

Quantum λ -calculus

- Why (high-level) language?
 structured programming
 - * Discovery of new algorithms
 - * Program verification

* Why functional language?

- → Mathematically nice and clean
- * Aids (denotational) semantics
- * Transfer from classical to quantum

Hasuo (Tokyo)

Quantum λ-Calculus: Prototype of Quantum Functional Languages * Linear λ-calculus * "No cloning" by linearity: * Oclassical data (duplicable) via ! * + Quantum primitives * State preparation * Unitary transformation * Measurement

Quantum λ -Calculus: Prototype of Quantum Functional Languages

- ★ Why denotational semantics?
 → For quantum communication as well as for quantum computation
 - * "Absolute security" via e.g. quantum key distr.
 - * Being tested for real-world usege
 - Comm. protocols are notoriously error-prone; quantum primitives make it worse

Hasuo (Tokyo)

Denotational Semantics for Quantum λ

* In Hilb ?

- * Not that easy. Classical data?
- * [Selinger&Valiron'08] Den. sem. for the !-free fragment
- Selinger&Valiron'09] Operational semantics (nice!)
- * [Current Work]

 The first model for the full fragment (with ! and recursion)

 Categorical GoI: useful for "Quantum Data, Classical Control"

Hasuo (Tokyo)

Part 1

Categorical GoI (Geometry of Interaction)

Critical Acclaim (?) for:

I. Hasuo & N. Hoshino, Semantics of Higher-Order Quantum Computation via Geometry of Interaction

- "[T]he amount of material ... goes far beyond the 10-page limit ... Now, I understand that self-containedness is an impossible objective in cases like this, but ..." —*Reviewer 3*
- "This is clearly a 30-page paper (or more) than has been compressed into 10 pages." —*Reviewer 4*

* Now their pain is yours!!

Hasuo (Tokyo)

GoI: Geometry of Interaction

- * J.-Y. Girard, at Logic Colloquium '88
- * Disclaimer (and sincere apologies):
 - * I'm no linear logician!

* In this talk:

- Its categorical formulation [Abramsky,Haghverdi&Scott'02]
- * "The GoI Animation"

Hasuo (Tokyo)

- * Axiomatics of GoI in the categorical language
- * Abstraction & genericity, which we exploit
- * Our main reference (recommended!):
 - [AHS02] S. Abramsky, E. Haghverdi, and
 P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002
 - Especially its technical report version (Oxford CL), since it's more detailed

Hasuo (Tokyo)

The Categorical GoI
WorkflowTraced monoidal category C
(+ other constructs + "GoI situation" [AHS02]Image: Categorical GoI [AHS02]Image: Categorical GoI [AHS02]Intear combinatory algebra
RealizabilityImage: Category C
RealizabilityImage: Category C<b

	(LCA		What we want (outcome)
Defn. (LCA) A linear combinatory algebra (LCA) is a set A equipped with		*	Model of
a binary operator (called an <i>applicative structure</i>)			untyped linear λ
• a unary operator ! : 4	$A^2 \longrightarrow A$ $A \longrightarrow A$	*	a∈A ≈ closed linear λ-term
• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying Bxyz = x(yz) Composition, Cut		*	No S or K (linear!)
Cxyz = (xz)y	Exchange	*	Combinatory
Ix = x $Kx ! y = x$ $Wx ! y = x ! u ! u$	Identity Weakening Contraction		completeness: e.g.
D! x = x $\delta! x = !! x$	Dereliction Comultiplication		$\lambda xyz. zxy$
F ! x ! y = ! (xy) Here: \cdot associates to the left	Monoidal functoriality eft; • is suppressed; and ! binds		designates elem. of A

Hasuo (Tekyo)

