# Semantics of Higher-Order Quantum Computation via Geometry of Interaction

In: Proc. Logic in Computer Science (LICS), June 2011

<u>Ichiro Hasuo</u> University of Tokyo (JP) Naohiko Hoshino RIMS, Kyoto University (JP)





Denotational semantics of a functional quantum programming language

Denotational semantics of a functional quantum programming language

Linear  $\lambda$ -calculus + quantum primitives

One of the first to cover the full features!

- \* !-modality for duplicable data
- \* recursion

### Denotational semantics of a functional quantum programming language

Linear  $\lambda$ -calculus + quantum primitives

One of the first to cover the full features!

- \* !-modality for duplicable data
- \* recursion

Adequacy

Denotational semantics of a functional quantum programming language

Linear  $\lambda$ -calculus + quantum primitives

One of the first to cover the full features!

- \* !-modality for duplicable data
- \* recursion

Adequacy

Denotational semantics of a functional quantum programming language

Linear  $\lambda$ -calculus + quantum primitives

... via GoI (Geometry of Interaction)

### Part 1

#### Functional QPL: Some Contexts

## Quantum Programming Language

#### Classical

(Boolean) circuit



Quantum

Quantum circuit



Programming language

```
int i,j;
int factorial(int k)
{
    j=1;
    for (i=1; i<=k; i++)
        j=j*i;
    return j;
}</pre>
```

## Quantum Programming Language

#### Classical

#### Quantum

(Boolean) circuit



Quantum circuit



Programming language

```
int i,j;
int factorial(int k)
{
    j=1;
    for (i=1; i<=k; i++)
        j=j*i;
    return j;
}</pre>
```

Quantum programming language

$$\begin{array}{ll} \mathbf{telep} = & let \ \langle x,y \rangle = \mathbf{EPR} * in \\ & let \ f = \mathbf{BellMeasure} \ x \ in \\ & let \ g = \mathbf{U} \ y \\ & in \ \langle f,g \rangle. \end{array}$$

[Selinger-Valiron]

## Quantum Programming Language

#### Classical

Quantum

(Boolean) circuit



Quantum circuit



Programming language

```
int i,j;
int factorial(int k)
{
    j=1;
    for (i=1; i<=k; i++)
        j=j*i;
    return j;
}</pre>
```

Quantum programming language

$$\begin{array}{ll} \mathbf{telep} = & let \ \langle x,y \rangle = \mathbf{EPR} * in \\ & let \ f = \mathbf{BellMeasure} \ x \ in \\ & let \ g = \mathbf{U} \ y \\ & in \ \langle f,g \rangle. \end{array}$$

[Selinger-Valiron]

- \* For discovery of algorithms
- \* For reasoning, verification

\* A real man's programming style



- \* A real man's programming style
- Heavily used in the financial sector

ICFP'11 Sponsers (Tokyo, Sep 2011)







Quantitative Strategies



















- \* A real man's programming style
- Heavily used in the financial sector

- \* Mathematically nice and clean
  - \* Aids semantical study
  - \* Transfer from classical to quantum

ICFP'11 Sponsers (Tokyo, Sep 2011)







Quantitative Strategies



















- \* Linear λ-calculus
  - + quantum primitives

[van Tonder, Selinger, Valiron, ...]

- \* Linearity for no-cloning
  - \* "Input can be used only once"
  - \* Not allowed/typable:
  - \* Duplicable (classical) data: by the !-modality

- \* Linear λ-calculus
  - + quantum primitives

Preparation/Unitary transformation/Measurement

[van Tonder, Selinger, Valiron, ...]

- \* Linearity for no-cloning
  - \* "Input can be used only once"
  - \* Not allowed/typable:
  - \* Duplicable (classical) data: by the !-modality

- \* Linear λ-calculus
  - + quantum primitives

Preparation/Unitary transformation/Measurement

[van Tonder, Selinger, Valiron, ...]

- \* Linearity for no-cloning
  - \* "Input can be used only once"
  - \* Not allowed/typable:

 $\lambda x. \langle \operatorname{meas} x, \operatorname{meas} x \rangle$ 

- \* Linear λ-calculus
  - + quantum primitives

Preparation/Unitary transformation/Measurement

[van Tonder, Selinger, Valiron, ...]

- \* Linearity for no-cloning
  - \* "Input can be used only once"
  - \* Not allowed/typable:

 $\lambda x. \langle ext{meas} \, x, ext{ meas} \, x \rangle$ 

- \* Linear λ-calculus
  - + quantum primitives

Preparation/Unitary transformation/Measurement

[van Tonder, Selinger, Valiron, ...]

