Quantum Functional Programming Language \& Its Denotational Semantics

Ichiro Hasuo
Dept. Computer Science
University of Tokyo

Naohiko Hoshino
Research Inst. for Math. Sci.
Kyoto University

Talk based on:
I. Hasuo \& N. Hoshino,

Semantics of Higher-Order Quantum Computation via Geometry of Interaction, to appear in Proc. Logic in Computer Science (LICS), June 20II.

Quantum Functional Programming Language
 \&
 Its Denotational Semantics

Quantum Functional Programming Language
 \&
 Its Denotational Semantics

Quantum Functional Programming. Language
 8
 Its Denotational Semantics

What?

Overview

- Why programming language?
- Why functional programming language?
- Why semantics?
- Why denotational semantics?

Overview

- Why programming language?
- Why functional programming language?
- Why semantics?
- Why denotational semantics?

Contribution

First denotational semantics for full-featured QFPL

Quantum Functional Programming Language
 \&
 Its Denotational Semantics

Quantum Functional Programming Language \&
 Its Denotational Semantics

QI. Why programming language?

Formalisms

- We need one... for describing/studying quantum algorithms

Formalisms

- We need one... for describing/studying quantum algorithms
(Boolean)
circuit
Programming
language

Formalisms

- We need one... for describing/studying quantum algorithms

Classical	Ouantum
(Boolean) circuit	Quantum b circuit
```int i,j; Programming j=1; language for (i=1; i<=k; i++) j=j*i; return j; }```	$\begin{array}{lc} \text { Quantunn } & \text { telep }= \\ \text { progrannming } & \text { let }\langle x, y\rangle=\mathbf{E P R} * \text { in } \\ \text { let } f=\text { BellMeasure } x \text { in } \\ \text { let } g=\mathbf{U} y \\ \text { in }\langle f, g\rangle . \end{array} \quad \begin{aligned} & \text { [Selinger-Valiron] } \end{aligned}$

## Quantum Programming

Imperative (Mmank)
void main()
qbit $\psi_{A}, \psi_{B} ;$
$\psi_{E P R}$ allasfor $\left[\psi_{A}, \psi_{B}\right] ;$
channel[int] $c$ withends $\left[c_{0}, c_{1}\right]$;
$\psi_{E P R}=$ createEPR()
$c=$ new channel[int]();
fork bert $\left(c_{0}, \psi_{B}\right)$;
$\operatorname{angela}\left(c_{1}, \psi_{A}\right)$;
\}
void angela(channelEnd[int] $c_{1}$, qbit ats) \{ int $r$;
qbit $\phi$;
$\phi=$ doSomething();
$r=$ measure (BellBasis, $\phi, a t s$ ); send ( $c_{1}, \mathrm{r}$ );

## Languages

```
qbit bert(channelEnd[int] co,qbit stto) {
 int i;
 i=recv (co);
 if (i==0) {
 op }\mp@subsup{B}{0}{(stto);
 else If (i==1) {
 op B}\mp@subsup{B}{1}{(stto);
 else If (i== 2)
 op}\mp@subsup{B}{2}{(stto);
 } else {
 op B3(stto);
```

```
telep = let \langlex,y\rangle=\mathbf{EPR}*\mathrm{ in}
```

telep = let \langlex,y\rangle=\mathbf{EPR}*\mathrm{ in}
let f=BellMeasure x in
let f=BellMeasure x in
let g=\mathbf{U}y
let g=\mathbf{U}y
in }\langlef,g\rangle\mathrm{ .

```
 in }\langlef,g\rangle\mathrm{ .
```

    \}
    doSomethingElse(stto);
    $\}$

Figure 1: Teleportation implemented in LanQ

## Quantum Programming

Imperative (Minarik)
void main()
qbit $\psi_{A}, \psi_{B} ;$
$\psi_{E P R}$ allasfor $\left[\psi_{A}, \psi_{B}\right]$;
channel [int] $c$ withends $\left[c_{0}, c_{1}\right]$
$\psi_{E P R}=$ createEPR()
$c=$ new channel[int]();
fork bert $\left(c_{0}, \psi_{B}\right)$;
$\operatorname{angela}\left(c_{1}, \psi_{A}\right)$;
\}
void angela(channelEnd[int] $c_{1}$, qbit ats) \{
int $r$;
qbit $\phi$;
$\phi=$ doSomething();
$r=$ measure (BellBasis, $\phi$,ats); send ( $c_{1}, \mathrm{r}$ );

## Languages

