
Quantum Functional Programming
Language

&
Its Denotational Semantics

Ichiro Hasuo
Dept. Computer Science

University of Tokyo

Naohiko Hoshino
Research Inst. for Math. Sci.

Kyoto University

Talk based on:
I. Hasuo & N. Hoshino,
Semantics of Higher-Order Quantum Computation via Geometry of Interaction,
to appear in Proc. Logic in Computer Science (LICS), June 2011.

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

What?
Why?

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Overview

• Why programming language?

• Why functional programming language?

• Why semantics?

• Why denotational semantics?

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Overview

• Why programming language?

• Why functional programming language?

• Why semantics?

• Why denotational semantics?

Contribution
First denotational semantics for full-featured QFPL

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Q1. Why programming language?

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Formalisms

• We need one... for describing/studying
quantum algorithms

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Formalisms

• We need one... for describing/studying
quantum algorithms

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming
language

int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}

[Null-Lobur] [beachhandball.es]

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Formalisms

• We need one... for describing/studying
quantum algorithms

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming
language

int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}

Quantum
programming
language

[Null-Lobur] [beachhandball.es]

[Selinger-Valiron]

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming
Languages

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• “High-level” ➜ new algorithms?

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming
Languages

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• “High-level” ➜ new algorithms?

• Well-developed techniques for correctness guarantee (verification)

• Type system

• Program model checking

• etc.

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming
Languages

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Q2. Why functional programming language?

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

(Classical)
Functional Programming Languages

• Computation as evaluation of mathematical functions

• Avoids (memory) state or mutable data

• Scheme, Erlang, ML (SML, OCaml), Haskell, F#, ...

int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}

Factorial in C

 fun factorial x =
 if x = 0 then 1 else x * factorial (x-1)

Factorial in ML

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

(Classical)
Functional Programming Languages

• Higher-order computation

• Modularity, code reusability

 fun twice (f : int -> int) : int -> int =
 fn (x : int) => f (f x)

twice f = λx.f(fx) as

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

(Classical)
Functional Programming Languages

• Higher-order computation

• Modularity, code reusability

• Mathematically clean

• Programs as functions!

 fun twice (f : int -> int) : int -> int =
 fn (x : int) => f (f x)

twice f = λx.f(fx) as

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

“quantum data,
classical control”

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

• Nicely enforced by types

“quantum data,
classical control”

 0 : int + : int * int -> int

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

• Nicely enforced by types

“quantum data,
classical control”

new |0� : qbit tt : ! bit
meas : qbit � ! bit

 0 : int + : int * int -> int

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

• Nicely enforced by types

“quantum data,
classical control”

new |0� : qbit tt : ! bit
meas : qbit � ! bit

 0 : int + : int * int -> int

! : “duplicable”

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Quantum Functional Programming

• “Mathematical”

• ➜ Mathematical transfer from classical to quantum

• Uniform treatment of quantum data and classical data

• Nicely enforced by types

“quantum data,
classical control”

new |0� : qbit tt : ! bit
meas : qbit � ! bit

 0 : int + : int * int -> int

! : “duplicable”
--o : “linear function”

(input is used only once)
Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus
(prototype FPL)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state (classical) bit

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state (classical) bit

A, duplicable

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state (classical) bit

A, duplicable linear function

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state (classical) bit

A, duplicable linear function pair of A & B

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN

letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n

(classical) bit

A, duplicable linear function pair of A & B

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN

letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n

(classical) bit

A, duplicable linear function pair of A & B

← function

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN

letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n

(classical) bit

A, duplicable linear function pair of A & B

← function

← pairing

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN

letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n

(classical) bit

A, duplicable linear function pair of A & B

← function

← pairing

← recursive def. of func.

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Based on [Selinger-Valiron, 2008]

• Types:

• Programs or terms:

Our Language qλ l

λ-calculus
(prototype FPL)

A,B ::= n-qbit | bit |
!A | A � B | A � B | . . .

n-qubit state

M,N ::=

x ∈ Var | λxA.M | MN |
�M,N� | let �xA, yB� = M inN

letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n

(classical) bit

A, duplicable linear function pair of A & B

← function

← pairing

← recursive def. of func.