- \* Linearity for no-cloning
  - \* "Input can be used only once"
  - \* Not allowed/typable:

 $\lambda x. \ \langle \mathtt{meas} \, x, \ \mathtt{meas} \, x 
angle$ 

\* Duplicable (classical) data: by the !-modality

⊢tt:!bit

- \* Linear λ-calculus
  - + quantum primitives

Preparation/Unitary transformation/Measurement

[van Tonder, Selinger, Valiron, ...]

- \* Linearity for no-cloning
  - \* "Input can be used only once"
  - \* Not allowed/typable:

 $\lambda x. \ \langle ext{meas} \ x, \ ext{meas} \ x 
angle$ 

\* Duplicable (classical) data: by the !-modality

⊢tt:!bit

"arbitrary many copies"

\* Semantics = mathematical model

- \* Semantics = mathematical model
- \* Operational semantics: [Selinger & Valiron, '09]
  - \* "Quantum closure," reduction with probabilistic branching

$$[\alpha|Q_0\rangle + \beta|Q_1\rangle, |x_1 \dots x_n\rangle, meas \ x_i] \rightarrow_{|\alpha|^2} [|Q_0\rangle, |x_1 \dots x_n\rangle, 0]$$
$$[\alpha|Q_0\rangle + \beta|Q_1\rangle, |x_1 \dots x_n\rangle, meas \ x_i] \rightarrow_{|\beta|^2} [|Q_1\rangle, |x_1 \dots x_n\rangle, 1]$$

\* Allows to identify linear logic  $\otimes$  and quantum  $\otimes$  (feature of the Selinger-Valiron language; not in ours)

 $\llbracket oldsymbol{M} 
bracket$ 

- \* Denotational semantics
  - lacktriangleright M: a function, or an arrow of a category

- \* Denotational semantics
  - lacktriangleq [M]: a function, or an arrow of a category
  - \* Compositionality:  $\llbracket MN
    rbracket = \llbracket M
    rbracket \circ \llbracket N
    rbracket$

- \* Denotational semantics
  - lacktriangledown M: a function, or an arrow of a category
  - \* Compositionality:  $\llbracket MN
    rbracket = \llbracket M
    rbracket \circ \llbracket N
    rbracket$
  - \* Linear category: [Benton & Wadler, Bierman] (axioms for) a categorical model of linear  $\lambda$ -calculus

#### Defn.

A linear category  $(\mathbb{C}, \otimes, \mathbf{I}, \multimap, !)$  is a sym. monoidal closed cat. with a linear exponential comonad !.

- \* Denotational semantics
  - lacktriangledown M: a function, or an arrow of a category
  - \* Compositionality:  $\llbracket MN
    rbracket = \llbracket M
    rbracket \circ \llbracket N
    rbracket$
  - \* Linear category: [Benton & Wadler, Bierman] (axioms for) a categorical model of linear  $\lambda$ -calculus

#### Defn.

A linear category  $(\mathbb{C}, \otimes, \mathbf{I}, \multimap, !)$  is a sym. monoidal closed cat. with a linear exponential comonad !.

\* For functional QPL? Is Hilb (or alike) a linear cat.?

\* Hilb (or alike) is not a linear category

- \* Challenge: coexistence of quantum and classical data
- \* Only partial results
  - \* [Selinger & Valiron, '08]: for strictly linear fragmant (w/o!)

Hilb (or alike) is **not** a linear category

monoidal closed str.  $(\mathbb{C},\otimes,\mathbf{I},\multimap)$  ! (for duplicable data)

- Challenge: coexistence of quantum and classical data
- \* Only partial results
  - \* [Selinger & Valiron, '08]: for strictly linear fragmant (w/o!)

Hilb (or alike) is **not** a linear category

```
monoidal closed str. (\mathbb{C},\otimes,\mathbf{I},\multimap) ! (for duplicable data)
```



- \* Challenge: coexistence of quantum and classical data
- \* Only partial results
  - \* [Selinger & Valiron, '08]: for strictly linear fragmant (w/o!)

Hilb (or alike) is **not** a linear category

```
monoidal closed str. (\mathbb{C},\otimes,\mathbf{I},\multimap) ! (for duplicable data)
```

- duality  $V\cong V^\perp$ 
  - finite dim.
- Challenge: coexistence of quantum and classical data
- \* Only partial results
  - \* [Selinger & Valiron, '08]: for strictly linear fragmant (w/o!)

