Semantics of Higher－Order Quantum Computation via Geometry of Interaction

In：Proc．Logic in Computer Science（LICS），June 2011

Ichiro Hasuo
University of Tokyo（JP）

Naohiko Hoshino
RIMS，Kyoto University（JP）

Contribution

Denotational semantics of a
 functional quantum programming language

Contribution

Denotational semantics of a
 functional quantum programming language

Contribution

One of the first to cover the full features!

* !-modality for duplicable data
* recursion

Denotational semantics of a
 functional quantum programming language

Linear λ-calculus + quantum primitives

Contribution

One of the first to cover the full features!

* !-modality for duplicable data
* recursion

Denotational semantics of a
 functional quantum programming language

Linear λ-calculus + quantum primitives

Contribution

One of the first to cover the full features!

* !-modality for duplicable data
* recursion

Denotational semantics of a
 functional quantum programming language

Linear λ-calculus + quantum primitives

Part 1

Functional QPL: Some Contexts

Quantum

Programming Language

Classical
(Boolean)
circuit

Quantum

Programming Language

Classical

(Boolean) circuit
 Programming language

int i,ji

int factorial(int k)

$$
\text { for }(i=1 ; i<=k ; i++)
$$

$$
j=j * i ;
$$

return j;
\}
Quantum circuit

Quantum

Quantum
programming language

$$
\begin{aligned}
& \text { telep }=\text { let }\langle x, y\rangle=\mathbf{E P R} * \text { in } \\
& \text { let } f=\text { BellMeasure } x \text { in } \\
& \text { let } g=\mathbf{U} y \\
& \text { in }\langle f, g\rangle .
\end{aligned}
$$

[Selinger-Valiron]

Quantum

Programming Language

Classical

Classical	Quantum
(Boolean) circuit	Quantum circuit

* For discovery of algorithms
* For reasoning, verification

Functional Quantum

 Programming LanguageHasuo (Tokyo)

Functional Quantum Programming Language

* A real man's programming style

Functional Quantum

Programming

* A real man's programming style
* Heavily used in the financial sector * ...

Language
ICFP'11 Sponsers (Tokyo, sep/ROw) CREDITSUISSE ${ }^{\text {Quantitative Strategies }}$

|galois| IIJ

Microsoft
Research

Standard
Chartered

NII

B. Tsuru

CAPITAL

Functional Quantum

Programming

* A real man's programming style
* Heavily used in the financial sector
* Mathematically nice and clean
* Aids semantical study
* Transfer from classical to quantum

Language
ICFP'11 Sponsers (Tokyo, sep/Row) C) CREDIT SUISSE

|galois | IIJ

Microsoft
Research

NII

Functional QPL: Syntax

* Linear λ-calculus
+ quantum primitives [van Tonder, Selinger, Valiron, ...]
* Linearity for no-cloning
* "Input can be used only once"
* Not allowed/typable:
* Duplicable (classical) data: by the !-modality

Functional QPL:

Syntax

* Linear λ-calculus + quantum primitives

Preparation/Unitary transformation/Measurement

* Linearity for no-cloning
* "Input can be used only once"
* Not allowed/typable:
* Duplicable (classical) data: by the !-modality

Functional QPL:

Syntax

* Linear λ-calculus

Preparation/Unitary
transformation/Measurement

[van Tonder, Selinger, Valiron, ...]

* Linearity for no-cloning
* "Input can be used only once"
* Not allowed/typable:
$\boldsymbol{\lambda} \boldsymbol{x} .\langle$ meas \boldsymbol{x}, meas $\boldsymbol{x}\rangle$

Functional QPL:

Syntax

* Linear λ-calculus

Preparation/Unitary
transformation/Measurement

[van Tonder, Selinger, Valiron, ...]

* Linearity for no-cloning
* "Input can be used only once"
* Not allowed/typable:

Functional QPL:

 Syntax
* Linear λ-calculus

Preparation/Unitary transformation/Measurement

* Linearity for no-cloning
* "Input can be used only once"
* Not allowed/typable:
$\lambda x .\langle$ meas x, meas $x\rangle$
* Duplicable (classical) data: by the !-modality

$$
\vdash t t: \text { bit }
$$

Functional QPL:

 Syntax* Linear λ-calculus + quantum primitives

Preparation/Unitary
transformation/Measurement

* Linearity for no-cloning
* "Input can be used only once"
* Not allowed/typable:
$\lambda x .\langle$ meas x, meas $x\rangle$
* Duplicable (classical) data: by the !-modality

$$
\vdash t t: \text { bit }
$$

"arbitrary many copies"

Functional QPL: Semantics

Functional QPL: Semantics

\author{

* Semantics = mathematical model
}

Functional QPL: Semantics

* Semantics = mathematical model

* Operational semantics: [Selinger \& Valiron, '09]
* "Quantum closure," reduction with probabilistic branching

$$
\begin{aligned}
& {\left[\alpha\left|Q_{0}\right\rangle+\beta\left|Q_{1}\right\rangle,\left|x_{1} \ldots x_{n}\right\rangle, \text { meas } x_{i}\right] \rightarrow_{|\alpha|^{2}}\left[\left|Q_{0}\right\rangle,\left|x_{1} \ldots x_{n}\right\rangle, 0\right]} \\
& {\left[\alpha\left|Q_{0}\right\rangle+\beta\left|Q_{1}\right\rangle,\left|x_{1} \ldots x_{n}\right\rangle, \text { meas } x_{i}\right] \rightarrow_{|\beta|^{2}}\left[\left|Q_{1}\right\rangle,\left|x_{1} \ldots x_{n}\right\rangle, 1\right]}
\end{aligned}
$$

* Allows to identify linear logic \otimes and quantum (feature of the Selinger-Valiron language; not in ours)

Functional QPL: Semantics

$\llbracket M \rrbracket$

Functional QPL: Semantics

* Denotational semantics
* $\llbracket M \rrbracket$: a function, or an arrow of a category

Functional QPL: Semantics

* Denotational semantics
* $\llbracket M \rrbracket$: a function, or an arrow of a category
* Compositionality: $\llbracket M N \rrbracket=\llbracket M \rrbracket \circ \llbracket N \rrbracket$

Functional QPL: Semantics

* Denotational semantics

* $\llbracket M \rrbracket$: a function, or an arrow of a category
* Compositionality: $\llbracket M N \rrbracket=\llbracket M \rrbracket \circ \llbracket N \rrbracket$
* Linear category: [Benton \& Wadler, Bierman] (axioms for) a categorical model of linear λ-calculus

Defn.
A linear category $(\mathbb{C}, \otimes, \mathbf{I},-,!)$ is a sym. monoidal closed cat. with a linear exponential comonad!.

Functional QPL: Semantics

* Denotational semantics

* $\llbracket M \rrbracket$: a function, or an arrow of a category
* Compositionality: $\llbracket M N \rrbracket=\llbracket M \rrbracket \circ \llbracket N \rrbracket$
* Linear category: [Benton \& Wadler, Bierman] (axioms for) a categorical model of linear λ-calculus

Defn.
A linear category $(\mathbb{C}, \otimes, \mathbf{I}, \multimap,!)$ is a sym. monoidal closed cat. with a linear exponential comonad!.

* For functional QPL? Is Hilb (or alike) a linear cat.?

Functional QPL: Semantics

* Hilb (or alike) is not a linear category
* Challenge: coexistence of quantum and classical data
* Only partial results
* [Selinger \& Valiron, '08]:
for strictly linear fragmant (w/o!)