```
qbit bert(channelEnd[int] co, qbit stto) {
 int i;
 i= recv (co);
 if (i==0) {
 op }\mp@subsup{B}{0}{(stto);
 else If (i==1) {
 op }\mp@subsup{B}{1}{}\mathrm{ (stto);
 else if (i== 2) {
 op B
 } else {
 op B3(stto);
```

```
telep = let \langlex,y\rangle=\mathbf{EPR}*\mathrm{ in}
```

telep = let \langlex,y\rangle=\mathbf{EPR}*\mathrm{ in}
let f=BellMeasure x in
let f=BellMeasure x in
let g=\mathbf{U}y
let g=\mathbf{U}y
in }\langlef,g\rangle\mathrm{ .

```
 in }\langlef,g\rangle\mathrm{ .
```

    \}
    doSomethingElse(stto);
    \}

Figure 1: Teleportation implemented in LanQ

- "High-level" $\rightarrow$ new algorithms?


## Quantum Programming

Imperative (Minarik)
void main()
qbit $\psi_{A}, \psi_{B}$;
qbit $\psi_{A}, \psi_{B}$
$\psi_{E P R}$ allasfor $\left[\psi_{A}, \psi_{B}\right]$;
channel [int] $c$ withends $\left[c_{0}, c_{1}\right]$
$\psi_{E P R}=$ createEPR()
$c=$ new channel[int]();
fork bert $\left(c_{0}, \psi_{B}\right)$;
$\operatorname{angela}\left(c_{1}, \psi_{A}\right)$;
\}
void angela(channelEnd[int] $c_{1}$, qbit ats) \{ int $r$;
qbit $\phi$;
$\phi=$ doSomething();
$r=$ measure (BellBasis, $\phi, a t s$ ); send ( $c_{1}, \mathrm{r}$ ); Languages

```
qbit bert(channelEnd[int] co,qbit stto) {
 int i;
 i= recv (co);
 if (i==0) {
 op }\mp@subsup{B}{0}{(stto);
 else If (i==1) {
 op }\mp@subsup{B}{1}{}\mathrm{ (stto);
 else if (i== 2) {
 op B2(stto);
 } else {
 op B3(stto);
```

```
telep = let \langlex,y\rangle=\mathbf{EPR}*\mathrm{ in}
```

telep = let \langlex,y\rangle=\mathbf{EPR}*\mathrm{ in}
let f=BellMeasure x in
let f=BellMeasure x in
let g=\mathbf{U}y
let g=\mathbf{U}y
in }\langlef,g\rangle\mathrm{ .

```
 in }\langlef,g\rangle\mathrm{ .
```

    \}
    doSomethingElse(stto);
    \}

Figure 1: Teleportation implemented in LanQ

- "High-level" $\rightarrow$ new algorithms?
- Well-developed techniques for correctness guarantee (verification)
- Type system
- Program model checking
- etc.


## Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics

# Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics 

Q2. Why functional programming language?

## (Classical) Functional Programming Languages

- Computation as evaluation of mathematical functions
- Avoids (memory) state or mutable data
- Scheme, Erlang, ML (SML, OCaml), Haskell, F\#, ...

```
int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}
```

fun factorial $x=$ if $\mathrm{x}=0$ then 1 else x * factorial ( $\mathrm{x}-1$ )

Factorial in ML

## Factorial in C

## (Classical) Functional Programming Languages

- Higher-order computation

```
twice f}=\lambdax.f(fx)\quad\mathrm{ as
fun twice (f : int -> int) : int -> int =
 fn (x : int) => f (f x)
```

- Modularity, code reusability


## (Classical) <br> Functional Programming Languages

- Higher-order computation