\* Hilb (or alike) is not a linear category

```
monoidal closed str. (\mathbb{C}, \otimes, \mathbf{I}, \multimap)
```

! (for duplicable data)



infinite dim.



- \* Challenge: coexistence of quantum and classical data
- \* Only partial results
  - \* [Selinger & Valiron, '08]: for strictly linear fragmant (w/o!)

\* Hilb (or alike) is not a linear category

monoidal closed str.  $(\mathbb{C}, \otimes, \mathbf{I}, \multimap)$ 

! (for duplicable data)



infinite dim.



\* Challenge: coexistence of quantum and classical data

\* Hilb (or alike) is not a linear category

```
monoidal closed str. (\mathbb{C}, \otimes, \mathbf{I}, \multimap)
```

! (for duplicable data)



infinite dim.



- \* Challenge: coexistence of quantum and classical data
- \* Only partial results
  - \* [Selinger & Valiron, '08]: for strictly linear fragmant (w/o!)

### "Quantum Data, Classical Control"

Quantum data

Illustration by N. Hoshino

#### Classical control



### "Quantum Data, Classical Control"

Quantum data

 $rac{1}{\sqrt{2}}$ 



#### Classical control



Illustration by N. Hoshino

### "Quantum Data, Classical Control"

Quantum data

$$rac{1}{\sqrt{2}}$$







#### Classical control



Illustration by N. Hoshino

\* GoI (Geometry of Interaction) [Girard '89]

An "implementation" of classical control

$$\mathsf{tr}(f) = \ f_{XY} \sqcup \left( \coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} 
ight)$$

\* GoI (Geometry of Interaction) [Girard '89]

An "implementation" of classical control

$$\mathsf{tr}(f) = \ f_{XY} \sqcup \left( \coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} 
ight)$$

\* GoI (Geometry of Interaction) [Girard '89]

An "implementation" of classical control

$$\mathsf{tr}(f) = \ \left( \coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} 
ight)$$

\* Categorical GoI [Abramsky, Haghverdi, Scott '02]
Its categorical axiomatics



\* GoI (Geometry of Interaction) [Girard '89]
An "implementation" of classical control

$$\mathsf{tr}(f) = \ f_{XY} \sqcup \left( \coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} 
ight)$$

\* Categorical GoI [Abramsky, Haghverdi, Scott '02]
Its categorical axiomatics

- \* We add a quantum layer to GoI
  - \* → "Quantum data, classical control"
  - \* Used: theory of coalgebra
    [Hasuo, Jacobs, Sokolova '07] [Jacobs '10]





### Part 2

### The Categorical GoI Workflow

\* J.-Y. Girard, at Logic Colloquium '88

\* J.-Y. Girard, at Logic Colloquium '88

\* J.-Y. Girard, at Logic Colloquium '88

\* But I'm no linear logician!

\* J.-Y. Girard, at Logic Colloquium '88

\* But I'm no linear logician!

- \* In this talk:
  - \* Its categorical formulation [Abramsky, Haghverdi, Scott '02]
  - \* "The GoI Animation"

 $\llbracket M \rrbracket = (\mathbb{N} \to \mathbb{N}, \text{ a partial function})$   $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$   $= \text{"piping"} \quad 1 \quad 2 \quad 3 \quad 4 \quad \dots \quad \text{(countably many)}$ 



 $[M] = (N \rightarrow N, \text{ a partial function})$ 

= "piping"



 $\llbracket M \rrbracket = (\mathbb{N} \to \mathbb{N}, \text{ a partial function})$   $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$   $= \text{"piping"} \quad 1 \quad 2 \quad 3 \quad 4 \quad \dots \quad \text{(countably many)}$ 



 $[\![M]\!] = (\mathbb{N} \to \mathbb{N}, \text{ a partial function})$ 

= "piping"



.. (countably many)



 $\llbracket M \rrbracket = (\mathbb{N} \to \mathbb{N}, \text{ a partial function})$ = "piping" 1 2 3 4 ... (countably many) [M]



 $\llbracket M \rrbracket = (\mathbb{N} \to \mathbb{N}, \text{ a partial function})$ 



... (countably many)

[M]

 $\llbracket M \rrbracket = (\mathbb{N} \to \mathbb{N}, \text{ a partial function})$ = "piping" 1 2 3 4 ... (countably many) [M]



- \* Function application [MN]
  - \* by "parallel composition + hiding"











