Functional QPL: Semantics

* Hilb (or alike) is not a linear category monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, \multimap)$
! (for duplicable data)
* Challenge: coexistence of quantum and classical data
* Only partial results
* [Selinger \& Valiron, '08]:
for strictly linear fragmant (w/o!)

Functional QPL: Semantics

* Hilb (or alike) is not a linear category monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, \multimap)$
! (for duplicable data)
1 duality $V \cong V^{\perp}$
* Challenge: coexistence of quantum and classical data
* Only partial results
* [Selinger \& Valiron, '08]:
for strictly linear fragmant (w/o!)

Functional QPL: Semantics

* Hilb (or alike) is not a linear category monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, \multimap)$
! (for duplicable data)
1 duality $V \cong V^{\perp}$
finite dim.
* Challenge: coexistence of quantum and classical data
* Only partial results
* [Selinger \& Valiron, '08]:
for strictly linear fragmant (w/o!)

Functional QPL: Semantics

* Hilb (or alike) is not a linear category
monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, \multimap)$
1 duality $V \cong V^{\perp}$ 1 finite dim.
* Challenge: coexistence of quantum and classical data
* Only partial results
* [Selinger \& Valiron, '08]:
for strictly linear fragmant (w/o !)

Functional QPL: Semantics

* Hilb (or alike) is not a linear category
monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, \multimap)$
1 duality $V \cong V^{\perp}$
finite dim.
* Challenge: coexistence of quantum and classical data

Functional QPL: Semantics

* Hilb (or alike) is not a linear category
monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, \multimap)$
1 duality $V \cong V^{\perp}$ 1 finite dim.
* Challenge: coexistence of quantum and classical data
* Only partial results
* [Selinger \& Valiron, '08]:
for strictly linear fragmant (w/o !)

"Quantum Data, Classical Control"

Quantum data

Illustration by N. Hoshino

Classical control

"Quantum Data,

 Classical Control"Quantum data

"Quantum Data,

Classical Control"

Quantum data

Classical control

Hasuo (Tokyo)

What We Do

* GoI (Geometry of Interaction) [Girard '89] An "implementation" of classical control

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

What We Do

* GoI (Geometry of Interaction) [Girard '89] An "implementation" of classical control

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

What We Do

* GoI (Geometry of Interaction) [Girard '89] An "implementation" of classical control

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

What We Do

* GoI (Geometry of Interaction) [Girard '89] An "implementation" of classical control

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

* Categorical GoI [Abramsky, Haghverdi, Scott '02] Its categorical axiomatics
* We add a quantum layer to GoI * \rightarrow "Quantum data, classical control"
* Used: theory of coalgebra [Hasuo, Jacobs, Sokolova '07] [Jacobs '10]

Part

The Categorical GoI Workflow

GoI:

Geometry of Interaction * J.-Y. Girard, at Logic Colloquium ' 88

GoI:

Geometry of Interaction * J.-Y. Girard, at Logic Colloquium ' 88

GoI:

Geometry of Interaction
 * J.-Y. Girard, at Logic Colloquium ' 88

* But I'm no linear logician!

GoI:

Geometry of Interaction
 * J.-Y. Girard, at Logic Colloquium ' 88

* But I'm no linear logician!
* In this talk:
* Its categorical formulation
[Abramsky, Haghverdi, Scott '02]
* "The GoI Animation"

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$$
=\text { "piping" } \begin{array}{ccccccc}
& \downarrow & \downarrow & \downarrow & \downarrow & & \\
\hline & 1 & 2 & 3 & 4 & \cdots & \text { (countably many) }
\end{array}
$$

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

$$
=" p i p i n g "
$$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

... (countably many)
[M]

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$ $\begin{array}{lcccccc} & \downarrow & & \downarrow & \downarrow & & \\ = & \text { "piping" } & 1 & 2 & 3 & 4 & \cdots\end{array}$ (countably many)
$[\mid M]$

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

... (countably many)
[M]

The GoI Animation

* Function application $\llbracket M N \rrbracket$
* by "parallel composition + hiding"
 $[|M|]$

[N]]

$=$

$=$

$=$

$$
M=\lambda x \cdot x+1 \quad N=2
$$

$$
M=\lambda x .1 \quad N=2
$$

$$
M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

$=$

$$
\begin{array}{rlr}
\ldots & M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2
\end{array}
$$

$$
M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

$\lceil M N \rrbracket$ $=$

$=$

$$
\begin{array}{ll}
M=\lambda x . x+1 & N=2 \\
M=\lambda x .1 & N=2
\end{array}
$$

$$
M=\lambda f . f 1
$$

$$
N=\lambda x .(x+1)
$$

$=$

$$
M=\lambda x \cdot x+1 \quad N=2
$$

$$
M=\lambda x .1 \quad N=2
$$

$$
M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

$=$

$$
M=\lambda x \cdot x+1 \quad N=2
$$

$$
\rightarrow M=\lambda x .1 \quad N=2
$$

$$
M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

$=$

[M]
[$N]$

$$
\begin{array}{ll}
M=\lambda x \cdot x+1 & N=2 \\
\rightarrow M=\lambda x .1 & N=2 \\
M=\lambda f \cdot f 1 & N=\lambda x \cdot(x+1)
\end{array}
$$

$=$

$$
M=\lambda x \cdot x+1 \quad N=2
$$

$$
M=\lambda x .1 \quad N=2
$$

$$
M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

$=$

$\rightarrow M=\lambda f . f 1 \quad N=\lambda x .(x+1)$

$$
\begin{array}{ll}
M=\lambda x \cdot x+1 & N=2 \\
M=\lambda x \cdot 1 & N=2 \\
\rightarrow M=\lambda f \cdot f 1 & N=\lambda x \cdot(x+1)
\end{array}
$$

$=$

[M]
[$N]$

$$
\begin{array}{rl}
M=\lambda x \cdot x+1 & N=2 \\
M=\lambda x \cdot 1 & N=2 \\
\rightarrow M=\lambda f \cdot f 1 & N=\lambda x \cdot(x+1)
\end{array}
$$

$=$

$\rightarrow M=\lambda f . f 1 \quad N=\lambda x .(x+1)$

$=$

$$
M=\lambda x \cdot x+1 \quad N=2
$$

$$
M=\lambda x .1 \quad N=2
$$

$$
M=\lambda f . f 1 \quad N=\lambda x .(x+1)
$$

Categorical GoI

* Axiomatics of GoI in the categorical language
* Our main reference:
* [AHSO2] S. Abramsky, E. Haghverdi, and P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002
* Especially its technical report version (Oxford CL), since it's a bit more detailed

The Categorical GoI Workflow

Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsO2]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsOz]

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsOz]

* Applicative str. + combinators
* Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

* Applicative str. + combinators
* Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow
 Traced monoidal category C
 + other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHsOz]

Linear combinatory algebra

Realizability

* PER, ω-set, assembly, ...
* "Programming in untyped $\lambda^{\prime \prime}$

The Categorical GoI Workflow

Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability * "Programming in untyped λ "
PER, w-set, assembly, . Linear category

Linear Combinatory Algebra (LCA)

Defn. (LCA)
A linear combinatory algebra ($L C A$) is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathbf{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

Linear Combinatory Algebra

Defn. (LCA)
A linear combinatory algebra ($L C A$) is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

Linear Combinatory Algebra

What
we want (outcome)
Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \boldsymbol{\delta}, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than • does.

* Model of untyped linear λ

Linear Combinatory Algebra

What
we want (outcome)

Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \boldsymbol{\delta}, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathbf{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than • does.

