“embedding”

“projection”
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GoI situation
Functor F

For obtaining  ! : A → A

Pictorially:

Example in Pfn:

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

F�−→f fff
...

N · : Pfn �� Pfn

X
f�� �−→

N · X
N · f��

Y N · Y

(n, x)
�
���

n, f(x)
�
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GoI situation
The reflexive object U

 Retr. 

Retr. 

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

U ⊗ U

j
��U

k

��

          ,         with

                 =  id

j k

j

k

FU
u

��
U

v
��

u v
...

32
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GoI situation
The reflexive object U

Why for GoI? 

Example in Pfn: 

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

          ,        j k

u v

M N

N ∈ Pfn, with

N + N ∼= N,
N · N ∼= N
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Categorical axiomatics of 
the “GoI animation” 

Example: 

GoI Situation: Summary
Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

          ,        j k

u v

M N

tr�−→f
A

B

C

C

A

B

tr(f)

For ! , via

F�−→f fff
...

(Pfn, N · , N)

· · · · · ·

· · ·
34

Hasuo (Tokyo)

The Categorical GoI 
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

35
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Categorical GoI:
Constr. of an LCA

 

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

∈ C(U,U)

g f=

g · f
:= tr

�
(U ⊗ f) ◦ k ◦ g ◦ j

�

=
f

g

36
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Categorical GoI:
Constr. of an LCA

 

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

∈ C(U,U)

! f := u ◦ Ff ◦ v

=

U

v

u

Ff
FU

FU

U

=

37
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

40
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)
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Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

43

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
Nice dynamic interpretation of 
(linear) computation!!
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Summary: 
Categorical GoI

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v
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Why Categorical Generalization?:
Examples Other Than Pfn

Strategy: find a TSMC!

“Wave-style” examples

⊗ is Cartesian product(-like)

in which case, 

trace  !  fixed point operator [Hasegawa/Hyland]

An example: 

(... less of a dynamic flavor)

�
(ω-Cpo,×, 1), ( )N, AN �

M N

46
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Why Categorical Generalization?:
Examples Other Than Pfn

“Particle-style” examples

Obj. X∈C is set-like; ⊗ is coproduct-like

The GoI animation is valid

Examples:

Partial functions

Non-det. functions (i.e. relations)

Probabilistic functions                        
(“discrete stochastic relations”)

M N

�
(Pfn,+, 0), N · , N

�

�
(Rel,+, 0), N · , N

�

�
(DSRel,+, 0), N · , N

�
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Why Categorical Generalization?:
Examples Other Than Pfn

Pfn  (partial functions)

Rel  (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

Categories of sets and                 
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

48
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Different Branching in 
The GoI Animation

...   

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

"

Pfn  (partial functions)

Pipe can be stuck

Rel  (relations)

Pipe can branch

DSRel

Pipe can branch 
probabilistically

!

!

!
"" 1

3

2

3

11
1
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Why Categorical Generalization?:
Examples Other Than Pfn

Pfn  (partial functions)

Rel  (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

M N

Essential to have 
subdistribution,        
for infinite loops
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RIMS, Kyoto U. (2011-)
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A Coalgebraic View
Theory of coalgebra =                       
Categorical theory of state-based dynamic 
systems (LTS, automaton, Markov chain, ...)

In my thesis (2008): 

Coalgebras in a Kleisli category Kl(B)

! Generic theory of “trace semantics”

X → Y in K�(B)

X → BY in Sets

52
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Why Categorical Generalization?:
Examples Other Than Pfn

Pfn  (partial functions)

Rel  (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

Categories of sets and                 
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Kl(B) for different branching 
monads B 

53
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Branching Monad: Source of 
Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the
monoidal category

(K�(B),+, 0)

is

• a unique decomposition category
[Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor.�
(K�(B),+, 0), N· , N

�
is a GoI situation.

Monads in 
[Hasuo,Jacobs&Sokolova07]

Kl(B) is Cpo⊥-enriched

like L, P, D

Particle-style: trace via 
the execution formula

tr(f) =

fXY �
�
�

n∈N
fZY ◦ (fZZ)

n ◦ fXZ

�
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
TSMC

Fancy
monad
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What is Fancy, 
Nowadays?

Biology?

Hybrid systems?

Both discrete and continuous data, typically in 
cyber-physical systems (CPS)

! Our approach via non-standard analysis 
[Suenaga&Hasuo,ICALP11]

Quantum?