The Categorical GoI Workflow

35

Categorical GoI: Constr. of an LCA

Summary:			
Categoric	al GoI		
Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where	Thm. ([AHS02])		
 C = (C, ⊗, I) is a traced symmetric monoidal category (TSMC); 	Given a GoI situation (\mathbb{C} , F , U), the homse $\mathbb{C}(U, U)$ carries a canonical LCA structure.		
• $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).			
$e \ : \ FF rianglerightarrow F \ : \ e'$ Comultiplication			
$d \ : \ \mathrm{id} \lhd F \ : \ d'$ Dereliction			
$c \ : \ F \otimes F \lhd F \ : \ c'$ Contraction			
$w \; : \; K_I \lhd F \; : \; w' \qquad ext{Weakening}$			
Here K_I is the constant functor into the monoidal unit I ;			
• $U \in \mathbb{C}$ is an object (called <i>reflexive object</i>), equipped with the following retractions.			
$j:U\otimes U \lhd U:k$			
$I \lhd U$			
$u \ : \ FU \lhd U \ : \ v$	Hasuo (Tokvo		
	1		

Why Categorical Generalization?: Examples Other Than Pfn

- * "Particle-style" examples
 - * Obj. XeC is set-like; \otimes is coproduct-like
 - * The GoI animation is valid
 - * Examples:
 - * Partial functions

 $((\mathbf{Pfn},+,\mathbf{0}),\,\mathbb{N}\cdot_{-},\,\mathbb{N}))$

((DSRel, +, 0), $\mathbb{N} \cdot _, \mathbb{N})$

- * Non-det. functions (i.e. relations)
- ★ Probabilistic functions
 ("discrete stochastic relations")

The Coauthor

* Naohiko Hoshino

* DSc

- * Kyoto U. (JP), 2011
- Supervisor: Masahito "Hassei" Hasegawa

* Assist. Prof., RIMS, Kyoto U. (2011-)

A Coalgebraic View * Theory of coalgebra = Categorical theory of state-based dynamic systems (LTS, automaton, Markov chain, ...) * In my thesis (2008): * Coalgebras in a Kleisli category Kl(B) X → BY in Kl(B) X → BY in Sets * → Generic theory of "trace semantics"

Branching Monad: Source of Particle-Style GoI Situations

Realizability

* Dates back to Kleene

- Cf. the Brouwer-Heyting-Kolmogorov (BHK) interpretation
 - * A p'f of A∧B is a pair: (p'f of A, p'f of B)
 - A p'f of A→B is a function carrying (p'f of A) to (p'f of B)
 - Proof = "realizer"

Part 2

Realizability: from Untyped to Typed

<image><section-header><section-header><section-header><image><image><image>

What You Need to Know

- * Not much, really!
- * Our principal reference:
- M.A. Nielsen and I.L. Chuang.
 Quantum Computation and
 Quantum Information. CUP, 2000
- * Its Chap. 3 & Chap. 8
- * Hilbert space formulation
- Quantum operation formalism (Kraus)
- * No need for the Bloch sphere

- * Composed system: \otimes , not \times .
 - * Source of power of quantum comp./comm.

Hasuo (Tokyo)

- * N-qubit \rightarrow 2^N-dim (not 2N-dim)
- * Entanglement; superposition

Density Matrix, Quantum Operation

- * Advanced, mathematically convenient formalisms
- ★ State vector → density matrix
 - * Use $|arphi
 angle\langle arphi|$ in place of |arphi
 angle
 - * Can also represent **mixed states**, e.g. $|00\rangle$ with prob. $\frac{1}{2}$
 - $|11\rangle$ with prob. $\frac{1}{2}$
- Quantum operation (QO) [Kraus]
 - \$ {QOs} = {any combinations of preparation, Unitary transf., measurement}
 - * But no classical control (like case-distinction)
 - Used in [Selinger,MSCS'04] and other

Hasuo (Tokyo)

Density Matrix, Quantum Operation

 An m-dimensional density matrix is an m×m matrix ρ ∈ C^{m×m} which is positive and satisfies tr(ρ) ∈ [0, 1]. Notation: D_m = {m-dim. density matrices} 	★ For specialists: we allow trace ≤ 1	
 A quantum operation (QO) is a mapping E : D_m → D_n subject to the following axioms. 1. (Trace condition) tr[E(ρ)] ∈ [0, 1] for any ρ ∈ D_m. 2. (Linearity) Let (ρ_i)_{i∈I} be a family of m-dim. density matrices; and (p_i)_{i∈I} be a probability subdistribution (meaning Σ_i p_i ≤ 1). Then: E(Σ_{i∈I} p_iρ_i) = Σ_{i∈I} p_iE(ρ_i). 3. (Complete positivity) An arbitrary "extension" of E of the form I_k ⊗ E : M_k ⊗ M_m → M_k ⊗ M_n carries a positive matrix to a positive one. 	So that probabilities are implicitly carried by density matrices	
– Notation: $\mathbf{QO}_{m,n} = \{ \text{QOs from } m \text{-dim. to } n \text{-dim. } \}$	Hasuo (Tokyo	