* Model of untyped linear λ

* $a \in A$
 \approx

closed linear λ-term

Linear Combinatory Algebra

What
we want (outcome)

Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \boldsymbol{\delta}, \mathbf{F}$ satisfying

$$
\begin{aligned}
\mathrm{B} x y z & =x(y z) & & \text { Composition, Cut } \\
\mathbf{C} x y z & =(x z) y & & \text { Exchange } \\
\mathbf{I} x & =x & & \text { Identity } \\
\mathrm{K} x!y & =x & & \text { Weakening } \\
\mathrm{W} x!y & =x!y!y & & \text { Contraction } \\
\mathrm{D}!x & =x & & \text { Dereliction } \\
\delta!x & =!!x & & \text { Comultiplication } \\
\mathrm{F}!x!y & =!(x y) & & \text { Monoidal functoriality }
\end{aligned}
$$

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

* Model of untyped linear λ

* $a \in A$
 \approx

closed linear λ-term

* No S or K (linear!)

Linear Combinatory Algebra

What we want (outcome)

Defn. (LCA)
A linear combinatory algebra $(L C A)$ is a set \boldsymbol{A} equipped with

- a binary operator (called an applicative structure)

$$
\cdot: A^{2} \longrightarrow A
$$

- a unary operator

$$
!: A \longrightarrow A
$$

- (combinators) distinguished elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ satisfying

$\mathrm{B} x y z$	$=x(y z)$		Composition, Cut
$\mathbf{C} x y z$	$=(x z) y$		Exchange
$\mathbf{I} x$	$=x$		Identity
$\mathrm{K} x!y$	$=x$		Weakening
$\mathrm{W} x!y$	$=x!y!y$		Contraction
$\mathrm{D}!x$	$=x$		Dereliction
$\delta!x$	$=!!x$		Comultiplication
$\mathrm{F}!x!y$	$=!(x y)$		Monoidal functoriality

Here: • associates to the left; • is suppressed; and ! binds stronger than - does.

* Model of untyped linear λ
* $a \in A \quad \approx$ closed linear λ-term
* No S or K (linear!)
* Combinatory completeness: e.g.

$\lambda x y z . z x y$

designates an elem. of A

What we use (ingredient)

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
e: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
$e: F F \triangleleft F: e^{\prime} \quad$ Comultiplication
$\boldsymbol{d}: \mathbf{i d} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \quad$ Dereliction
$\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \quad$ Contraction
$\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} \quad$ Weakening

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Monoidal category (\mathbb{C}, \otimes, I)

* String diagrams

$$
\xrightarrow[{A \xrightarrow{A \xrightarrow{f} B \quad B \xrightarrow{g} C}} C]{ }
$$

$$
\frac{A \xrightarrow{f} B \quad C \xrightarrow{g} D}{A \otimes C \xrightarrow{f \otimes g} B \otimes D}
$$

$$
h \circ(f \otimes g)
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced monoidal category

* "feedback"

$$
\frac{A \otimes C \xrightarrow{f} B \otimes C}{A \xrightarrow{\operatorname{tr}(f)} B}
$$

that is

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial functions $\mathbb{N} \rightharpoonup \mathbb{N}$

String Diagram vs. Pipe Diagram"

* I use two ways of depicting partial
functions $\mathbb{N} \rightharpoonup \mathbb{N}$
In the monoidal category (Pan,,+ 0)

String diagram

Traced Sym. Monoidal Category (Pfn,,+ 0)

* Category Pfn of partial functions

* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\overline{\boldsymbol{X}} \boldsymbol{Y}, \text { partial function }}
$$

Traced Sym. Monoidal Category (Pfn,,+ 0)

* Category Pfn of partial functions
* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathbf{P f n}}{\overline{\boldsymbol{X}} \boldsymbol{Y}, \text { partial function }}
$$

* is traced symmetric monoidal

Traced Sym. Monoidal Category (Pfn,,+ 0)

$$
\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in } P f n}{X \xrightarrow{\operatorname{tr}(f)} Y \text { in } P \mathrm{fn}}
$$

How?

Traced Sym. Monoidal Category (Pfn,,+ 0)

How?

Traced Sym. Monoidal Category (Pfn,,+ 0)

How?

Traced Sym. Monoidal Category (Pfn,,+ 0)

Traced Sym. Monoidal Category (Pfn,,+ 0)

* $\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in Pfn }}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text { in } \operatorname{Pfn}}$

How?
s)

$f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}$
Similar for $\boldsymbol{f}_{X Z}, f_{Z Y}, f_{Z Z}$

* Trace operator:

Traced Sym. Monoidal Category (Pan,,+ 0)

$\xrightarrow{X+Z \xrightarrow{f} Y+Z \quad \text { in Afn }}$ $\boldsymbol{X} \xrightarrow{\operatorname{tr}(f)} \boldsymbol{Y} \quad$ in $\mathbf{P f n}$

How?

$$
f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w. }\end{cases}
$$

Similar for $\boldsymbol{f}_{X Z}, f_{Z Y}, f_{Z Z}$

* Trace operator:

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

Traced Sym. Monoidal Category (Pan,,+ 0)

$$
\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in } \mathbf{P f n}}{X \xrightarrow{\operatorname{tr}(f)} Y \text { in Pan }}
$$

How?

$$
f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\ \perp & \text { o.w }\end{cases}
$$

Similar for $\boldsymbol{f}_{\boldsymbol{X} Z}, \boldsymbol{f}_{Z \boldsymbol{Y}}, \boldsymbol{f}_{Z Z}$

* Execution formula (Girard)
* Partiality is essential (infinite loop)

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
$\bullet \boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced sym. monoidal cat.
* Where one can "feedback"

* Why for GoI?

$=$

in string diagram

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Traced sym. monoidal cat.
* Where one can "feedback"

* Why for GoI?

* Leading example: Pfn

Hasuo (Tokyo)

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

Defn. (Retraction)
A retraction from \boldsymbol{X} to \boldsymbol{Y},

$$
f: X \triangleleft Y: g
$$

is a pair of arrows
"embedding"

such that $g \circ f=\operatorname{id}_{\boldsymbol{X}}$.

* Functor F

* For obtaining ! : $A \rightarrow A$

GoI situation

Defn. (GoI situation [AHS02])
A GoV situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
e: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* The reflexive object U

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \quad \triangleleft U \\
\boldsymbol{u}: \boldsymbol{F} U
\end{gathered}
$$

* The reflexive object U

$\left.\hat{j}^{\dot{j}}, \hat{1}^{\hat{k}}\right\rangle$ with

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{array}{rl}
e: F F & \boldsymbol{F} \boldsymbol{F}: \boldsymbol{e}^{\prime} \\
d: \text { id } \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime}
\end{array}
$$

* The reflexive object U

* Why for GoI?

* Example in Pfn:

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
e: F F \triangleleft F & : \boldsymbol{e}^{\prime}
\end{aligned} \text { Comultiplication }
$$

* The reflexive object U

* Why for GoI?

* Example in Pfn:

GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
& e: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} \\
& \boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} \\
& \boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \\
& \boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime}
\end{aligned}
$$

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexiv ject), equipped with the following retractions.

$$
\begin{gathered}
\boldsymbol{j}: \boldsymbol{U} \otimes \boldsymbol{U} \triangleleft \boldsymbol{U}: \boldsymbol{k} \\
\boldsymbol{I} \triangleleft \boldsymbol{U} \\
\boldsymbol{u}: \boldsymbol{F} \boldsymbol{U} \triangleleft \boldsymbol{U}: \boldsymbol{v}
\end{gathered}
$$

* The reflexive object U

* Why for GoI?