Yes this worked!
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The Categorical GoI 
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Coalgebraic trace semantics

Branching monad B

57

Realizability:
from Untyped to Typed

Part 2
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Realizability
Dates back to Kleene

Cf. the Brouwer-Heyting-Kolmogorov (BHK) 
interpretation

A p’f of A∧B is a pair:  (p’f of A, p’f of B)

A p’f of A→B is a function carrying                     
(p’f of A) to (p’f of B)

Proof = “realizer”
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Realizability
Our technical view on realizability: a construction

from a combinatory algebra, 

of a categorical model of a typed calculus

Here: construct a linear category from an LCA

References:

[AL05] S. Abramsky and M. Lenisa, “Linear realizability and 
full completeness for typed lambda-calculi,” APAA 2005.

[Hos07] N. Hoshino, “Linear realizability,” CSL 2007.
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Realizability
Either by ω-sets (intuitive) or                            
by PERs (tech. convenient)

Defn.
Given an LCA A, an ω-set is a pair

�
S, r : S → P+(A)

�

where

• S is a set;

• for each x ∈ S, the nonempty subset
r(x) ⊆ A is the set of realizers.

Could as well be a partial 
combinatory algebra. Its 
examples:

N with n⋅m = comp(n,m)

{ closed λ-terms }

a ∈ r(x) :

“realizes” x, or

“witnesses 
existence of” x
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Realizability
PER = eq. rel. - refl.

An eq. rel. when 
restricted to |X|

PER to ω-set:

Also: ω-set to PER

Defn.
A partial equivalence relation (PER) X is a
transitive and symmetric relation on A.

|X| := {a | (a, a) ∈ X}
= {a | ∃b. (a, b) ∈ X}
= {a | ∃b. (b, a) ∈ X}

is the domain of X. �
|X|/X, |X|/X r−→ P+(A)

�

with [a]
r�−→ {b | (a, b) ∈ X}
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PERA:
The Category of  PERs

Obj.   A PER X on A

Arr.   The homset is

Thus:  

Often put:

PERA(X,Y )

=
�
c ∈ A

��� (x, x�) ∈ X =⇒ (cx, cx�) ∈ Y
�

�
(c, c�)

�� ∀x ∈ |X|. (cx, c�x) ∈ Y
�

All the valid codes c 
(well-dfd?)

Modulo                   
“the same function”

[c] : X −→ Y (with c ∈ A)

PERA(X,Y ) =
�
(c, c�)

��� (x, x�) ∈ X =⇒ (cx, c�x�) ∈ Y
�
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Type Constructors in 
PERA

Linear category [Benton&Wadler,LICS’96][Bierman,TLCA’95]

Categorical model of linear logic/linear λ, 
with

Monoidal closed with

Linear exponential comonad ! 

Thm. ([AL05])
If A is an affine LCA, then PERA is a linear category.
Furthermore, PERA has finite products and coproducts.

�, I,� Not ⊗,        
for distinction

with full K: Kxy=x
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Type Constructors in 
PERA

How to get operators

Like “programming in untyped λ”!

Cf. Combinaroty completeness

�,×,+, . . .

n := λfx.f(f · · · (fx) · · · ) Church numeral

K := KI

P := λxyz.zxy Paring

Pl := λw.wK Left projection

Pl := λw.wK Right projection

Pl(Pxy) = x

Pr(Pxy) = y
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X � Y :=
�
(Pxy,Px�y�)

��� (x, x�) ∈ X ∧ (y, y�) ∈ Y
�

X × Y :=
� �

Pk1(Pk2u), Pk
�
1(Pk

�
2u

�)
� ���

(k1u, k
�
1u

�) ∈ X ∧ (k2u, k
�
2u

�) ∈ Y
�

!X :=
�
(!x, !x�)

��� (x, x�) ∈ X
�

X + Y :=
�
(PKx,PKx�)

��� (x, x�) ∈ X
�

∪
�
(PKy,PKy�)

��� (y, y�) ∈ Y
�

X � Y :=
�
(c, c�)

��� (x, x�) ∈ X =⇒ (cx, c�x�) ∈ Y
�

Type Constructors in 
PERA

X ∈ PERA

X ⊆ A × A, sym., trans.multiplicative 
and

additive 
and

CPS-style. k!, k": 
“access methods”
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Summary: 
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

�−→
Linear category PERA

                                  (a,c  ∈A)

Type constructors via “programming in untyped λ”
Symmetric monoidal closed  

Finite product, coproduct

X
[c]

�� Y

[a] � �� [c · a]

�, I,� Not ⊗,        
for distinction
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The Categorical GoI 
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Coalgebraic trace semantics

Branching monad B

f
U

U

∈ C(U,U)

g · f = g f
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Summary: 
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

Linear category PERA

                                  (a,c  ∈A)

Type constructors via “programming in untyped λ”
Symmetric monoidal closed  

Finite product, coproduct

X
[c]

�� Y

[a] � �� [c · a]

�, I,� Not ⊗,        
for distinction

�−→

U

U

c

U

U

a

X

� �

�� Y
� �

� �� [c · a] =
� �

c a
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Time to Wake Up!!