```
twice f}=\lambdax.f(fx)\quad\mathrm{ as
fun twice (f : int -> int) : int -> int =
 fn (x : int) => f (f x)
```

- Modularity, code reusability
- Mathematically clean
- Programs as functions!


## Quantum Functional Programming

- "Mathematical"
- $\rightarrow$ Mathematical transfer from classical to quantum


## Quantum Functional Programming

- "Mathematical"
- $\rightarrow$ Mathematical transfer from classical to quantum
- Uniform treatment of quantum data and classical data


## Quantum Functional Programming

- "Mathematical"
- $\rightarrow$ Mathematical transfer from classical tc
- Uniform treatment of quantum data and classical data


## Quantum Functional Programming

- "Mathematical"
- $\rightarrow$ Mathematical transfer from classical tc
- Uniform treatment of quantum data and classical data
- Nicely enforced by types

$$
0 \text { : int } \quad+\text { : int * int -> int }
$$

## Quantum Functional Programming

- "Mathematical"
- $\rightarrow$ Mathematical transfer from classical tc
- Uniform treatment of quantum data and classical data
- Nicely enforced by types

$$
0 \text { : int } \quad+\text { : int * int -> int }
$$

$$
\begin{aligned}
\text { new }|0\rangle & : \text { qbit } \quad \text { tt }: \text { !bit } \\
\text { meas } & : \text { qbit } \multimap \text { !bit }
\end{aligned}
$$

## Quantum Functional Programming

- "Mathematical"
- $\rightarrow$ Mathematical transfer from classical tc classical control"
- Uniform treatment of quantum data and classical data
- Nicely enforced by types

$$
0 \text { : int } \quad+\text { int * int -> int }
$$



## Quantum Functional Programming

- "Mathematical"
- $\rightarrow$ Mathematical transfer from classical to classical control"
- Uniform treatment of quantum data and classical data
- Nicely enforced by types



# Our Language $q \lambda_{l}$ 

- Based on [Selinger-Valiron, 2008]
- Types:


## Our Language $q \lambda_{i}$

- Based on [Selinger-Valiron, 2008]
- Types:

$$
\begin{aligned}
A, B::= & n \text {-qbit } \mid \text { bit } \mid \\
& !A|A \multimap B| A \boxtimes B \mid \ldots
\end{aligned}
$$

## Our Language $q \lambda_{l}$

- Based on [Selin $\underset{n-\text {-qubit state }}{ }{ }^{8]}$
- Types:

$$
\begin{aligned}
A, B::= & n \text {-qbit } \mid \text { bit } \mid \\
& !A|A \multimap B| A \boxtimes B \mid \ldots
\end{aligned}
$$

## Our Language $q \lambda_{l}$

- Based on [Selint n-qubit state (classical) bit
- Types:

$$
\begin{aligned}
A, B::= & n \text {-qbit } \mid \text { bit } \mid \\
& !A|A \multimap B| A \boxtimes B \mid \ldots
\end{aligned}
$$

## Our Language $q \lambda_{l}$

- Based on [Selin n-qubit state (classical) bit
- Types:

$$
\begin{aligned}
A, B: & :=n \text {-qbit } \mid \text { bit } \mid \\
& !A|A \multimap B| A \boxtimes B \mid \ldots
\end{aligned}
$$

$A$, duplicable

## Our Language $q \lambda_{l}$

- Based on [Selin $n$-qubit state (classical) bit
- Types:
$A, B::=n$-qbit $\mid$ bit $\mid$



## Our Language $q \lambda_{l}$

- Based on [Selint $n$-qubit state (classical) bit
- Types:
$A, B::=n$-qbit $\mid$ bit $\mid$



## Our Language $q \lambda_{l}$

- Based on [Selind $n$-qubit state (classical) bit
- Types:

$$
A, B::=n \text {-qbit | bit }
$$

$$
!A|A \multimap B| A \boxtimes B \mid \ldots
$$

$A$, duplicable

- Programs or terms:

$$
\begin{aligned}
& M, N::= \\
& \quad x \in \operatorname{Var}\left|\lambda x^{A} \cdot M\right| M N \mid \\
& \langle M, N\rangle \mid \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \text { in } N \\
& \text { letrec } f^{A} x=M \text { in } N \mid \\
& \text { new }|0\rangle\left|\operatorname{meas}_{i}^{n+1}\right| U \mid \mathrm{cmp}_{m, n}
\end{aligned}
$$

## Our Language $q \lambda_{l}$

- Based on [Seling n-qubit state (classical) bit
- Types:

$$
A, B::=n \text {-qbit | bit }
$$

$$
!A|A \multimap B| A \boxtimes B \mid \ldots
$$

$A$, duplicable

- Programs or terms:

$$
\left.\begin{array}{l}
M, N::= \\
\quad x \in \operatorname{Var}\left|\lambda x^{A} \cdot M\right| M N \mid \\
\langle M, N\rangle \mid \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \text { in } N \\
\quad \text { letrec } f^{A} x=M \text { in } N \mid \\
\text { new }|0\rangle\left|\operatorname{meas}_{i}^{n+1}\right| U \mid \mathrm{cmp}_{m, n}
\end{array}\right\} \leftarrow \text { function }
$$

## Our Language $q \lambda_{l}$

- Based on [Seling n-qubit state (classical) bit
- Types:

$$
A, B::=n \text {-qbit | bit }
$$

$$
!A|A \multimap B| A \boxtimes B \mid \ldots
$$

$A$, duplicable

- Programs or terms:

$$
\left.\begin{array}{l}
M, N::= \\
x \in \operatorname{Var}\left|\lambda x^{A} \cdot M\right| M N \mid \\
\langle M, N\rangle \mid \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \text { in } N \\
\text { letrec } f^{A} x=M \text { in } N \mid \\
\text { new }|0\rangle \mid \text { meas }_{i}^{n+1}|U| \text { cmp }_{m, n}
\end{array}\right\} \leftarrow \text { function }
$$

## Our Language $q \lambda_{l}$

- Based on [Selin
- Types:

$$
A, B::=n \text {-qbit | bit }
$$

(classical) bit