* Example in Pfn:
$\mathbb{N} \in \mathbf{P f n}$, with
$\mathbb{N}+\mathbb{N} \cong \mathbb{N}$,
$\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$

GoI Situation: Summary

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Categorical axiomatics of the "GoI animation"

* Example:
$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{aligned}
\boldsymbol{e}: \boldsymbol{F} \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{aligned}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Categorical axiomatics of the "GoI animation"

* Example:
$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the 10 owing retractions (which are monoidal natural transformations).

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \text { id } \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into til

- $U \in \mathbb{C}$ is an object (called reflexive ob)

For ! , via

* Categorical axiomatics of the "GoI animation" the following retractions.

$$
\begin{aligned}
& j: U \otimes U \triangleleft U: k \\
& I \triangleleft U \\
& u: F U \triangleleft U: v
\end{aligned}
$$

* Example:
$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the 10 owing retractions (which are monoidal natural transformations).

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \text { id } \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into til

- $U \in \mathbb{C}$ is an object (called reflexive ob.

* Categorical axiomatics of the "GoI animation" the following retractions.

$$
\begin{aligned}
j: U \otimes U & \triangleleft U: k \\
I & \triangleleft U \\
u: F U & \triangleleft U: v
\end{aligned}
$$

* Example:

$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the lowing retractions (which are monoidal natural transformations).

$$
\begin{array}{r}
e: F F \triangleleft F: e^{\prime} \\
d: \text { id } \triangleleft F: d^{\prime} \\
c: F \otimes F \triangleleft F: c^{\prime} \\
w: K_{I} \triangleleft F: w^{\prime}
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into ti

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive obj

* Categorical axiomatics of the "GoI animation"

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* Example:

$(\operatorname{Pfn}, \mathbb{N} \cdot \ldots, \mathbb{N})$

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

* Applicative str.
* ! operator
* Combinators B, C, I, ...

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

* Applicative str.
* ! operator
* Combinators B, C, I, ...

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

* Applicative str.
* ! operator
* Combinators B, C, I, ...

$$
\text { * } g \cdot f
$$

$$
:=\operatorname{tr}((U \otimes f) \circ k \circ g \circ j)
$$

Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

$$
!f:=u \circ F f \circ v
$$

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
from [AHSO2]

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Monday, November 7, 2011

Monday, November 7, 2011

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
from [AHSO2]

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B
Nice dynamic interpretation of
from [AHSO2] (linear) computation!!

Summary:

Categorical GoI

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$
\begin{array}{rlrl}
e: F F \\
\boldsymbol{d}: \mathrm{id} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{d ^ { \prime }} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Dereliction } \\
\boldsymbol{w}: \boldsymbol{K}_{\boldsymbol{I}} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Wentraction } \\
\text { Weaking }
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $\boldsymbol{U} \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

$$
\begin{gathered}
j: U \otimes U \triangleleft U: k \\
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset

$$
\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

Why Categorical Generalization?: Examples Other Than Pin [AHsoz]

* Strategy: find a TSMC!
* "Wave-style" examples
* \otimes is Cartesian product(-like)

* in which case,
trace \approx fixed point operator [Hasegawa/Hyand]
* An example: $\quad\left((\omega\right.$-Cpo, $\left.\times, \mathbf{1}),\left(_\right)^{\mathbb{N}}, \boldsymbol{A}^{\mathbb{N}}\right)$
* (... less of a dynamic flavor)

Why Categorical Generalization?: Examples Other Than Pin [aHsoz]

* "Particle-style" examples
* Obj. $\mathrm{X} \in \mathrm{C}$ is set-like; \otimes is coproduct-like
* The GoI animation is valid

* Examples:
* Partial functions
$\left((\operatorname{Pfn},+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$
* Binary relations
$((\operatorname{Rel},+, 0), \mathbb{N} \cdot \ldots, \mathbb{N})$
* "Discrete stochastic relations"
$\left((\right.$ DSRel,,+ 0$\left.), \mathbb{N} \cdot _, \mathbb{N}\right)$

Why Categorical Generalization?: Examples Other Than Pfin [aHsoz]

* Pfn (partial functions)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\overline{\boldsymbol{X} \rightharpoonup \boldsymbol{Y}, \text { partial function }}}} \text { X where } \mathcal{L} \boldsymbol{L} \boldsymbol{Y} \text { in Sets }=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\frac{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}{\bar{X} \rightarrow \mathcal{P} \boldsymbol{Y} \text { in Sets }}} \text { where } \mathcal{P} \text { is the powerset monad }
$$

* DSRel

$$
\begin{aligned}
& \underline{X \rightarrow Y \text { in DSRel }} \\
& \text { where } \mathcal{D} Y \text { in Sets }=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}
\end{aligned}
$$

Why

* Pfn (partial functions)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\overline{\boldsymbol{X} \rightharpoonup \boldsymbol{Y}, \text { partial function }}}} \text { X where } \mathcal{L} \boldsymbol{X}=\{\perp\}+\boldsymbol{\mathcal { L } Y \text { in Sets }}
$$

* Rel (relations)
$\xlongequal{\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}$ where \mathcal{P} is the powerset monad
* DSRel
$\xlongequal[X \rightarrow \boldsymbol{Y} \text { in DSRel }]{\boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Why Categd Categories of sets and

(functions with different branching/partiality)
Examples

* Pfn (partial functions)
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \boldsymbol{P f n}}{\frac{\overline{\boldsymbol{X} \boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}}$ where $\mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}$
* Rel (relations)

Non-determinism
$\xlongequal{\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}$ where \mathcal{P} is the powerset monad

* DSRel
$\frac{X \rightarrow Y \text { in DSRel }}{\bar{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

Pfn (partial functions)

* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck

Rel (relations)

* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch

DSRel

* Pipes can branch probabilistically

Different Branching in The GoI Animation

* Pfn (partial functions)
* Pipes can be stuck
* Rel (relations)
* Pipes can branch
* DSRel
* Pipes can branch probabilistically

Why Categorical Generalization?: Examples Other Than Pfn [aHsoz]

* Pfn (partial functions)

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\bar{X} \boldsymbol{Y}, \text { partial function }}} \text { X } \text { where } \mathcal{L} Y=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\frac{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}{\bar{X} \rightarrow \mathcal{P} \boldsymbol{Y} \text { in Sets }}}$ where \mathcal{P} is the powerset monad
* DSRel

$$
\begin{aligned}
& \xlongequal[X \rightarrow Y \text { in DSRel }]{X \rightarrow \mathcal{D} Y \text { in Sets }} \\
& \text { where } \mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}
\end{aligned}
$$

Why Categorical Generalization?: Examples Other Than Pfin [AHsoz]

* Pfn (partial functions)

$$
\xlongequal[\overline{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}]{\xlongequal[\boldsymbol{X} \rightarrow \boldsymbol{Y}, \text { partial function }]{ }} \text { where } \mathcal{L} \boldsymbol{\mathcal { L } \text { in Sets }}=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)
$\xlongequal{\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}$ where \mathcal{P} is the powerset monad
* DSRel

$$
\frac{X \rightarrow Y \text { in DSRel }}{X \boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}
$$

where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Essential to have subdistribution, for infinite loops

The Coauthor

* Naohiko Hoshino

* DSc (Kyoto, 2011)

* Supervisor:

Masahito "Hassei" Hasegawa

* Currently at RIMS, Kyoto U.
* http://www.kurims.kyoto-u.ac.jp/ ~naophiko/

A Coalgebraic View

* Theory of coalgebra = Categorical theory of state-based dynamic systems (LTS, automaton, Markov chain, ...)
* In [Hasuo, Jacobs, Sokolova '07]:
* Coalgebras in a Kleisli category $K l(B)$

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \mathcal{K} \ell(\boldsymbol{B})}{\overline{\boldsymbol{X} \rightarrow \boldsymbol{B Y} \text { in Sets }}}
$$

* \rightarrow Generic theory of "trace semantics"

Why Categ Categories of sets and

* Pfn (partial functions)
(Potential) non-termination
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \boldsymbol{P f n}}{\frac{\overline{\boldsymbol{X} \boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}}$ where $\mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}$
* Rel (relations)

Non-determinism
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\frac{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}{\bar{X} \rightarrow \mathcal{P} \boldsymbol{Y} \text { in Sets }}}$ where \mathcal{P} is the powerset monad

* DSRel
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in DSRel }}{\boldsymbol{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Example

* Pfn (partial functions)
(Potential) non-termination
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in } \boldsymbol{P f n}}{\frac{\overline{\boldsymbol{X} \boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}}$ where $\mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}$
* Rel (relations)

Non-determinism
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\frac{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}{\bar{X} \rightarrow \mathcal{P} \boldsymbol{Y} \text { in Sets }}}$ where \mathcal{P} is the powerset monad

* DSRel
$\frac{X \rightarrow Y \text { in DSRel }}{\bar{X} \rightarrow \mathcal{D} Y \text { in Sets }}$
Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad" B on Sets, the monoidal category

$$
(\mathcal{K} \ell(B),+, 0)
$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(B),+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$ is a GoI situation.

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad" B on Sets, the monoidal category

$$
(\mathcal{K} \ell(B),+, 0)
$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(B),+, 0), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$ is a GoI situation.
(Roughly) monads in [Hasuo, Jacobs, Sokolova '07]

* $\mathrm{Kl}(\mathrm{B})$ is Cpo_{\perp}-enriched
* like $\mathcal{L}, \mathcal{P}, \mathcal{D}$

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad" B on Sets, the monoidal category

$$
(\mathcal{K} \ell(B),+, 0)
$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.

$\left((\mathcal{K} \ell(B),+, 0), \mathbb{N} \cdot _, \mathbb{N}\right)$ is a GoI situation.
(Roughly) monads in [Hasuo, Jacobs, Sokolova '07]

* $\mathrm{Kl}(\mathrm{B})$ is Cpo_{\perp}-enriched
* like $\mathcal{L}, \mathcal{P}, \mathcal{D}$

Particle-style: trace via the execution formula

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

The Categorical GoI Workflow

Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSO2]
Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

Model of fancy language

The Categorical GoI Workflow

Branching monad B
Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Model of fancy language

The Categorical GoI Workflow

Branching monad B
Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

Fancy
TSMC

Fancy
LCA

Model of fancy
language

The Categorical GoI Workflow

Branching monad B
Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]
Categorical GoI [AHSO2]
Linear combinatory algebra

Realizability

Fancy monad

Fancy
TSMC

Fancy

LCA

Model of fancy
language

What is Fancy,
 Nowadays?

What is Fancy,
 Nowadays?

* Biology?

What is Fancy, Nowadays?

* Biology?
* Hybrid systems?
* Both discrete and continuous data, typically in cyber-physical systems (CPS)
* \rightarrow Our approach via non-standard analysis [Suenaga, Hasuo ICALP'11]

What is Fancy, Nowadays?

* Biology?
* Hybrid systems?
* Both discrete and continuous data, typically in cyber-physical systems (CPS)
* \rightarrow Our approach via non-standard analysis [Suenaga, Hasuo ICALP'11]
* Quantum?
* Yes this worked!

Future Directions
Pap 3.GoI 2: Non-converging algms (untogped λ-calc /PCF)

- Uses mone topological info on operatin algs
- Go I 3: usesadditives \& additive proof nots -
GoI 4 (laot month): Von Necumann

Phil Scott.
Tutorial on Geometry of Interaction, FMCS 2004. Page 47/47
algebias: Ex (f, τ) fo f arb (nottecoming from proof)
-Quantum GoI?

Future Directions
Qape 3 . GoI 2: Non-converging algms (untagped λ-calc /PCF)

- Uses mone topological info on operatin algs
- Go I 3: usesadditives \& additive proof nots -
GoI 4 (laot month): Von Necumann
Phil Scott.
Tutorial on Geometry of Interaction, FMCS 2004. Page 47/47 algebias: $E x(f, \tau)$ fo f arb (nottrecoming from proof)
Quantum GOI?

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSO2]
Linear combinatory algebra

Realizability

Linear category

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs \rightarrow "GOI situation" [AHSO2]
Categorical GoI [AHSOz]
Linear combinatory algebra

Realizability

Linear category

Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum language ${ }_{\text {lasuo (Tokyo) }}$

The Quantum Branching Monad

$$
\mathcal{Q} Y=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

The Quantum Branching

$$
\mathbf{Q O}_{\boldsymbol{m}, \boldsymbol{n}}:=\left\{\begin{array}{l}
\text { quantum operations, } \\
\text { from dim. } \boldsymbol{m} \text { to dim. } \boldsymbol{n}
\end{array}\right\}
$$

$$
\mathcal{Q} Y=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

The Quantum Branching

$$
\mathbf{Q O}_{\boldsymbol{m}, \boldsymbol{n}}:=\left\{\begin{array}{l}
\text { quantum operations, } \\
\text { from dim. } \boldsymbol{m} \text { to dim. } \boldsymbol{n}
\end{array}\right\}
$$

$\mathcal{Q} Y=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n}\right.$ the trace condition $\}$

$$
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1,
$$

$\forall m \in \mathbb{N}, \forall \rho \in D_{m}$.

The Quantum Branching

 $\mathbf{Q O}_{m, n}:=\left\{\begin{array}{l}\text { quantum operations, } \\ \text { from dim. } \boldsymbol{m} \text { to dim. } n\end{array}\right\}$
$\mathcal{Q Y}=\left\{c: \boldsymbol{Y} \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid\right.$ the trace condition $\}$

$$
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1
$$

$\forall m \in \mathbb{N}, \forall \rho \in D_{m}$.

* Compare with

$$
\mathcal{P} Y=\{c: Y \rightarrow 2\}
$$

$$
\mathcal{D} Y=\left\{c: Y \rightarrow[0,1] \mid \sum_{y \in Y} c(y) \leq 1\right\}
$$

The Quantum Branching

$\mathbf{Q O}_{m, n}:=\left\{\begin{array}{l}\text { quantum operations, } \\ \text { from dim. } \boldsymbol{m} \text { to dim. } n\end{array}\right\}$
$\mathcal{Q Y}=\left\{c: \boldsymbol{Y} \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n}\right)$ the trace condition $\}$

$$
\begin{gathered}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{gathered}
$$

* Compare with

$$
\mathcal{P} Y=\{c: Y \rightarrow 2\}
$$

$$
\mathcal{D} Y=\left\{c: Y \rightarrow[0,1] \mid \sum_{y \in Y} c(y) \leq 1\right\}
$$

The Quantum Branching

$\mathbf{Q O}_{m, n}:=\left\{\begin{array}{l}\text { quantum operations, } \\ \text { from dim. } \boldsymbol{m} \text { to dim. } n\end{array}\right\}$
$\mathcal{Q Y}=\left\{c: \boldsymbol{Y} \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n}\right)$ the trace condition $\}$

$$
\begin{gathered}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{gathered}
$$