## Categorical GoI

\* Axiomatics of GoI in the categorical language

- \* Our main reference:
  - \* [AHSO2] S. Abramsky, E. Haghverdi, and P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002
  - \* Especially its technical report version (Oxford CL), since it's a bit more detailed

Traced monoidal category C

+ other constructs → "GoI situation" [AHSO2]



Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Traced monoidal category C

+ other constructs → "GoI situation" [AHSO2]





Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Traced monoidal category C

+ other constructs → "GoI situation" [AHSO2]





Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

- \* Applicative str. + combinators
- \* Model of untyped calculus

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]





Categorical GoI [AHS02]

Linear combinatory algebra

**—** 

Realizability

Linear category

Model of typed calculus

- \* Applicative str. + combinators
- \* Model of untyped calculus

#### Traced monoidal category C

+ other constructs → "GoI situation" [AHSO2]





Categorical GoI [AHS02]

\* Applicative str. + combinators

\* Model of untyped calculus

Linear combinatory algebra



Realizability

- \* PER, ω-set, assembly, ...
- \* "Programming in untyped  $\lambda$ "

Linear category

Model of typed calculus

#### Traced monoidal category C

+ other constructs → "GoI situation" [AHSO2]





Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

- \* Applicative str. + combinators
- \* Model of untyped calculus

- \* PER, ω-set, assembly, ...
- \* "Programming in untyped λ"

Linear category

Model of typed calculus

# Linear Combinatory Algebra (LCA)

#### **Defn.** (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

$$\cdot : A^2 \longrightarrow A$$

• a unary operator

$$! : A \longrightarrow A$$

• (combinators) distinguished elements  ${\sf B,C,I,K,W,D,\delta,F}$  satisfying

| B xyz = x(yz)         | Composition, Cut       |
|-----------------------|------------------------|
| C xyz = (xz)y         | Exchange               |
| $\mathbf{I}x=x$       | Identity               |
| K x!y=x               | Weakening              |
| W x!y = x!y!y         | Contraction            |
| D!x=x                 | Dereliction            |
| $\delta ! x = !! x$   | Comultiplication       |
| F  !  x  !  y = !(xy) | Monoidal functoriality |

Here:  $\cdot$  associates to the left;  $\cdot$  is suppressed; and ! binds stronger than  $\cdot$  does.

(LCA) What we we

What we want (outcome)

#### **Defn.** (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

$$\cdot : A^2 \longrightarrow A$$

• a unary operator

$$! : A \longrightarrow A$$

• (combinators) distinguished elements  ${\sf B,C,I,K,W,D,\delta,F}$  satisfying

| B xyz = x(yz)         | Composition, Cut       |
|-----------------------|------------------------|
| C xyz = (xz)y         | Exchange               |
| $\mathbf{I}x=x$       | Identity               |
| K x ! y = x           | Weakening              |
| W x! y = x! y! y      | Contraction            |
| D!x=x                 | Dereliction            |
| $\delta ! x = !! x$   | Comultiplication       |
| F  !  x  !  y = !(xy) | Monoidal functoriality |

Here:  $\cdot$  associates to the left;  $\cdot$  is suppressed; and ! binds stronger than  $\cdot$  does.

(LCA)

What we want (outcome)

#### **Defn.** (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

$$\cdot : A^2 \longrightarrow A$$

• a unary operator

$$! : A \longrightarrow A$$

• (combinators) distinguished elements  ${\sf B,C,I,K,W,D,\delta,F}$  satisfying

| B xyz = x(yz)         | Composition, Cut       |
|-----------------------|------------------------|
| C xyz = (xz)y         | Exchange               |
| $\mathbf{I}x = x$     | Identity               |
| K x ! y = x           | Weakening              |
| W x ! y = x ! y ! y   | Contraction            |
| D!x=x                 | Dereliction            |
| $\delta ! x = !! x$   | Comultiplication       |
| F  !  x  !  y = !(xy) | Monoidal functoriality |

Here:  $\cdot$  associates to the left;  $\cdot$  is suppressed; and ! binds stronger than  $\cdot$  does.

\* Model of untyped linear λ

(LCA) What we want (outcome)

#### **Defn.** (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

$$\cdot : A^2 \longrightarrow A$$

• a unary operator

$$! : A \longrightarrow A$$

• (combinators) distinguished elements  $B, C, I, K, W, D, \delta, F$ satisfying

| B xyz = x(yz)       | Composition, Cut       |
|---------------------|------------------------|
| C xyz = (xz)y       | Exchange               |
| $\mathbf{I}x=x$     | Identity               |
| K x ! y = x         | Weakening              |
| W x!y = x!y!y       | Contraction            |
| D!x=x               | Dereliction            |
| $\delta ! x = !! x$ | Comultiplication       |
| F!x!y=!(xy)         | Monoidal functoriality |

Here: • associates to the left; • is suppressed; and ! binds stronger than  $\cdot$  does.