Implicit linearity tracking via subtyping <: e.g. !A <: A, !A <: !!A (following [Selinger-Valiron'09]) $\frac{n = 0 \Rightarrow m = 0 (*)}{!^{n}k \cdot qbit (:!^{m}k \cdot qbit)} \frac{n = 0 \Rightarrow m = 0}{!^{n} \top (:!^{m} \top (*))} (\top)$ $\frac{A_{1} <: B_{1} A_{2} <: B_{2} (*)}{!^{n}(A_{1} \Box A_{2}) <: !^{m}(B_{1} \Box B_{2})} (\Box) \text{ with } \Box \in \{\boxtimes, +\}$ $\frac{B_{1} <: A_{1} A_{2} <: B_{2} (*)}{! B_{1} <: A_{1} A_{2} <: B_{2} (*)} (\neg)$	$ \begin{array}{c} \frac{A <: A'}{!\Delta, x:A \vdash x:A'} (\operatorname{Ax.1}) & \frac{!A_c <: A}{!\Delta \vdash c:A} (\operatorname{Ax.2}) \\ \hline \Delta \vdash M: \stackrel{l^n}{\to} A & (+, I_1) \\ \hline \Delta \vdash n_\ell^B M: \stackrel{l^n}{\to} (A + B) \\ \hline \Delta \vdash n_j^A N: \stackrel{l^n}{\to} B & (+, I_2) \\ \hline \Delta \vdash n_j^A N: \stackrel{l^n}{\to} (A + B) & (+, I_2) \\ \hline \frac{!\Delta, \Gamma_1 \vdash P: \stackrel{l^n}{\to} (A + B) & !\Delta, \Gamma_2, y: \stackrel{l^n}{\to} B + N: C \\ \hline \frac{!\Delta, \Gamma_1, \Gamma_2}{\vdash n \operatorname{atch} P \operatorname{with} (x^{l^n} A \mapsto M \mid y^{l^n} B \mapsto N): C \\ \hline \frac{x:A, \Delta \vdash M: B}{\Delta \vdash X, M:A \to R} & (-o, I_1) \end{array} $
$\begin{split} \mathbb{P}^{*}(A_{1} \multimap A_{2}) <: \mathbb{P}^{n}(B_{1} \multimap B_{2}) & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$\begin{aligned} & \stackrel{(\Delta + \lambda a^{-}, M + A \rightarrow G}{\stackrel{(\Delta + \lambda a^{-}, M + A \rightarrow G}{\stackrel{(\Delta + \lambda a^{-}, M + I^{n}(A \rightarrow B)}{\stackrel{(\Delta + \Gamma_{1} + M + A \rightarrow G}{\stackrel{(\Delta + \Gamma_{2} + M) + B}}} (\neg \bullet, \mathbf{I}_{2}) \\ & \stackrel{(\Delta + \Gamma_{1} + M + A \rightarrow G}{\stackrel{(\Delta + \Gamma_{1} + M + I + A \rightarrow G}{\stackrel{(\Delta + \Gamma_{1} + M + I + A \rightarrow G}{\stackrel{(\Delta + \Gamma_{1} + M + I + A \rightarrow G}{\stackrel{(\Delta + \Gamma_{1} + M + I + A \rightarrow G}{\stackrel{(\Delta + \Gamma_{1} + M + I + A \rightarrow G}{\stackrel{(\Delta + \Gamma_{1} + M + I + A \rightarrow G}{\stackrel{(\Delta + \Gamma_{1} + M + I + I^{n}(A_{1} \boxtimes A_{2})}}} (\boxtimes . \mathbf{I}), (\dagger) \\ & \stackrel{(\Delta + \ast + I^{n} + I^{n} + I + A_{1}, x_{2} + I^{n} A_{2} + N + A}{\stackrel{(\Delta + \Gamma_{1} + M + I + I^{n}(A_{1} \boxtimes A_{2})}{\stackrel{(\Delta + \Gamma_{1} + \Gamma_{2} + 1 + I + A \rightarrow I^{n}(A_{1} \boxtimes A_{2})}} (\boxtimes . \mathbf{I}), (\dagger) \\ & \stackrel{(\Delta + \Gamma_{1} + \Gamma_{2} + 1 + I + (x_{1}^{n} A_{1}, x_{2}^{n} A_{2}) + M + N + A}{\stackrel{(\Delta + \Gamma_{1} + \Gamma_{2} + 1 + I + A \rightarrow I^{n}(A_{1} \boxtimes A_{2})} (\boxtimes . \mathbf{I}), (\dagger)} \\ & \stackrel{(\Delta + \Gamma_{1} + M + I + I + A \rightarrow I^{n}(A_{1} \boxtimes A_{2}))}{\stackrel{(\Delta + \Gamma_{1} + \Gamma_{2} + 1 + I + A \rightarrow I^{n}(A_{1} \boxtimes A_{2})} + M + N + A} (\square . \mathbf{I}), (\dagger) \\ & \stackrel{(\Delta + \Gamma_{1} + M + I + I + A \rightarrow I^{n}(A_{1} \boxtimes A_{2}))}{\stackrel{(\Delta + \Gamma_{1} + \Gamma_{2} + 1 + I + A \rightarrow I^{n}(A_{1} \boxtimes A_{2})} (\square . \mathbf{I}), (\dagger)} \\ & \stackrel{(\Delta + \Gamma_{1} + I + I + I + I^{n}(A_{1} \boxtimes A_{2}))}{\stackrel{(\Delta + \Gamma_{1} + \Gamma_{2} + I + I + I + I + I + I + I + I + I + $
Bookkeeping (due to ⊗ vs. ⊠)	$\begin{split} & \stackrel{!}{\Delta}, \vec{\Gamma}, f: !(A \multimap B) \vdash N: C \\ & \stackrel{!}{\Delta}, f: !(A \multimap B), x: A \vdash M: B \\ & \stackrel{!}{\Box}, \Gamma \vdash \texttt{letrec} f^{A \multimap B} x = M \texttt{in} N: C \end{split} (\texttt{rec}), (\dagger) \\ & \qquad \qquad$