$A$, duplicable

$$
\text { linear function pair of } A \text { \& } B
$$

- Programs or terms:

$$
\left.\begin{array}{l}
M, N::= \\
x \in \operatorname{Var}\left|\lambda x^{A} \cdot M\right| M N \mid \\
\langle M, N\rangle \mid \text { let }\left\langle x^{A}, y^{B}\right\rangle=M \text { in } N \\
\text { letrec } f^{A} x=M \text { in } N \mid \\
\text { new }|0\rangle \mid \text { meas }_{i}^{n+1}|U| \text { cmp }_{m, n}
\end{array}\right\} \leftarrow \text { function }
$$

$\leftarrow$ recursive def. of func.

## Our Language $\mathrm{q} \lambda_{c}$

- Based on [Selint
- Types:

$$
A, B::=n \text {-qbit | bit }
$$

(classical) bit

$A$, duplicable

- Programs or terms:

$$
\left.\begin{array}{l}
M, N::= \\
x \in \operatorname{Var}\left|\lambda x^{A} \cdot M\right| M N \mid \\
\langle M, N\rangle \mid \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \text { in } N \\
\text { letrec } f^{A} x=M \text { in } N \mid \\
\text { new }|0\rangle \mid \text { meas }_{i}^{n+1}|U| \text { cmp }_{m, n}
\end{array}\right\} \leftarrow \text { function }
$$

$\leftarrow$ recursive def. of func.
$\leftarrow$ quantum primitives

## Our Language $q \lambda_{\ell}$

- Typing rules: N.B. Only some are shown.Very much simplified

$$
\begin{aligned}
& \overline{!\Delta, x: A \vdash x: A}(\mathrm{Ax} .1) \\
& \frac{\square \Delta \vdash \text { new }|0\rangle: \mathrm{qbit}}{}(\mathrm{Ax} .2) \quad \overline{!\Delta \vdash \text { meas }:!(\mathrm{qbit} \multimap \mathrm{bit})}(\mathrm{Ax} .2) \\
& \frac{x: A, \Delta \vdash M: B}{\Delta \vdash \lambda x^{A} \cdot M: A \multimap B}\left(\multimap \mathrm{I}_{1}\right) \\
& \frac{!\Delta, \Gamma_{1} \vdash M: A \multimap B \quad!\Delta, \Gamma_{2} \vdash N: A}{!\Delta, \Gamma_{1}, \Gamma_{2} \vdash M N: B}(\multimap . \mathrm{E}),(\dagger) \\
& \frac{!\Delta, \Gamma_{1} \vdash M_{1}: A_{1}!\Delta, \Gamma_{2} \vdash M_{2}: A_{2}}{!\Delta, \Gamma_{1}, \Gamma_{2} \vdash\left\langle M_{1}, M_{2}\right\rangle: A_{1} \boxtimes A_{2}}(\boxtimes . \mathrm{I}),(\dagger)
\end{aligned}
$$

## Our Language $\mathrm{q} \lambda_{\ell}$

- Typing rules: N.B. Only some are shown.Very much simplified



## Type Discipline

- Typable $\rightarrow$ "safe"
- Guarantees minimal "correctness"

$$
\vdash f^{A \multimap B} x^{A}: B \quad \forall f^{A \multimap B} y^{A \multimap A}
$$

$\vdash \operatorname{meas}\left(x^{\text {qbit }}\right):$ bit
$\forall\left\langle\operatorname{meas}\left(\boldsymbol{x}^{\mathrm{qbit}}\right), \operatorname{meas}\left(\boldsymbol{H} \boldsymbol{x}^{\mathrm{qbit}}\right)\right\rangle$

## Type Discipline

- Typable $\rightarrow$ "safe"
- Guarantees minimal "correctness"

$$
\vdash f^{A \multimap B} x^{A}: B \quad \forall f^{A \multimap B} y^{A \multimap A}
$$

$\vdash \operatorname{meas}\left(x^{\mathrm{qbit}}\right):$ bit
$\forall\left\langle\operatorname{meas}\left(\boldsymbol{x}^{\mathrm{qbit}}\right), \operatorname{meas}\left(\boldsymbol{H} \boldsymbol{x}^{\mathrm{qbit}}\right)\right\rangle$

## Type error

ex.sml:22.3-24.15 Error: types of rules don't agree [literal]
earlier rule(s): term -> int this rule: term -> bool
in rule:
_ => false

## Examples

In [Selinger-Valiron]; similar in ours

## - Quantum teleportation

$$
\begin{aligned}
& \mathbf{E P R}=\lambda x . C N O T\langle H(\text { new } 0) \text {, new } 0\rangle \\
& \text { BellMeasure }= \\
& \quad \lambda q_{2} \cdot \lambda q_{1} \cdot\left(\text { let }\langle x, y\rangle=C N O T\left\langle q_{1}, q_{2}\right\rangle \text { in }\langle\text { meas }(H x) \text {, meas } y\rangle\right. \\
& \mathbf{U}=\lambda q \cdot \lambda\langle x, y\rangle \text {.if } x \text { then }\left(\text { if } y \text { then } U_{11} q \text { else } U_{10} q\right) \\
& \text { else }\left(\text { if } y \text { then } U_{01} q \text { else } U_{00} q\right) . \\
& \text { telep }=\quad \text { let }\langle x, y\rangle=\mathbf{E P R} * \text { in } \\
& \text { let } f=\mathbf{B e l l M e a s u r e ~} x \text { in } \\
& \text { let } g=\mathbf{U} y \\
& \text { in }\langle f, g\rangle .
\end{aligned}
$$

- (Fair) cointoss, repeated Hadamard

$$
\mathbf{c}=\lambda * \cdot \operatorname{meas}(H(\text { new } 0))
$$

Flip coin:

- head $\rightarrow$ Hadamard and flip again - tail $\rightarrow$ done

$$
M=\text { let rec } f x=(i f(\mathbf{c} *) \text { then } H(f x) \text { else } x) \text { in } f p
$$

## Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics

# Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics 

Q3. Why semantics?

## Semantics

## Semantics

- "Meaning" of a program


## Semantics

- "Meaning" of a program
- For reasoning about programs


## Semantics

- "Meaning" of a program
- For reasoning about programs
- $M \cong N$ : " $M$ and $N$ have the same meaning, i.e. computational content"


## Semantics

- "Meaning" of a program
- For reasoning about programs
- $M \cong N$ : " $M$ and $N$ have the same meaning, i.e. computational content"

$$
\lambda x .(x-x) \cong \lambda x .0
$$

## Semantics

- "Meaning" of a program