- \* Model of untyped linear  $\lambda$
- \* a ∈ A ≈ closed linear  $\lambda$ -term

(LCA) What we want (outcome)

#### **Defn.** (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

$$\cdot : A^2 \longrightarrow A$$

• a unary operator

$$! : A \longrightarrow A$$

• (combinators) distinguished elements  $B, C, I, K, W, D, \delta, F$ satisfying

$$egin{aligned} & egin{aligned} & egi$$

Here: • associates to the left; • is suppressed; and ! binds stronger than • does.

- \* Model of untyped linear  $\lambda$
- \* a ∈ A closed linear  $\lambda$ -term
- \* No S or K (linear!)

(LCA)

What we want (outcome)

#### **Defn.** (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

$$\cdot : A^2 \longrightarrow A$$

• a unary operator

$$! : A \longrightarrow A$$

• (combinators) distinguished elements  $B, C, I, K, W, D, \delta, F$  satisfying

$$egin{array}{ll} \mathbf{B}xyz = x(yz) & ext{Composition, Cut} \\ \mathbf{C}xyz = (xz)y & ext{Exchange} \\ \mathbf{I}x = x & ext{Identity} \\ \mathbf{K}x \,!\, y = x & ext{Weakening} \\ \mathbf{W}x \,!\, y = x \,!\, y \,!\, y & ext{Contraction} \\ \mathbf{D}\,!\, x = x & ext{Dereliction} \\ \delta\,!\, x = !\,!\, x & ext{Comultiplication} \\ \mathbf{F}\,!\, x\,!\, y = !(xy) & ext{Monoidal functoriality} \\ \end{array}$$

Here: • associates to the left; • is suppressed; and ! binds stronger than • does.

- \* Model of untyped linear λ
- \* a ∈ A ≈
  closed linear λ-term
- \* No S or K (linear!)
- \* Combinatory completeness: e.g.

 $\lambda xyz.zxy$ 

designates an elem. of A

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, \mathbf{F}, \mathbf{U})$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$e: FF \triangleleft F: e'$$
 Comultiplication

$$d: \operatorname{id} \triangleleft F: d'$$
 Dereliction

$$c \,:\, F \otimes F \lhd F \,:\, c'$$
 Contraction

$$w: K_I \triangleleft F: w'$$
 Weakening

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

$$j \;:\; U \otimes U \mathrel{phantom{d}} U \;:\; k$$

$$I \lhd U$$

$$u : FU \triangleleft U : v$$

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e: FF \triangleleft F: e'$  Comultiplication

 $d: \mathrm{id} \triangleleft F: d'$  Dereliction

 $c: F \otimes F \triangleleft F: c'$  Contraction

 $w: K_I \triangleleft F: w'$  Weakening

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

- \* Monoidal category  $(\mathbb{C}, \otimes, I)$ 
  - \* String diagrams

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e: FF \triangleleft F: e'$  Comultiplication

 $d: \mathrm{id} \triangleleft F: d'$  Dereliction

 $c: F \otimes F \triangleleft F: c'$  Contraction

 $w: K_I \triangleleft F: w'$  Weakening

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

- \* Monoidal category  $(\mathbb{C}, \otimes, I)$ 
  - \* String diagrams

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e\,:\,FF\mathrel{lefta} F\,:\,e'$ 

Comultiplication

 $d:\operatorname{id} \triangleleft F:d'$ 

Dereliction

 $c \,:\, F \otimes F \mathrel{lee} F \,:\, c'$ 

Contraction

 $w : K_I \triangleleft F : w'$ 

Weakening

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

\* Monoidal category  $(\mathbb{C}, \otimes, I)$ 

\* String diagrams

$$\begin{array}{ccc}
A & \xrightarrow{f} B & B & \xrightarrow{g} C \\
A & \xrightarrow{g \circ f} C
\end{array}$$



$$egin{aligned} A & \xrightarrow{f} B & C & \xrightarrow{g} D \ A \otimes C & \xrightarrow{f \otimes g} B \otimes D \end{aligned}$$



$$h \circ (f \otimes g)$$



**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, \mathbf{F}, \mathbf{U})$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $egin{array}{lll} e: FF \lhd F: e' & ext{Comultiplication} \ d: \operatorname{id} \lhd F: d' & ext{Dereliction} \ c: F \otimes F \lhd F: c' & ext{Contraction} \ w: K_I \lhd F: w' & ext{Weakening} \end{array}$ 

