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• Why programming language?

• Why functional programming language?

• Why semantics?

• Why denotational semantics?

Contribution   
First denotational semantics for full-featured QFPL
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Formalisms

• We need one...    for describing/studying 
quantum algorithms
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Formalisms

• We need one...    for describing/studying 
quantum algorithms

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming 
language

int i,j; 
int factorial(int k)  
{    
    j=1;    
    for (i=1; i<=k; i++)      
        j=j*i;    
    return j;  
} 

[Null-Lobur] [beachhandball.es]
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Formalisms

• We need one...    for describing/studying 
quantum algorithms

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming 
language

int i,j; 
int factorial(int k)  
{    
    j=1;    
    for (i=1; i<=k; i++)      
        j=j*i;    
    return j;  
} 

Quantum
programming 
language

[Null-Lobur] [beachhandball.es]

[Selinger-Valiron]
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• “High-level”  ➜ new algorithms?

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming 
Languages
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• “High-level”  ➜ new algorithms?

• Well-developed techniques for correctness guarantee (verification)

• Type system

• Program model checking

• etc.

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming 
Languages
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(Classical) 
Functional Programming Languages

• Computation as evaluation of mathematical functions

• Avoids (memory) state or mutable data

• Scheme,  Erlang,  ML (SML, OCaml),  Haskell,  F#, ...

int i,j; 
int factorial(int k)  
{    
    j=1;    
    for (i=1; i<=k; i++)      
        j=j*i;    
    return j;  
} 

Factorial in C

   fun factorial x = 
       if x = 0 then 1 else x * factorial (x-1) 

Factorial in ML
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(Classical) 
Functional Programming Languages

• Higher-order computation

• Modularity, code reusability

   fun twice (f : int -> int) : int -> int = 
       fn (x : int) => f (f x)

twice f = λx.f(fx) as
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(Classical) 
Functional Programming Languages

• Higher-order computation

• Modularity, code reusability

• Mathematically clean

• Programs as functions!

   fun twice (f : int -> int) : int -> int = 
       fn (x : int) => f (f x)

twice f = λx.f(fx) as
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Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum
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Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

“quantum data, 
classical control”
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Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

• Nicely enforced by types

“quantum data, 
classical control”

 0 : int      + : int * int -> int
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Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

• Nicely enforced by types

“quantum data, 
classical control”

new |0� : qbit tt : ! bit
meas : qbit � ! bit

 0 : int      + : int * int -> int
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Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

• Nicely enforced by types

“quantum data, 
classical control”

new |0� : qbit tt : ! bit
meas : qbit � ! bit

 0 : int      + : int * int -> int

! :   “duplicable”
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Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

• Nicely enforced by types

“quantum data, 
classical control”

new |0� : qbit tt : ! bit
meas : qbit � ! bit

 0 : int      + : int * int -> int

! :   “duplicable”
--o :   “linear function”

(input is used only once)
Monday, November 7, 2011
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• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus 
(prototype FPL)
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• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus 
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .
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• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus 
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state (classical) bit

A, duplicable
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• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus 
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state (classical) bit

A, duplicable linear function
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• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus 
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state (classical) bit
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• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus 
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN

letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n

(classical) bit

A, duplicable linear function pair of A & B
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• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus 
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN
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(classical) bit

A, duplicable linear function pair of A & B

← function
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• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus 
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN

letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n

(classical) bit

A, duplicable linear function pair of A & B

← function

← pairing
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• Types:
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• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus 
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN

letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n

(classical) bit

A, duplicable linear function pair of A & B

← function

← pairing

← recursive def. of func.

← quantum primitives
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• Typing rules:    N.B.  Only some are shown. Very much simplified

Our Language qλl

!∆,Γ1 � M : A � B !∆,Γ2 � N : A
!∆,Γ1,Γ2 � MN : B

(�.E), (†)

!∆, x : A � x : A
(Ax.1)

!∆ � new |0� : qbit
(Ax.2)

!∆ � meas : !(qbit � bit)
(Ax.2)

x : A,∆ � M : B

∆ � λxA.M : A � B
(�.I1)

!∆,Γ1 � M1 : A1 !∆,Γ2 � M2 : A2

!∆,Γ1,Γ2 � �M1,M2� : A1 � A2
(�.I), (†)
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• Typing rules:    N.B.  Only some are shown. Very much simplified

Our Language qλl
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(�.E), (†)
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Type Discipline
• Typable ➜ “safe”  