- For reasoning about programs
- $M \cong N$ : " $M$ and $N$ have the same meaning, i.e. computational content"

$$
\begin{aligned}
& \lambda x .(x-x) \cong \lambda x .0 \\
& \text { (stupid) sort } \cong \text { quick sort }
\end{aligned}
$$

## Semantics

- For functional languages:
- Operational: how the program is transformed/evaluated/reduced

$$
(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4
$$

- Denotational: "meaning" as a mathematical function

$$
\llbracket \lambda x .1+x \rrbracket=(\text { function } \mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)
$$

## Operational vs. Denotational

## Operational

$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$	$[\lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
reduction-based	"mathematical"
dynamic	static

## Operational vs. Denotational

## Operational

$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$
reduction-based dynamic
(akin to) machine implementation

Denotational
$\llbracket \lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
"mathematical"
static
comes with mathematical reasoning principles
(fixed pt. induction, well-fdd induction, etc.)

## Operational vs. Denotational

Operational
$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$
reduction-based dynamic
(akin to) machine implementation

Denotational
$\llbracket \lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
"mathemati
powerful esp. for recursion
comes with mathematlcal reasoning principles
(fixed pt. induction, well-fdd induction, etc.)

## Operational vs. Denotational

## Operational

$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$
reduction-based dynamic
(akin to) machine implementation

Denotational
$\llbracket \lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
"mathemati
powerful esp.
for recursion
comes with mathematlcal reasoning principles
(fixed pt. induction, well-fdd induction, etc.)
Goal:

$$
\boldsymbol{M} \cong{ }_{\mathrm{opr} .} \boldsymbol{N}
$$

## Operational vs. Denotational

## Operational

$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$
reduction-based dynamic
(akin to) machine implementation

Denotational
$\llbracket \lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
"mathemati
powerful esp.
for recursion
comes with mathematlcal reasoning principles
(fixed pt. induction, well-fdd induction, etc.)
Goal:
$M \cong{ }_{\text {opr }} . N$


## Operational vs. Denotational

## Operational

$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$
reduction-based dynamic
(akin to) machine implementation

Denotational
$\llbracket \lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
"mathemati
powerful esp.
for recursion
comes with mathematlcal reasoning principles
(fixed pt. induction, well-fdd induction, etc.)
Goal:


## Operational vs. Denotational

## Operational

$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$
reduction-based dynamic
(akin to) machine implementation

Denotational
$\llbracket \lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
"mathemati
powerful esp. for recursion

Goal:


## Operational vs. Denotational

## Operational

$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$
reduction-based dynamic
(akin to) machine implementation

Denotational
$\llbracket \lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
"mathemati static
powerful esp. for recursion
comes with mathematlcal reasoning principles
(fixed pt. induction, well-fdd induction, etc.)
Goal:
$M \cong{ }_{\text {opr. }} N$


$$
\llbracket M \rrbracket=\llbracket N \rrbracket
$$

## Operational vs. Denotational

## Operational

$(\lambda x .1+x) 3 \longrightarrow 1+3 \longrightarrow 4$
reduction-based dynamic
(akin to) machine implementation

Denotational
$\llbracket \lambda x .1+x \rrbracket=($ function $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 1+n)$
"mathemati
static
powerful esp. for recursion
comes with mathematcal reasoning principles
(fixed pt. induction, well-fdd induction, etc.)
Goal:
$M \cong{ }_{\text {opr. }} N$

$$
\llbracket M \rrbracket=\llbracket N \rrbracket
$$

## Adequate denotational semantics:

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \quad \Longleftrightarrow \quad M \cong_{\text {opr. }} N
$$

## Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics

# Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics 

Q4. Why no denotational semantics before?

## Challenges

$$
\llbracket H \rrbracket=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad: \quad \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}, \quad \text { isn't it? }
$$

## Challenges

$$
\llbracket H \rrbracket=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad: \quad \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}, \quad \text { isn't it? }
$$

- "Quantum data, classical control"
- $\rightarrow$ not clear how to accommodate duplicable data in Hilbert spaces


## Technical Contributions

## Technical Contributions

- Quantum functional programming language
- Based on [Selinger-Valiron]
- w/ recursion, classical data (by !)