70

Quantum Computation 
in 5 min.

Part 3
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What You Need to Know
Not much, really!

Our principal reference: 

M.A. Nielsen and I.L. Chuang. 
Quantum Computation and 
Quantum Information. CUP, 2000

Its Chap. 3 & Chap. 8

Hilbert space formulation

Quantum operation formalism 
(Kraus)

No need for the Bloch sphere #
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Some Principles
A state of a 1-qubit system             
= a normalized vector 

with

Various notations for base:

|ϕ� = α|0� + β|1� ∈ C2

1
√
2

+
1
√
2 ��|ϕ�

��2 = |α|2 + |β|2 = 1

�
|0�, |1�

�
,
�
|+�, |−�

�
,
�
| ↑�, | ↓�

�
, . . .
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Some Principles

Composed system: ⊗, not ×.                

not 

but

C2 × C2 × C2 ∼= C6, with base
� |01� |02� |03�

|11� |12� |13�

�

1
√
2

+
1
√
2

⊗
1
√
2

+
1
√
2

1
√
2

+
1
√
2

⊗

C2 ⊗ C2 ⊗ C2 ∼= C8,

with base
� |000� |001� |010� |011�

|100� |101� |110� |111�

�
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Some Principles

Composed system: ⊗, not ×.                

Source of power of quantum comp./comm.

N-qubit ! 2N-dim  (not 2N-dim)

Entanglement; superposition

1
√
2

+
1
√
2

⊗
1
√
2

+
1
√
2

1
√
2

+
1
√
2

⊗
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Three Quantum 
Primitives

Preparation

Unitary transformation

Measurement

�−→
1

+0

�−→
1
√
2

+
1
√
2

1

+0

1
√
2

+
1
√
2

�−→�−→

1

2

1

2
76
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Three Quantum 
Primitives

Preparation

Creates/“prepares” a quantum state 
(typically |0!)

�−→
1

+0
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Three Quantum 
Primitives

Unitary transformation

Unitary matrix: 

Invertible. “Rotation”

Also for N-dim systems (of course)

�−→
1
√
2

+
1
√
2

1

+0

α|0� + β|1� =

�
α
β

�
U�−→ U

�
α
β

�

UU† = U†U = I
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Three Quantum 
Primitives

Measurement         
When one measures

1
√
2

+
1
√
2

�−→�−→

1

2

1

2
α|0� + β|1�

with 
prob. |α|2

    is observed, and

the state becomes

|0�

|0�

    is observed, and

the state becomes

|1�

|1�
with 
prob. |β|2

state 
reduction

Also: for other dimensions, bases
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Entanglement

1
√
2
|00� +

1
√
2
|11�

1
√
2
|00� +

1
√
2
|11�

|00� with prob.
1

2

|11� with prob.
1

2

qubit1 qubit2

qubit1 qubit2

measure!!

qubit1 qubit2
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Density Matrix, 
Quantum Operation
Advanced, mathematically convenient formalisms

State vector ! density matrix

Use             in place of  

Can also represent mixed states, e.g.

Quantum operation (QO) [Kraus]

{QOs} = {any combinations of preparation, Unitary 
transf., measurement}

But no classical control (like case-distinction)

Used in [Selinger,MSCS’04] and other 

|00� with prob.
1

2

|11� with prob.
1

2

|ϕ��ϕ| |ϕ�
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Density Matrix, 
Quantum Operation

For specialists: 
we allow trace 
" 1

So that 
probabilities 
are implicitly 
carried by 
density 
matrices

Defn.

• An m-dimensional density matrix is an m×m matrix ρ ∈
Cm×m which is positive and satisfies tr(ρ) ∈ [0, 1].

– Notation: Dm = {m-dim. density matrices}

• A quantum operation (QO) is a mapping E : Dm → Dn

subject to the following axioms.