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

\* Traced monoidal category

\* "feedback"

$$egin{aligned} A\otimes C & \stackrel{f}{\longrightarrow} B\otimes C \ A & \stackrel{\mathsf{tr}(f)}{\longrightarrow} B \end{aligned}$$

that is



# String Diagram vs. "Pipe Diagram"

\* I use two ways of depicting partial functions  $\mathbb{N} \longrightarrow \mathbb{N}$ 



# String Diagram vs. "Pipe Diagram"

\* I use two ways of depicting partial functions  $\mathbb{N} \longrightarrow \mathbb{N}$ 

In the monoidal category (Pfn, +, 0)



Pipe diagram



String diagram

- \* Category Pfn of partial functions
  - \* Obj. A set X
  - \* Arr. A partial function

$$\frac{X \to Y \text{ in Pfn}}{X \to Y, \text{ partial function}}$$

- \* Category Pfn of partial functions
  - \* Obj. A set X
  - \* Arr. A partial function

$$\frac{X \to Y \text{ in Pfn}}{X \to Y, \text{ partial function}}$$

\* is traced symmetric monoidal



$$\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$$

How?



\*

$$\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$$

How?





\*

$$\frac{X + Z \xrightarrow{f} Y + Z \text{ in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \text{ in Pfn}}$$

How?





\*

$$\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$$

How?





$$f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$$

Similar for  $f_{XZ}, f_{ZY}, f_{ZZ}$ 

\*

$$\frac{X + Z \xrightarrow{f} Y + Z \text{ in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \text{ in Pfn}}$$

How?





$$f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$$

Similar for  $f_{XZ}, f_{ZY}, f_{ZZ}$ 

\* Trace operator:



\*

$$\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn}}$$

How?





$$f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$$

Similar for  $f_{XZ}, f_{ZY}, f_{ZZ}$ 

#### \* Trace operator:

$$\mathsf{tr}(f) = \ f_{XY} \sqcup \left( \coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} 
ight)$$

$$\frac{X + Z \xrightarrow{f} Y + Z \text{ in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \text{ in Pfn}}$$

How?





 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ 

Similar for  $f_{XZ}, f_{ZY}, f_{ZZ}$ 

- \* Trace operator:
  - $X \mid f \mid f \mid Y$

- \* Execution formula (Girard)
- Partiality is essential (infinite loop)

$$\mathsf{tr}(f) = \ f_{XY} \sqcup \left( \coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} 
ight)$$

Tokyo)

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$egin{array}{lll} oldsymbol{e} & : \ FF \lhd F : \ e' & ext{Comultiplication} \ oldsymbol{d} & : \ \operatorname{id} \lhd F : \ d' & ext{Dereliction} \ oldsymbol{c} & : \ F \otimes F \lhd F : \ c' & ext{Contraction} \ oldsymbol{w} & : \ K_I \lhd F : \ w' & ext{Weakening} \end{array}$$

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

- \* Traced sym. monoidal cat.
  - \* Where one can "feedback"



\* Why for GoI?





**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e: FF \triangleleft F: e'$  Comultiplication

 $d: \mathrm{id} \triangleleft F: d'$  Dereliction

 $c: F \otimes F \triangleleft F: c'$  Contraction

 $w: K_I \triangleleft F: w'$  Weakening

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

- \* Traced sym. monoidal cat.
  - \* Where one can "feedback"



\* Why for GoI?



\* Leading example: Pfn

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$e\,:\,FF \mathrel{ riangleleft} F\,:\,e'$$

Comultiplication

$$d\,:\,\mathrm{id}\mathrel{ riangleleft} F\,:\,d'$$

Dereliction

$$c : F \otimes F \triangleleft F : c'$$

Contraction

$$w : K_I \triangleleft F : w'$$

Weakening

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

$$j \; : \; U \otimes U \mathrel{phantom{d}} U \; : \; k$$

 $I \triangleleft U$ 

 $u : FU \triangleleft U : v$ 

**Defn.** (Retraction)

A retraction from X to Y,

$$f:X\lhd Y:g$$
,

is a pair of arrows

"embedding"

$$\operatorname{id} \bigcirc X \bigcirc Y$$

"projection"

such that  $g \circ f = \mathrm{id}_X$ .