* Compare with

$$
\mathcal{P} Y=\{c: Y \rightarrow 2\}
$$

$$
\mathcal{D} Y=\left\{c: Y \rightarrow[0,1] \sum_{y \in Y} c(y) \leq 1\right\}
$$

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m}
\end{array}
$$

$$
\frac{\underset{\rightarrow}{\boldsymbol{X}} \boldsymbol{Y} \text { in } \mathcal{K} \ell(\mathcal{Q})}{\boldsymbol{X} \xrightarrow[\rightarrow]{f} \mathcal{Q} Y \text { in Sets }}
$$

* Given $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{Y}, \boldsymbol{m} \in \mathbb{N}, \boldsymbol{n} \in \mathbb{N}$ determines a quantum operation

$$
(f(x)(y))_{m, n}: D_{m} \rightarrow D_{n}
$$

* Subject to the trace condition

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

Branching Monad

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{array}
$$

$$
\frac{\underset{\rightarrow}{\boldsymbol{X}} \boldsymbol{Y} \text { in } \mathcal{K} \ell(\mathcal{Q})}{\boldsymbol{X} \xrightarrow{f} \mathcal{Q} Y \text { in Sets }}
$$

* Given $\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{Y}, \boldsymbol{m} \in \mathbb{N}, \boldsymbol{n} \in \mathbb{N}$
determines a quantum operation

Any opr. on quantum data:

$$
(f(x)(y))_{m, n}: D_{m} \rightarrow D_{n}
$$

combination of

- preparation
- unitary transf.
- measurement

The Quantum
Branching Monad

$$
\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y} \text { in } \mathcal{K} \ell(\mathcal{Q})
$$

$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m}
\end{array}
$$

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:

The Quantum
Branching Monad

$$
\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y} \text { in } \mathcal{K} \ell(\mathcal{Q})
$$

$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m}
\end{array}
$$

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:

The Quantum

Branching Monad
$\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y}$ in $\mathcal{K} \ell(\mathcal{Q})$
$X \xrightarrow{f} \mathcal{Q} Y$ in Sets
entrance exit dim. dim.

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m}
\end{array}
$$

The Quantum
Branching Monad $\boldsymbol{X} \xrightarrow{\boldsymbol{f}} \boldsymbol{Y}$ in $\mathcal{K}(\mathcal{Q})$
$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:

$$
\mathcal{Q} Y=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{array}
$$

Hasuo (Tokyo)

The Quantum

Branching Monad
$\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y}$ in $\mathcal{K} \ell(\mathcal{Q})$
$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m} .
\end{array}
$$

The Quantum

Branching Monad

$\boldsymbol{X} \xrightarrow{f} \boldsymbol{Y}$ in $\mathcal{K}(\mathcal{Q})$

$X \xrightarrow{f} \mathcal{Q} Y$ in Sets

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m, n}$
* trace cond.:

$$
\sum_{y, n} \operatorname{Pr}\left(\begin{array}{c}
\text { Token led } \\
\text { to } y \\
\text { with dim. } n
\end{array}\right) \leq \mathbf{1}
$$

$$
\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m, n \in \mathbb{N}} \mathbf{Q O}_{m, n} \mid \text { the trace condition }\right\}
$$

$$
\begin{array}{r}
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}\left[(c(y))_{m, n}(\rho)\right] \leq 1 \\
\forall m \in \mathbb{N}, \forall \rho \in D_{m}
\end{array}
$$

$\rho \in D_{m}$

$(f(x)(y))_{m, n}(\rho) \in D_{n}$
for each n

Quantum

Geometry of Interaction

(countably many)

$\llbracket M \rrbracket=$

Quantum

Geometry of Interaction

Not just a token/ particle, but quantum state!
$\llbracket M \rrbracket=$

Quantum

Geometry of Interaction

\downarrow	\downarrow	\downarrow	\downarrow		
1	2	3	4	\ldots	(countably many)

$\llbracket M \rrbracket=$

Quantum

Geometry of Interaction

$\llbracket M \rrbracket=$
M

"Quantum Data"

Not just a token/ particle, but
quantum state!
Hasuo (Tokyo)

Quantum

Geometry of Interaction

"Classical Control"

$\llbracket M \rrbracket=$
M

"Quantum Data"

Not just a token/ particle, but
quantum state!
Hasuo (Tokyo)

* (measurement \rightarrow case-distinction) leads a token to different pipes

Geometry

"Classical Control"

$\llbracket M \rrbracket=$
M

"Quantum Data"

Not just a token/ particle, but
quantum state!

Indeed...

* The monad Qqualifies as a "branching monad"
* The quantum GoI workflow leads to a linear category $\mathbf{P E R}_{Q}$
* From which we construct an adequate denotational model

End of the Story?

* No! All the technicalities are yet to come:
* CPS-style interpretation (for partial measurement)
* Result type: a final coalgebra in $\mathbf{P E R}_{Q}$
* Admissible PERs for recursion
* ...
* On the next occasion :-)

Conclusion: the Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]
Quantum
branching monad

Quantum TSMC

Categorical GoI [AHSOz]

Linear combinatory algebra

Realizability

Linear category

Conclusion: the Cat

Thank you for your attention!
Ichiro Hasuo (Dept. CS, U Tokyo) http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

Branching monad B
Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "GoI situation" [AHSO2]
Categorical GoI [AHSO2]
Linear combinatory algebra

Realizability

Linear category

Quantum

branching monad

Quantum TSMC

Quantum LCA

Model of quantum language lasuo (Tokyo)

The
 Language

* Roughly: linear λ + quantum primitives
* "Quantum data, classical control"
* No superposed threads
* Based on [Selinger\&Valiron'09]
* With slight modifications
* Notably: quantum \otimes vs. linear logic \boxtimes
* The same in [Selinger\&Valiron'09]
\rightarrow clean type system, aids programming
* But... problem with GoI-style semantics

The Language q λe

The types of $\mathbf{q} \boldsymbol{\lambda}_{\ell}$ are:

$$
\begin{aligned}
A, B & :
\end{aligned}:=n \text {-qbit }|!\boldsymbol{A}| \boldsymbol{A} \multimap \boldsymbol{B}|\top| \boldsymbol{A} \boxtimes B \mid \boldsymbol{A}+\boldsymbol{B}, .
$$

The terms of $\mathbf{q} \boldsymbol{\lambda}_{\boldsymbol{\ell}}$ are:

$$
\begin{aligned}
& M, N, P:: \\
& x\left|\lambda x^{A} \cdot M\right| M N|\langle M, N\rangle| * \mid \\
& \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \operatorname{in} N \mid \operatorname{let} *=M \text { in } N \mid \\
& \text { inj }_{\ell}^{B} M\left|\operatorname{inj}_{r}^{A} M\right| \\
& \operatorname{match} P^{A} \text { with }^{A}\left(x^{A} \mapsto M \mid y^{B} \mapsto N\right) \mid \\
& \text { letrec } f^{A} x=M \text { in } N \mid \\
& \text { new }|0\rangle\left|\operatorname{meas}_{i}^{n+1}\right| U \mid \mathrm{cmp}_{m, n},
\end{aligned}
$$

$$
\text { with conventions tt }:=\operatorname{inj}_{\ell}^{\top}(*) \text { and ff }:=\operatorname{inj}_{r}^{\top}(*) .
$$

The Langua

The types of $\mathbf{q} \boldsymbol{\lambda}_{\ell}$ are:
Different from quantum \otimes (Unlike [Selinger-Valiron'09]); same as the one in PER