1. (Trace condition) tr[E(ρ)] ∈ [0, 1] for any ρ ∈ Dm.

2. (Linearity) Let (ρi)i∈I be a family of m-dim. den-

sity matrices; and (pi)i∈I be a probability subdistribu-

tion (meaning
�

i pi ≤ 1). Then: E
��

i∈I piρi

�
=�

i∈I piE(ρi) .

3. (Complete positivity) An arbitrary “extension” of E of

the form Ik ⊗ E : Mk ⊗Mm → Mk ⊗Mn carries a

positive matrix to a positive one.

– Notation: QOm,n = {QOs from m-dim. to n-dim. }
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Quantum Computation: 
Summary

A quantum state  =  a vector |φ〉

Composition by ⊗                           
! Dimension grows exponentially

Three primitives:

Preparation

Unitary transformation

Measurement (! st. reduction)

Generalized to 
density matrix

}
Unified to quantum 

operation (QO)

83

Quantum GoI

Part 4

84
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The Language qλl
Roughly: linear λ + quantum primitives

“Quantum data, classical control”                  

 No superposed threads

Based on [Selinger&Valiron’09]

With slight modifications 

Notably: quantum ⊗ vs. linear logic

The same in [Selinger&Valiron’09]                   
! clean type system, aids programming

But... problem with GoI-style semantics

�
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The Language qλl
The types of qλ� are:

A,B ::= n-qbit | !A | A � B | � | A � B | A + B ,

with conventions qbit := 1-qbit and bit := � + � .

The terms of qλ� are:

M,N, P ::=
x | λxA .M | MN | �M,N � | ∗ |
let �xA , yB� = M inN | let ∗ = M inN |
injB� M | injAr M |
matchP with (xA �→ M | yB �→ N) |
letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n ,

with conventions tt := inj�� (∗) and ff := inj�r (∗) .

Different from quantum ⊗ 
(Unlike [Selinger-Valiron’09]); 

same as the one in PER
2-qbit ∼= qbit ⊗ qbit

Recursion

Quantum 
primitives
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A <: A�

!∆, x : A � x : A� (Ax.1)
!Ac <: A
!∆ � c : A

(Ax.2)

∆ � M : !n A
∆ � injB� M : !n(A + B)

(+.I1)

∆ � N : !n B
∆ � injAr N : !n(A + B)

(+.I2)

!∆,Γ1 � P : !n(A + B)
!∆,Γ2, x : !n A � M : C
!∆,Γ2, y : !n B � N : C

!∆,Γ1,Γ2

� matchP with (x!n A �→ M | y!n B �→ N) : C

(+.E), (†)

x : A,∆ � M : B

∆ � λxA.M : A � B
(�.I1)

x : A, !∆ � M : B

!∆ � λxA.M : !n(A � B)
(�.I2)

!∆,Γ1 � M : A � B !∆,Γ2 � N : A
!∆,Γ1,Γ2 � MN : B

(�.E), (†)

!∆,Γ1 � M1 : !n A1 !∆,Γ2 � M2 : !n A2

!∆,Γ1,Γ2 � �M1,M2� : !n(A1 � A2)
(�.I), (†)

!∆ � ∗ : !n � (�.I)

!∆,Γ2, x1 : !n A1, x2 : !n A2 � N : A
!∆,Γ1 � M : !n(A1 � A2)

!∆,Γ1,Γ2 � let �x!n A1
1 , x!n A2

2 � = M inN : A
(�.E), (†)

!∆,Γ1 � M : � !∆,Γ2 � N : A
!∆,Γ1,Γ2 � let ∗ = M inN : A

(�.E), (†)
!∆,Γ, f : !(A � B) � N : C

!∆, f : !(A � B), x : A � M : B

!∆,Γ � letrec fA�Bx = M inN : C
(rec), (†)

Anew|0� := qbit
A

meas
n+1
i

:= (n + 1)-qbit � (bit � n-qbit) for n ≥ 1

Ameas11
:= qbit � bit

AU := n-qbit � n-qbit for a 2n × 2n matrix U
Acmpm,n

:= (m-qbit � n-qbit) � (m + n)-qbit

n = 0 ⇒ m = 0 (∗)
!n k-qbit <: !m k-qbit

(k-qbit) n = 0 ⇒ m = 0
!n � <: !m � (�)

A1 <: B1 A2 <: B2 (∗)
!n(A1 � A2) <: !m(B1 � B2)

(�) with � ∈ {�,+}

B1 <: A1 A2 <: B2 (∗)
!n(A1 � A2) <: !m(B1 � B2)