- \* Functor F
  - \* For obtaining  $!:A \rightarrow A$

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$egin{array}{lll} m{e} &: m{F} darboldsymbol{F} &: m{e}' & ext{Comultiplication} \ m{d} &: \mathbf{id} \lhd m{F} &: m{d}' & ext{Dereliction} \ m{c} &: m{F} \otimes m{F} \lhd m{F} &: m{c}' & ext{Contraction} \ m{w} &: m{K_I} \lhd m{F} &: m{w}' & ext{Weakening} \end{array}$$

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

\* The reflexive object U

\* Retr.  $U \otimes U \stackrel{j}{\underset{k}{\smile}} U$ 

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $egin{array}{lll} oldsymbol{e} & : oldsymbol{F} F 
ightleta oldsymbol{F} : oldsymbol{e'} & & ext{Comultiplication} \ oldsymbol{d} & : \operatorname{id} 
ightleta oldsymbol{F} : oldsymbol{d'} & & ext{Dereliction} \ oldsymbol{c} & : oldsymbol{F} \otimes oldsymbol{F} 
ightleta oldsymbol{F} : oldsymbol{c'} & & ext{Contraction} \ oldsymbol{w} & : oldsymbol{K_I} 
ightleta oldsymbol{F} : oldsymbol{w'} & & ext{Weakening} \end{array}$ 

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

lacktriangleright The reflexive object U





**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$e : FF \triangleleft F : e'$$

Comultiplication

$$d\,:\,\mathrm{id}\mathrel{ riangleleft} F\,:\,d'$$

a . Id  $\triangleleft I$  . a

 $c : F \otimes F \triangleleft F : c'$ 

 $w \,:\, K_I \mathrel{ riangleleft} F \,:\, w'$ 



Here  $K_I$  is the constant functor

•  $U \in \mathbb{C}$  is an object (called *reflexive spect*), equipped with the following retractions.

- lacktriangleright The reflexive object U
  - \* Why for GoI?



\* Example in Pfn:

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$e : FF \triangleleft F : e'$$

Comultiplication

$$d:\operatorname{id} \operatorname{\lhd} F:d'$$

 $c : F \otimes F \triangleleft F : c'$ 

 $w\,:\,K_I \lhd F\,:\,w'$ 





Here  $K_I$  is the constant functor

•  $U \in \mathbb{C}$  is an object (called *reflexive spect*), equipped with the following retractions.

$$j\,:\,U\otimes U\mathrel{\triangleleft} U\,:\, k$$
  $I\mathrel{\triangleleft} U$ 

$$u : FU \triangleleft U : v$$

- \* The reflexive object U
  - \* Why for GoI?



\* Example in Pfn:

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$e : FF \triangleleft F : e'$$

Comultiplication

 $d\,:\,\mathrm{id}\mathrel{ riangleleft} F\,:\,d'$ 

 $c\,:\,F\otimes F\vartriangleleft F\,:\,c'$ 

 $w \,:\, K_I \mathrel{ riangleleft} F \,:\, w'$ 



Here  $K_I$  is the constant functor

•  $U \in \mathbb{C}$  is an object (called *reflexive spect*), equipped with the following retractions.

- \* The reflexive object U
  - \* Why for GoI?



\* Example in Pfn:

 $\mathbb{N} \in \mathbf{Pfn}$ , with  $\mathbb{N} + \mathbb{N} \cong \mathbb{N}$ ,  $\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$ 

#### GoI Situation: Summary

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e: FF \lhd F: e'$  Comultiplication  $d: \operatorname{id} \lhd F: d'$  Dereliction

 $c: F \otimes F \lhd F: c'$  Contraction

 $w: K_I \triangleleft F: w'$  Weakening

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

\* Categorical axiomatics of the "GoI animation"



\* Example:

(Pfn,  $\mathbb{N} \cdot \_$ ,  $\mathbb{N}$ )



#### tr(f) tuation: Summary

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$e: FF \triangleleft F: e'$$
 Comultiplication

$$d: \mathrm{id} \triangleleft F: d'$$
 Dereliction

$$c: F \otimes F \triangleleft F: c'$$
 Contraction

$$w: K_I \triangleleft F: w'$$
 Weakening

Here  $K_I$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

\* Categorical axiomatics of the "GoI animation"



\* Example:

(Pfn, 
$$\mathbb{N} \cdot \_$$
,  $\mathbb{N}$ )



#### tuation: Summary

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$e: FF riangleleft F: e'$$
 $d: \operatorname{id} riangleleft F: d'$  De $c: F riangleleft F: c'$  Co $w: K_I riangleleft F: w'$  We

Here  $K_I$  is the constant functor into the

•  $U \in \mathbb{C}$  is an object (called *reflexive object*) the following retractions.