The terms of $\mathbf{q} \boldsymbol{\lambda}_{\boldsymbol{\ell}}$ are:

$$
\begin{aligned}
& M, N, P:= \\
& x\left|\lambda x^{A} \cdot M\right| M N|\langle M, N\rangle| * \mid \\
& \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \operatorname{in} N \mid \operatorname{let} *=M \text { in } N \mid \\
& \text { inj }_{\ell}^{B} M\left|\operatorname{inj}_{r}^{A} M\right| \\
& \operatorname{match} P^{\text {with }\left(x^{A} \mapsto M \mid y^{B} \mapsto N\right) \mid} \\
& \text { letrec } f^{A} x=M \text { in } N \mid \\
& \text { new }|0\rangle \mid \text { meas }_{i}^{n+1}|U| \operatorname{cmp}_{m, n},
\end{aligned}
$$

$$
\text { with conventions tt }:=\operatorname{inj}_{\ell}^{\top}(*) \text { and } \mathrm{ff}:=\operatorname{inj}_{r}^{\top}(*)
$$

$$
\begin{aligned}
& A, B::=n \text {-qbit }|!A| A \multimap B|\top| A \boxtimes B \mid A+B, \\
& \text { with conventions qbit }:=1 \text {-qbit and bit }:=\top+\top \text {. }
\end{aligned}
$$

The Langua

Different from quantum \otimes (Unlike [Selinger-Valiron'09]); same as the one in PER
2-qbit \cong qbit \otimes qbit

$$
A, B::=n \text {-qbit }|!A| A \multimap B|\top| A \boxtimes B \mid A+B,
$$

with conventions qbit $:=1$-qbit and bit $:=\top+\top$.
The terms of $\mathbf{q} \boldsymbol{\lambda}_{\boldsymbol{\ell}}$ are:

$$
\begin{aligned}
& M, N, P::= \\
& x\left|\lambda x^{A} \cdot M\right| M N|\langle M, N\rangle| * \mid \\
& \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \text { in } N \mid \operatorname{let} *=M \text { in } N \mid \\
& \operatorname{inj}_{\ell}^{B} M\left|\operatorname{inj}_{r}^{A} M\right| \\
& \operatorname{match} P^{\operatorname{with}\left(x^{A} \mapsto M \mid y^{B} \mapsto N\right) \mid} \\
& \text { letrec } f^{A} x=M \text { in } N \mid \\
& \text { new }|0\rangle \mid \text { meas }_{i}^{n+1}|U| \mathrm{cmp}_{m, n}, \\
& \quad \text { with conventions tt }:=\operatorname{inj}_{l}^{\top}(*) \text { and } \mathrm{ff}:=\operatorname{inj}_{r}^{\top}(*) .
\end{aligned}
$$

The Langua

Different from quantum \otimes (Unlike [Selinger-Valiron'09]); same as the one in PER
2-qbit \cong qbit \otimes qbit

$$
A, B::=\underline{n} \text {-qbit }|!A| A \multimap B|\top| A \boxtimes B \mid A+B,
$$

with conventions qbit $:=1$-qbit and bit $:=\top+\top$.
The terms of $\mathbf{q} \boldsymbol{\lambda}_{\boldsymbol{\ell}}$ are:

$$
\begin{aligned}
& M, N, P:= \\
& x\left|\lambda x^{A} \cdot M\right| M N|\langle M, N\rangle| * \mid \\
& \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \operatorname{in} N \mid \operatorname{let} *=M \text { in } N \mid \\
& \text { inj }_{\ell}^{B} M\left|\operatorname{inj}_{r}^{A} M\right| \\
& \operatorname{match} P^{\text {with }\left(x^{A} \mapsto M \mid y^{B} \mapsto N\right) \mid} \\
& \text { letrec } f^{A} x=M \text { in } N \mid \\
& \text { new }|0\rangle \mid \text { meas }_{i}^{n+1}|U| \mathrm{cmp}_{m, n},
\end{aligned}
$$

$$
\text { with conventions tt }:=\operatorname{inj}_{\ell}^{\top}(*) \text { and ff }:=\operatorname{inj}_{r}^{\top}(*) \text {. }
$$

The Langua

Different from quantum \otimes (Unlike [Selinger-Valiron'09]); same as the one in PER
2-qbit \cong qbit \otimes qbit

$$
A, B::=\underline{n} \text {-qbit }|!A| A \multimap B|\top| A \boxtimes B \mid A+B,
$$

with conventions qbit $:=1$-qbit and bit $:=\top+\top$.
The terms of $\mathbf{q} \boldsymbol{\lambda}_{\boldsymbol{\ell}}$ are:

$$
\begin{aligned}
& M, N, P:= \\
& x\left|\lambda x^{A} \cdot M\right| M N|\langle M, N\rangle| * \mid \\
& \operatorname{let}\left\langle x^{A}, y^{B}\right\rangle=M \operatorname{in} N \mid \operatorname{let} *=M \text { in } N \mid \\
& \text { inj }_{\ell}^{B} M\left|\operatorname{inj}_{r}^{A} M\right| \\
& \operatorname{match} P^{\text {with }\left(x^{A} \mapsto M \mid y^{B} \mapsto N\right) \mid} \\
& \text { letrec } f^{A} x=M \text { in } N \mid \\
& \text { new }|0\rangle \mid \text { meas }_{i}^{n+1}|U| \operatorname{cmp}_{m, n},
\end{aligned}
$$

Quantum with conventions tt $:=\operatorname{inj}_{\ell}^{\top}(*)$ and ff $:=\operatorname{inj}_{r}^{\top}(*)$.

Implicit linearity tracking via subtyping <:

e.g. ! $A<: A,!A<:!!A$

(following [Selinger-Valiron'09])

$$
\begin{aligned}
& \frac{n=0 \Rightarrow m=0(*)}{!^{n} k \text {-qbit }<:!^{m} k \text {-qbit }}\left(k \text {-qbit) } \quad \frac{n=0 \Rightarrow m=0}{!^{n} T<:!^{m} \top}\right. \\
& \frac{A_{1}<: B_{1} \quad A_{2}<: B_{2} \quad(*)}{!^{n}\left(\boldsymbol{A}_{1} \boxminus A_{2}\right)<:!^{m}\left(B_{1} \boxminus B_{2}\right)}(\text { (.) with } \square \in\{\boxtimes,+\} \\
& \frac{\boldsymbol{B}_{1}<: \boldsymbol{A}_{1} \quad \boldsymbol{A}_{2}<: \boldsymbol{B}_{2} \quad(*)}{!^{n}\left(\boldsymbol{A}_{1} \multimap \boldsymbol{A}_{2}\right)<:!^{m}\left(\boldsymbol{B}_{1} \multimap \boldsymbol{B}_{2}\right)}(\multimap)
\end{aligned}
$$

Measurements

$A_{\text {new }\|0\rangle}$	$:=$ qbit
$A_{\text {meas }}^{n+1}$	$:=(n+1)$-qbit $\multimap($ bit $\boxtimes n$-qbit $)$ for $n \geq \mathbf{1}$
$A_{\text {meas }_{1}^{1}}$	$:=$ qbit \multimap bit
A_{U}	$:=n$-qbit $\multimap n$-qbit for a $2^{n} \times \mathbf{2}^{n}$ matrix U
$A_{\text {cmp }}^{m, n} \boldsymbol{n}$	$:=(m$-qbit $\boxtimes n$-qbit $) \multimap(m+n)$-qbit