## Technical Contributions

- Quantum functional programming language
- Based on [Selinger-Valiron]
- w/ recursion, classical data (by !)
- Its denotational semantics
- First one for fully-featured QFPL


# Full-fledged Semantical Technologies 

Monad $B$ for branching
$\downarrow$ Take the Kleisli category
Traced monoidal category
$\downarrow$ Int-construction, [9]
Compact closed category
$\downarrow$ Find a reflexive object
Linear combinatory algebra $A$
$\downarrow$ Take $\mathbf{P E R}_{A}$, the category of partial equivalence relations
Linear category that models computation

# Full-fledged Semantical Technologies 

Monad $B$ for branching
Take the Kleisli category
Traced monoidal category
$\downarrow$ Int-construction, [9]
Compact closed category
$\downarrow$ Find a reflexive object
Linear combinatory algebra $A$
$\downarrow$ Take $\mathbf{P E R}_{A}$, the category of partial equivalence relations
Linear category that models computation

## Geometry of Interaction

- Originally by J.-Y. Girard, I989:
- Computation as player of a game
- cf. Game semantics (Abramsky et al., Hyland-Ong)
- We use categorical formulation: Abramsky, Haghverdi and Scott, 2002


## Geometry of Interaction

- Originally by J.-Y. Girard, I989:
- Computation as player of a game
- cf. Game semantics (Abramsky et al., Hyland-Ong)
- We use categorical formulation: Abramsky, Haghverdi and Scott, 2002
- Axiomatization of what is "classical control"


## (Particle-Style)

## Geometry of Interaction



## (Particle-Style) Geometry of Interaction

$\llbracket M \rrbracket=$


## (Particle-Style)

## Geometry of Interaction



## (Particle-Style)

## Geometry of Interaction



## (Particle-Style)

## Geometry of Interaction

## $\llbracket M \rrbracket=$ <br> ... (countably many)



## (Particle-Style) Geometry of Interaction

## $\llbracket M \rrbracket=$



## (Particle-Style)

## Geometry of Interaction

## $\llbracket M \rrbracket=$ <br> ... (countably many)







$\lceil M N \rrbracket$ $=$


$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f . f 1 & N=\lambda x .(x+1)
\end{array}
$$

$\lceil M N \rrbracket$ $=$

$M N$

$\lceil M N \rrbracket$ $=$

$\lceil M N \rrbracket$ $=$


$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f . f 1 & N=\lambda x .(x+1)
\end{array}
$$

$\lceil M N \rrbracket$ $=$


$\lceil M N \rrbracket$ $=$

$$
\begin{aligned}
& M N
\end{aligned}
$$

$\lceil M N \rrbracket$ $=$


$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f . f 1 & N=\lambda x .(x+1)
\end{array}
$$

$\lceil M N \rrbracket$ $=$

$\llbracket M N \rrbracket$ $=$

$$
\begin{array}{ll}
M=\lambda x \cdot x+1 & N=2 \\
M=\lambda x \cdot 1 & N=2 \\
\rightarrow M=\lambda f \cdot f 1 & N=\lambda x .(x+1)
\end{array}
$$

$\lceil M N \rrbracket$ $=$

$$
\begin{array}{ll}
M N \\
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f . f 1 & N=\lambda x .(x+1)
\end{array}
$$

$\lceil M N \rrbracket$ $=$

$\lceil M N \rrbracket$ $=$


$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2 \\
M=\lambda f . f 1 & N=\lambda x .(x+1)
\end{array}
$$

## Quantum

## Geometry of Interaction



## Quantum

## Geometry of Interaction

Not just a token/ particle, but quantum state!
$\llbracket M \rrbracket=$

... (countably many)

## Quantum

## Geometry of Interaction



## Quantum

## Geometry of Interaction



## Quantum

## Geometry of Interaction

## "Classical Control"

... (countably many)
$\llbracket M \rrbracket=$

$$
M
$$

## "Quantum Data"

Not just a token/ particle, but quantum state!

## Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics

# Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics 

Q5. Why quantum computation?

## Ans. You know why!

## Conclusions

- Structured programming \& mathematical semantics
- Quantum data, classical control
- Geometry of interaction as the essence of classical control


## Conclusions

- Structured programming \& mathematical semantics
- Quantum data, classical control
- Geometry of interaction as the essence of classical control

Thank you for your attention! ichiro Fasuo (dept. cs, u Tokyo) http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/
Naohiko Hoshino (RIMS, Kyoto $u$ ) http://www.kurims.kyoto-u.ac.jp/~naophiko/

## Quantum Programming Languages

$$
\begin{aligned}
& \text { telep }=\quad \text { let }\langle x, y\rangle=\mathbf{E P R} * \text { in } \\
& \text { let } f=\text { BellMeasure } x \text { in } \\
& \text { let } g=\mathbf{U} y \\
& \text { in }\langle f, g\rangle .
\end{aligned}
$$

## Quantum Programming

Imperative (Mmank)
void main()
qbit $\psi_{A}, \psi_{B} ;$
$\psi_{E P R}$ allasfor $\left[\psi_{A}, \psi_{B}\right] ;$
channel[int] $c$ withends $\left[c_{0}, c_{1}\right]$;
$\psi_{E P R}=$ createEPR()
$c=$ new channel[int]();
fork bert $\left(c_{0}, \psi_{B}\right)$;
$\operatorname{angela}\left(c_{1}, \psi_{A}\right)$;
\}
void angela(channelEnd[int] $c_{1}$, qbit ats) \{ int $r$;
qbit $\phi$;
$\phi=$ doSomething();
$r=$ measure (BellBasis, $\phi, a t s$ ); send ( $c_{1}, \mathrm{r}$ );

## Languages