• Guarantees minimal “correctness”

� fA�BxA : B �� fA�ByA�A

� meas(xqbit) : bit �� �meas(xqbit), meas(Hx
qbit)�
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Type Discipline
• Typable ➜ “safe”  

• Guarantees minimal “correctness”

� fA�BxA : B �� fA�ByA�A

� meas(xqbit) : bit �� �meas(xqbit), meas(Hx
qbit)�

Faulty program
fun isValue t =
  case t of
    Num _ => 1
  | _ => false

Type error 
ex.sml:22.3-24.15 Error: types of rules don't agree 
[literal]
  earlier rule(s): term -> int
  this rule: term -> bool
  in rule:
    _ => false

compile
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Examples

• Quantum teleportation

• (Fair) cointoss, repeated Hadamard

In [Selinger-Valiron]; similar in ours

Flip coin:
• head ➜ 

Hadamard and 
flip again

• tail ➜ done
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• For reasoning about programs

• M ≅ N:    “M and N have the same 

meaning, i.e. computational content” 
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Semantics

• “Meaning” of a program

• For reasoning about programs

• M ≅ N:    “M and N have the same 

meaning, i.e. computational content” 

∼=
??

λx. (x − x) λx. 0
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Semantics

• “Meaning” of a program

• For reasoning about programs

• M ≅ N:    “M and N have the same 

meaning, i.e. computational content” 

∼=
??

λx. (x − x) λx. 0

(stupid) sort ≅ quick sort
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Semantics

• For functional languages:

• Operational:   how the program is 
transformed/evaluated/reduced

• Denotational: “meaning” as a mathematical 
function

(λx. 1 + x)3 −→ 1 + 3 −→ 4

�λx. 1 + x� = (function N → N, n �→ 1 + n)
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Operational vs. Denotational 
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine 
implementation

comes with mathematical 
reasoning principles 

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)
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Goal:
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implementation
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Operational vs. Denotational 
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine 
implementation

comes with mathematical 
reasoning principles 

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

powerful esp. 
for recursion

M ∼=opr. N
Goal:

→
→
→

…

→
→
→

…hard to show 
directly

⇐= �M� = �N�
Adequate denotational semantics:

�M� = �N� ⇐⇒ M ∼=opr. N
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Challenges

�H� = 1√
2

�
1 1
1 −1

�
: C2 −→ C2

, isn’t it?
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Challenges

• “Quantum data, classical control”

• ➜ not clear how to accommodate 
duplicable data in Hilbert spaces

�H� = 1√
2

�
1 1
1 −1

�
: C2 −→ C2

, isn’t it?

Monday, November 7, 2011



Hasuo (Tokyo), Hoshino (Kyoto)

Technical Contributions

Monday, November 7, 2011



Hasuo (Tokyo), Hoshino (Kyoto)

Technical Contributions

• Quantum functional programming language
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Technical Contributions

• Quantum functional programming language

• Based on [Selinger-Valiron]

• w/ recursion, classical data (by !)

• Its denotational semantics

• First one for fully-featured QFPL
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Full-fledged 
Semantical Technologies
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Full-fledged 
Semantical Technologies
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Geometry of Interaction

• Originally by J.-Y. Girard, 1989:                                    

• Computation as player of a game

• cf. Game semantics (Abramsky et al., Hyland-Ong)

• We use categorical formulation:                                               
Abramsky, Haghverdi and Scott, 2002

using arrows

Monday, November 7, 2011



Hasuo (Tokyo), Hoshino (Kyoto)

Geometry of Interaction

• Originally by J.-Y. Girard, 1989:                                    

• Computation as player of a game

• cf. Game semantics (Abramsky et al., Hyland-Ong)

• We use categorical formulation:                                               
Abramsky, Haghverdi and Scott, 2002

• Axiomatization of what is “classical control”

using arrows
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M

...    (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style) 
Geometry of Interaction

�M� =
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M

...    (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style) 
Geometry of Interaction

�M� = ✖
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M
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...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style) 
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�M� =

Monday, November 7, 2011



Hasuo (Tokyo), Hoshino (Kyoto)

M

...    (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style) 
Geometry of Interaction

�M� =

“token”
(chocolate)
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• “High-level”  ➜ new algorithms?

• (Sometimes) good handling of quantum vs. classical data

• No-Cloning vs. Duplicable

• Model quantum communication protocols

Imperative (Mlnarik) Functional (Selinger, Valiron)
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