Bookkeeping

 (due to \otimes vs. \boxtimes)$$
\begin{align*}
& \frac{A<: A^{\prime}}{!\Delta, x: A \vdash x: A^{\prime}}(\mathrm{Ax.} .1) \quad \frac{!A_{c}<: A}{!\Delta \vdash c: A}(\mathrm{Ax.} \text { 2) } \\
& \frac{\Delta \vdash M:!^{n} A}{\Delta \vdash \operatorname{inj}_{\ell}^{B} M:!^{n}(A+B)}\left(+. \mathrm{I}_{1}\right) \\
& \frac{\Delta \vdash N:!^{n} B}{\Delta \vdash \operatorname{inj}_{r}^{A} N:!^{n}(A+B)}\left(+. \mathrm{I}_{2}\right) \\
& !\Delta, \Gamma_{2}, x:!^{n} A \vdash M: C \\
& !\Delta, \Gamma_{1} \vdash P:!^{n}(A+B) \quad!\Delta, \Gamma_{2}, y:!^{n} B \vdash N: C \\
& !\Delta, \Gamma_{1}, \Gamma_{2} \\
& \vdash \operatorname{match} \boldsymbol{P} \text { with }\left(x^{!^{n} A} \mapsto M \mid \boldsymbol{y}^{!^{n} B} \mapsto \boldsymbol{N}\right): C \\
& \frac{x: A, \Delta \vdash M: B}{\Delta \vdash \lambda x^{A} \cdot M: A \multimap B}\left(\multimap . \mathrm{I}_{1}\right) \\
& \frac{x: A,!\Delta \vdash M: B}{!\Delta \vdash \lambda x^{A} \cdot M:!^{n}(A \multimap B)}\left(\multimap . \mathrm{I}_{2}\right) \\
& \frac{!\Delta, \Gamma_{1} \vdash M: A \multimap B!\Delta, \Gamma_{2} \vdash N: A}{!\Delta, \Gamma_{1}, \Gamma_{2} \vdash M N: B}(\multimap . \mathrm{E}),(\dagger) \\
& \frac{!\Delta, \Gamma_{1} \vdash M_{1}:!^{n} A_{1}: \Delta, \Gamma_{2} \vdash M_{2}:!^{n} A_{2}}{!\Delta, \Gamma_{1}, \Gamma_{2} \vdash\left\langle M_{1}, M_{2}\right\rangle:!^{n}\left(A_{1} \boxtimes A_{2}\right)}(\boxtimes . \mathrm{I}),(\dagger) \\
& \overline{!\Delta \vdash *:!^{n} \top} \text { (T.I) } \\
& !\Delta, \Gamma_{2}, x_{1}:!^{n} A_{1}, x_{2}:!^{n} A_{2} \vdash N: A \\
& !\Delta, \Gamma_{1} \vdash M:!^{n}\left(A_{1} \boxtimes A_{2}\right) \\
& !\Delta, \Gamma_{1}, \Gamma_{2} \vdash \operatorname{let}\left\langle x_{1}^{!^{n} A_{1}}, x_{2}^{!^{n} A_{2}}\right\rangle=M \text { in } N: A \\
& \frac{!\Delta, \Gamma_{1} \vdash M: \top \quad!\Delta, \Gamma_{2} \vdash N: A}{!\Delta, \Gamma_{1}, \Gamma_{2} \vdash \text { let } *=M \text { in } N: A} \text { (T.E), (} \dagger \text {) } \\
& !\Delta, \Gamma, f:!(A \multimap B) \vdash N: C \\
& !\Delta, f:!(A \multimap B), x: A \vdash M: B \\
& !\Delta, \Gamma \vdash \text { letrec } f^{A \rightarrow B} x=M \text { in } N: C(\mathrm{rec}),(\dagger)
\end{align*}
$$

Operational Semantics

$$
\begin{aligned}
& E\left[\left(\lambda x^{A} \cdot M\right) V\right] \rightarrow_{1} E[M[V / x]] \\
& \boldsymbol{E}\left[\operatorname{let}\left\langle\boldsymbol{x}^{\boldsymbol{A}}, \boldsymbol{y}^{\boldsymbol{B}}\right\rangle=\langle\boldsymbol{V}, \boldsymbol{W}\rangle \text { in } \boldsymbol{M}\right] \rightarrow_{1} \boldsymbol{E}[\boldsymbol{M}[\boldsymbol{V} / \boldsymbol{x}, \boldsymbol{W} / \boldsymbol{y}]] \\
& \boldsymbol{E}[\text { let } *=* \text { in } \boldsymbol{M}] \rightarrow_{1} \boldsymbol{E}[\boldsymbol{M}] \\
& \boldsymbol{E}\left[\text { match }\left(\operatorname{inj}_{\ell}^{B} \boldsymbol{V}\right) \text { with }\left(\boldsymbol{x}^{!^{n} \boldsymbol{A}} \mapsto \boldsymbol{M} \mid \boldsymbol{y}^{!^{n} B} \mapsto \boldsymbol{N}\right)\right] \\
& \rightarrow_{1} E[M[V / x]] \\
& \boldsymbol{E}\left[\operatorname{match}\left(\operatorname{inj}_{r}^{\boldsymbol{A}} \boldsymbol{V}\right) \text { with }\left(\boldsymbol{x}^{!^{n} \boldsymbol{A}} \mapsto \boldsymbol{M} \mid \boldsymbol{y}^{!^{n} \boldsymbol{B}} \mapsto \boldsymbol{N}\right)\right] \\
& \rightarrow_{1} E[N[V / y]] \\
& \boldsymbol{E}\left[\text { letrec } \boldsymbol{f}^{\boldsymbol{A} \rightarrow \boldsymbol{B}} \boldsymbol{x}=\boldsymbol{M} \text { in } \boldsymbol{N}\right] \\
& \rightarrow_{1} E\left[N\left[\lambda x^{A} \text {.letrec } f^{A \rightarrow B} \boldsymbol{x}=M \text { in } M / f\right]\right] \\
& \left.\boldsymbol{E}\left[\text { meas }_{i}^{n+1}(\text { new } \rho)\right] \rightarrow_{1} \boldsymbol{E}\left[\left\langle\text { tt, new }\left\langle\mathbf{0}_{i}\right| \rho \mid \mathbf{0}_{i}\right\rangle\right\rangle\right] \\
& \left.\boldsymbol{E}\left[\text { meas }_{i}^{n+1}(\text { new } \rho)\right] \rightarrow_{1} \boldsymbol{E}\left[\left\langle\text { ff, new }\left\langle\mathbf{1}_{i}\right| \rho \mid \mathbf{1}_{i}\right\rangle\right\rangle\right] \\
& E\left[\text { meas }_{1}^{1}(\text { new } \rho)\right] \rightarrow_{\langle 0| \rho|0\rangle} E[t t] \\
& E\left[\text { meas }_{1}^{1}(\text { new } \rho)\right] \rightarrow\langle 1| \rho|1\rangle E[f f] \\
& \boldsymbol{E}[\boldsymbol{U}(\text { new } \boldsymbol{\rho})] \boldsymbol{\rightarrow}_{\mathbf{1}} \boldsymbol{E}[\text { new }(\boldsymbol{U} \boldsymbol{\rho})] \\
& \boldsymbol{E}\left[\mathrm{cmp}_{m, n}\langle\text { new } \boldsymbol{\rho}, \text { new } \boldsymbol{\sigma}\rangle\right] \rightarrow_{\mathbf{1}} \boldsymbol{E}[\text { new }(\boldsymbol{\rho} \otimes \boldsymbol{\sigma})]
\end{aligned}
$$

* Standard small-step one, CBV, but with probabilistic branching (measurement)