← quantum primitives

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Typing rules: N.B. Only some are shown. Very much simplified

Our Language qλl

!∆,Γ1 � M : A � B !∆,Γ2 � N : A
!∆,Γ1,Γ2 � MN : B

(�.E), (†)

!∆, x : A � x : A
(Ax.1)

!∆ � new |0� : qbit
(Ax.2)

!∆ � meas : !(qbit � bit)
(Ax.2)

x : A,∆ � M : B

∆ � λxA.M : A � B
(�.I1)

!∆,Γ1 � M1 : A1 !∆,Γ2 � M2 : A2

!∆,Γ1,Γ2 � �M1,M2� : A1 � A2
(�.I), (†)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• Typing rules: N.B. Only some are shown. Very much simplified

Our Language qλl

!∆,Γ1 � M : A � B !∆,Γ2 � N : A
!∆,Γ1,Γ2 � MN : B

(�.E), (†)

!∆, x : A � x : A
(Ax.1)

!∆ � new |0� : qbit
(Ax.2)

!∆ � meas : !(qbit � bit)
(Ax.2)

x : A,∆ � M : B

∆ � λxA.M : A � B
(�.I1)

!∆,Γ1 � M1 : A1 !∆,Γ2 � M2 : A2

!∆,Γ1,Γ2 � �M1,M2� : A1 � A2
(�.I), (†)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Type Discipline
• Typable ➜ “safe”

• Guarantees minimal “correctness”

� fA�BxA : B �� fA�ByA�A

� meas(xqbit) : bit �� �meas(xqbit), meas(Hx
qbit)�

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Type Discipline
• Typable ➜ “safe”

• Guarantees minimal “correctness”

� fA�BxA : B �� fA�ByA�A

� meas(xqbit) : bit �� �meas(xqbit), meas(Hx
qbit)�

Faulty program
fun isValue t =
 case t of
 Num _ => 1
 | _ => false

Type error
ex.sml:22.3-24.15 Error: types of rules don't agree
[literal]
 earlier rule(s): term -> int
 this rule: term -> bool
 in rule:
 _ => false

compile

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Examples

• Quantum teleportation

• (Fair) cointoss, repeated Hadamard

In [Selinger-Valiron]; similar in ours

Flip coin:
• head ➜

Hadamard and
flip again

• tail ➜ done

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Q3. Why semantics?

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Semantics

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Semantics

• “Meaning” of a program

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Semantics

• “Meaning” of a program

• For reasoning about programs

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Semantics

• “Meaning” of a program

• For reasoning about programs

• M ≅ N: “M and N have the same

meaning, i.e. computational content”

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Semantics

• “Meaning” of a program

• For reasoning about programs

• M ≅ N: “M and N have the same

meaning, i.e. computational content”

∼=
??

λx. (x − x) λx. 0

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Semantics

• “Meaning” of a program

• For reasoning about programs

• M ≅ N: “M and N have the same

meaning, i.e. computational content”

∼=
??

λx. (x − x) λx. 0

(stupid) sort ≅ quick sort

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Semantics

• For functional languages:

• Operational: how the program is
transformed/evaluated/reduced

• Denotational: “meaning” as a mathematical
function

(λx. 1 + x)3 −→ 1 + 3 −→ 4

�λx. 1 + x� = (function N → N, n �→ 1 + n)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

powerful esp.
for recursion

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

powerful esp.
for recursion

M ∼=opr. N
Goal:

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

powerful esp.
for recursion

M ∼=opr. N
Goal:

→
→
→

…

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

powerful esp.
for recursion

M ∼=opr. N
Goal:

→
→
→

…

→
→
→

…

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

powerful esp.
for recursion

M ∼=opr. N
Goal:

→
→
→

…

→
→
→

…hard to show
directly

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

powerful esp.
for recursion

M ∼=opr. N
Goal:

→
→
→

…

→
→
→

…hard to show
directly

⇐= �M� = �N�

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Operational vs. Denotational
Operational Denotational

reduction-based
 dynamic

“mathematical”
static

(akin to) machine
implementation

comes with mathematical
reasoning principles

(fixed pt. induction, well-fdd induction, etc.)