(�)

Measurements

Implicit linearity tracking 
via subtyping <:            
e.g.  !A <: A,  !A <: !!A   
(following [Selinger-Valiron’09])

Bookkeeping     
(due to ⊗ vs.    ) �
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Operational Semantics

Standard small-step one, CBV, but with probabilistic 
branching (measurement)

E[ (λxA.M)V ] →1 E[M [V/x] ]
E[ let �xA, yB� = �V,W � inM ] →1 E[M [V/x,W/y] ]
E[ let ∗ = ∗ inM ] →1 E[M ]
E[ match (injB� V ) with (x!n A �→ M | y!n B �→ N) ]

→1 E[M [V/x] ]
E[ match (injAr V ) with (x!n A �→ M | y!n B �→ N) ]

→1 E[N [V/y] ]
E[ letrec fA�Bx = M inN ]

→1 E[N [λxA.letrec fA�Bx = M inM/f ] ]
E[ measn+1

i (new ρ) ] →1 E[ � tt, new �0i|ρ|0i� � ]
E[ measn+1

i (new ρ) ] →1 E[ � ff, new �1i|ρ|1i� � ]
E[ meas11(new ρ) ] →�0|ρ|0� E[ tt ]
E[ meas11(new ρ) ] →�1|ρ|1� E[ ff ]
E[U(new ρ) ] →1 E[ new (Uρ) ]
E[ cmpm,n�new ρ, newσ� ] →1 E[ new (ρ ⊗ σ) ]
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The Language qλl
Roughly: linear λ + quantum primitives

“Quantum data, classical control”                  

 No superposed threads

Based on [Selinger&Valiron’09]

With slight modifications 

Notably: quantum ⊗ vs. linear logic

The same in [Selinger&Valiron’09]                   
! clean type system, aids programming

But... problem with GoI-style semantics

�
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The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of 
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum 
branching
monad
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Different Branching in 
The GoI Animation

...   

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

"

Pfn  (partial functions)

Pipe can be stuck

Rel  (relations)

Pipe can branch

DSRel

Pipe is 
probabilistically 
branched

!

!

!
"" 1

3

2

3

11
1

Kl(L), non-termination 

Kl(P), non-determinism 

Kl(D), probability 
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M

...    (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

Not just a token/
particle, but  

quantum state!

“Quantum Data”

“Classical Control”

Not just a token/
particle, but  

quantum state!

“in which pipe”

(measurement ! case-distinction) 
leads a token to different pipes
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Compare with

The Quantum Branching  
Monad

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

(trace of matrix ! probability)

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

PY =
�
c : Y → 2

�

DY =
�
c : Y → [0, 1]

���
�

y∈Y

c(y) ≤ 1
�
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The Quantum 
Branching  Monad

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

Given                                    
determines a quantum operation 

Subject to the trace condition

x ∈ X, y ∈ Y, m ∈ N, n ∈ N

�
f(x)(y)

�

m,n
: Dm → Dn

Any opr. on 
quantum data: 
combination of

• preparation 
• unitary transf. 
• measurement

X → Y in K�(Q)

X → QY in Sets

f
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The Quantum 
Branching  Monad

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

...   

...

Given                                    
determines a quantum 
operation (f(x)(y))m,n

trace cond.: 

x ∈ X, y ∈ Y, m ∈ N, n ∈ N

x

y y��

y,n

Pr

� �
≤ 1

Token led 
to y

with dim. n

entrance exit
in. 

dim.
out. 
dim.

measure (and others)

ρ ∈ Dm

for each n

�
f(x)(y)

�

m,n
(ρ) ∈ Dn

X → Y in K�(Q)

X → QY in Sets

f
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M

...    (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

Not just a token/
particle, but  

quantum state!

“Quantum Data”

“Classical Control”

Not just a token/
particle, but  

quantum state!

“in which pipe”

(measurement ! case-distinction) 
leads a token to different pipes
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Indeed...
The monad Q qualifies as a 
“branching monad”

The quantum GoI workflow leads 
to a linear category PERQ

From which we construct an 
adequate denotational model
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End of the Story?
No! All the technicalities are yet to come:

CPS-style interpretation (for partial 
measurement)

Result type: a final coalgebra in PERQ

Admissible PERs for recursion

...

On the next occasion :-)
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Conclusion: the Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of 
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum 
branching
monad

Thank you for your attention!Ichiro Hasuo (Dept. CS, U Tokyo)http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/
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