```
qbit bert(channelEnd[int] co,qbit stto) {
 int i;
 i=recv (co);
 if (i==0) {
 op }\mp@subsup{B}{0}{(stto);
 else If (i==1) {
 op B}\mp@subsup{B}{1}{(stto);
 else If (i== 2)
 op}\mp@subsup{B}{2}{(stto);
 } else {
 op B3(stto);
```

```
telep = let \langlex,y\rangle=\mathbf{EPR}*\mathrm{ in}
```

telep = let \langlex,y\rangle=\mathbf{EPR}*\mathrm{ in}
let f=BellMeasure x in
let f=BellMeasure x in
let g=\mathbf{U}y
let g=\mathbf{U}y
in }\langlef,g\rangle\mathrm{ .

```
 in }\langlef,g\rangle\mathrm{ .
```

    \}
    doSomethingElse(stto);
    $\}$

Figure 1: Teleportation implemented in LanQ

## Quantum Programming

Imperative (Minarik)
void main()
qbit $\psi_{A}, \psi_{B}$;
$\psi_{E P R}$ allasfor $\left[\psi_{A}, \psi_{B}\right]$;
channel [int] $c$ withends $\left[c_{0}, c_{1}\right]$
$\psi_{E P R}=$ createEPR()
$c=$ new channel[int]();
fork bert $\left(c_{0}, \psi_{B}\right)$;
$\operatorname{angela}\left(c_{1}, \psi_{A}\right)$;
\}
void angela(channelEnd[int] $c_{1}$, qbit ats) \{
int $r$;
qbit $\phi$;
$\phi=$ doSomething();
$r=$ measure (BellBasis, $\phi$,ats); send ( $c_{1}, \mathrm{r}$ );
\}

Languages