(λx. 1 + x)3 −→ 1 + 3 −→ 4 �λx. 1 + x� = (function N → N, n �→ 1 + n)

powerful esp.
for recursion

M ∼=opr. N
Goal:

→
→
→

…

→
→
→

…hard to show
directly

⇐= �M� = �N�
Adequate denotational semantics:

�M� = �N� ⇐⇒ M ∼=opr. N

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Q4. Why no denotational semantics before?

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Challenges

�H� = 1√
2

�
1 1
1 −1

�
: C2 −→ C2

, isn’t it?

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Challenges

• “Quantum data, classical control”

• ➜ not clear how to accommodate
duplicable data in Hilbert spaces

�H� = 1√
2

�
1 1
1 −1

�
: C2 −→ C2

, isn’t it?

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Technical Contributions

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Technical Contributions

• Quantum functional programming language

• Based on [Selinger-Valiron]

• w/ recursion, classical data (by !)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Technical Contributions

• Quantum functional programming language

• Based on [Selinger-Valiron]

• w/ recursion, classical data (by !)

• Its denotational semantics

• First one for fully-featured QFPL

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Full-fledged
Semantical Technologies

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Full-fledged
Semantical Technologies

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Geometry of Interaction

• Originally by J.-Y. Girard, 1989:

• Computation as player of a game

• cf. Game semantics (Abramsky et al., Hyland-Ong)

• We use categorical formulation:
Abramsky, Haghverdi and Scott, 2002

using arrows

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Geometry of Interaction

• Originally by J.-Y. Girard, 1989:

• Computation as player of a game

• cf. Game semantics (Abramsky et al., Hyland-Ong)

• We use categorical formulation:
Abramsky, Haghverdi and Scott, 2002

• Axiomatization of what is “classical control”

using arrows

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style)
Geometry of Interaction

�M� =

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style)
Geometry of Interaction

�M� = ✖

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style)
Geometry of Interaction

�M� =

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style)
Geometry of Interaction

�M� =

“token”
(chocolate)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style)
Geometry of Interaction

�M� =

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style)
Geometry of Interaction

�M� =

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

(Particle-Style)
Geometry of Interaction

�M� =

Monday, November 7, 2011

M N

...

... ...

...�MN�
=

Monday, November 7, 2011

M N

... ...

...

......

�MN�
=

Monday, November 7, 2011

M N

...

...

...

...

...

...

�MN�
=

Monday, November 7, 2011

M N

...

...

...

...

...

...

�MN�
=

Monday, November 7, 2011

M N

...

...

...

...

�MN�
=

Monday, November 7, 2011

M N

...

...

...

...

MN

�MN�
=

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)➜

Monday, November 7, 2011

M N

...

... ...

...

...

...

�MN�
=

MN

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

Not just a token/
particle, but

quantum state!

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

Not just a token/
particle, but

quantum state!

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

“Quantum Data” Not just a token/
particle, but

quantum state!

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

“Quantum Data”

“Classical Control”

Not just a token/
particle, but

quantum state!

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Q5. Why quantum computation?

Monday, November 7, 2011

Ans. You know why!

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Conclusions

• Structured programming &
mathematical semantics

• Quantum data, classical control

• Geometry of interaction as the essence of
classical control

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Conclusions

• Structured programming &
mathematical semantics

• Quantum data, classical control

• Geometry of interaction as the essence of
classical control

Thank you for your attention!Ichiro Hasuo (Dept. CS, U Tokyo)http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/
Naohiko Hoshino (RIMS, Kyoto U)http://www.kurims.kyoto-u.ac.jp/~naophiko/

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Functional (Selinger, Valiron)

Quantum Programming
Languages

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming
Languages

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• “High-level” ➜ new algorithms?

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming
Languages

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• “High-level” ➜ new algorithms?

• (Sometimes) good handling of quantum vs. classical data

• No-Cloning vs. Duplicable

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming
Languages

Monday, November 7, 2011

Hasuo (Tokyo), Hoshino (Kyoto)

• “High-level” ➜ new algorithms?

• (Sometimes) good handling of quantum vs. classical data

• No-Cloning vs. Duplicable

• Model quantum communication protocols

Imperative (Mlnarik) Functional (Selinger, Valiron)

Quantum Programming
Languages

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Monday, November 7, 2011

Quantum Functional Programming
Language

&
Its Denotational Semantics

Q4. Why denotational semantics?

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

M N

...

... ...

...

...

...

Monday, November 7, 2011