Operational Semantics

	$\begin{array}{l} E[\operatorname{meas}_{i}^{n+1}(\operatorname{new}\rho)] \to_{1} E[\langle \operatorname{tt}, \operatorname{new} \langle 0_{i} \rho 0_{i} \rangle \rangle] \\ E[\operatorname{meas}_{i}^{n+1}(\operatorname{new}\rho)] \to_{1} E[\langle \operatorname{ff}, \operatorname{new} \langle 1_{i} \rho 1_{i} \rangle \rangle] \end{array}$	
	$ \begin{split} E[\operatorname{meas}_1^1(\operatorname{new}\rho)] \to_{\langle 0 \rho 0\rangle} E[\operatorname{tt}] \\ E[\operatorname{meas}_1^1(\operatorname{new}\rho)] \to_{\langle 1 \rho 1\rangle} E[\operatorname{ff}] \end{split} $	
	$egin{aligned} E[U(\operatorname{new} ho)] & ightarrow_1 E[\operatorname{new}(U ho)] \ E[\operatorname{cmp}_{m,n}\langle\operatorname{new} ho,\operatorname{new}\sigma angle] & ightarrow_1 E[\operatorname{new}(ho\otimes\sigma)] \end{aligned}$	
*	Standard small-step one, CBV, but with probabilis	stic
	branching (measurement)	

+ other constructs → "GoI situation" [AHS02]

Linear combinatory algebra

Realizability Linear category

languageiasuo (Tokyo)

TSMC

Quantum

LCA

Model of

quantum