```
qbit bert(channelEnd[int] co, qbit stto) {
 int i;
 i= recv (co);
 if (i==0) {
 op }\mp@subsup{B}{0}{(stto);
 else If (i==1)
 op }\mp@subsup{B}{1}{}\mathrm{ (stto);
 } else if (i== 2) {
 op }\mp@subsup{B}{2}{(stto);
 } else {
 op B3(stto);
```

    \}
    doSomethingElse(stto);
    \}

Figure 1: Teleportation implemented in LanQ

- "High-level" $\rightarrow$ new algorithms?


## Quantum Programming

Imperative (Minarik)
void main()
qbit $\psi_{A}, \psi_{B}$;
qbit $\psi_{A}, \psi_{B} ;$
$\psi_{E P R}$ allasfor $\left[\psi_{A}, \psi_{B}\right]$;
channel[int] $c$ withends $\left[c_{0}, c_{1}\right]$
$\psi_{E P R}=$ createEPR()
$c=$ new channel[int]();
fork bert $\left(c_{0}, \psi_{B}\right)$;
angela $\left(c_{1}, \psi_{A}\right)$;
\}
void angela(channelEnd[int] $c_{1}$, qbit ats) \{
int $r$
qbit $\phi$;
$\phi=$ doSomething();
$r=$ measure (BellBasis, $\phi$, ats);
send ( $c_{1}, \mathrm{r}$ );

Figure 1: Teleportation implemented in LanQ

- "High-level" $\rightarrow$ new algorithms?
- (Sometimes) good handling of quantum vs. classical data
- No-Cloning vs. Duplicable


## Quantum Programming

Imperative ${ }_{\text {(Minarik) }}$
void main()
qbit $\psi_{A}, \psi_{B}$;
qbit $\psi_{A}, \psi_{B} ;$
$\psi_{E P R}$ allasfor $\left[\psi_{A}, \psi_{B}\right]$;
channel[int] $c$ withends $\left[c_{0}, c_{1}\right]$
$\psi_{E P R}=$ createEPR();
$c=$ new channel[int]();
fork bert $\left(c_{0}, \psi_{B}\right)$;
angela $\left(c_{1}, \psi_{A}\right)$;
\}
void angela(channelEnd[int] $c_{1}$, qbit ats) \{ int $r$;
qbit $\phi$;
$\phi=$ doSomething ()
$r=$ measure (BellBasis, $\phi$, ats);
send ( $c_{1}, \mathrm{r}$ );

- "High-level" $\rightarrow$ new algorithms?
- (Sometimes) good handling of quantum vs. classical data
- No-Cloning vs. Duplicable
- Model quantum communication protocols


## Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics

## Quantum Functional Programming Language <br> \& <br> Its Denotational Semantics

Q4. Why denotational semantics?