\* Categorical axiomatics of the "GoI animation"





\* Example:

(Pfn,  $\mathbb{N} \cdot \_$ ,  $\mathbb{N}$ )



#### tuation: Summary

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

Here  $K_I$  is the constant functor into the

•  $U \in \mathbb{C}$  is an object (called *reflexive object*) the following retractions.

\* Categorical axiomatics of the "GoI animation"





\* Example:

$$\downarrow j$$
,  $\swarrow k$ 

(Pfn,  $\mathbb{N} \cdot \_$ ,  $\mathbb{N}$ )



#### tuation: Summary

**Defn.** (GoI situation [AHS02])

A GoI situation is a triple  $(\mathbb{C}, F, U)$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

Here  $K_I$  is the constant functor into the

•  $U \in \mathbb{C}$  is an object (called *reflexive object*) the following retractions.

\* Categorical axiomatics of the "GoI animation"





\* Example:

$$\downarrow j$$
,  $\swarrow k$ 





Thm. ([AHS02]) Given a GoI situation ( $\mathbb{C}$ , F, U), the homset

 $\mathbb{C}(U,U)$ 

```
Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U), the homset \mathbb{C}(U,U)
```

- \* Applicative str. ·
- \* ! operator
- \* Combinators B, C, I, ...

Thm. ([AHS02]) Given a GoI situation ( $\mathbb{C}$ , F, U), the homset

 $\mathbb{C}(U,U)$ 

- \* Applicative str. ·
- \* ! operator
- \* Combinators B, C, I, ...



Thm. ([AHS02]) Given a GoI situation ( $\mathbb{C}$ , F, U), the homset  $\mathbb{C}(U,U)$ 

carries a canonical LCA structure.

 $egin{array}{c} ig|_U \ f \ ig|_U \end{array} \in \mathbb{C}(U,U)$ 

- \* Applicative str. ·
- \* ! operator
- \* Combinators B, C, I, ...

Thm. ([AHS02]) Given a GoI situation ( $\mathbb{C}$ , F, U), the homset

 $\mathbb{C}(U,U)$ 

$$egin{array}{c} |_U \ f \ |_U \end{array} \in \mathbb{C}(U,U)$$

- \* Applicative str. ·
- \* ! operator
- \* Combinators B, C, I, ...

$$* !f := u \circ Ff \circ v$$

$$= \begin{bmatrix} v \\ FU \\ Ff \end{bmatrix} = \begin{bmatrix} FU \\ u \\ U \end{bmatrix}$$



\* Combinator Bxyz = x(yz)



Figure 7: Composition Combinator B

from [AHS02]

\* Combinator Bxyz = x(yz)











\* Combinator Bxyz = x(yz)



Figure 7: Composition Combinator B

from [AHS02]

\* Combinator Bxyz = x(yz)



Figure 7: Composition Combinator B

Nice dynamic interpretation of (linear) computation!!

from [AHS02]

### Summary: Categorical GoI

**Defn.** (GoI situation [AHS02]) A GoI situation is a triple  $(\mathbb{C}, \mathbf{F}, \mathbf{U})$  where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$  is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \to \mathbb{C}$  is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$$e: FF \lhd F: e'$$
 Comultiplication  $d: \operatorname{id} \lhd F: d'$  Dereliction  $c: F \otimes F \lhd F: c'$  Contraction  $w: K_I \lhd F: w'$  Weakening

Here  $K_{I}$  is the constant functor into the monoidal unit I;

•  $U \in \mathbb{C}$  is an object (called *reflexive object*), equipped with the following retractions.

Thm. ([AHS02]) Given a GoI situation ( $\mathbb{C}$ , F, U), the homset  $\mathbb{C}(U,U)$ 

### Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

\* Strategy: find a TSMC!







trace ≈ fixed point operator [Hasegawa/Hyland]

- \* An example:  $\left(\left(\omega\text{-}\mathrm{Cpo}, imes,1
  ight),\left(\_\right)^{\mathbb{N}},A^{\mathbb{N}}
  ight)$
- \* (... less of a dynamic flavor)



### Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

- \* "Particle-style" examples
  - \* Obj. X∈C is set-like; ⊗ is coproduct-like
    - \* The GoI animation is valid



- \* Partial functions
- \* Binary relations
- \* "Discrete stochastic relations"

$$(\mathbf{Pfn}, +, \mathbf{0}), \mathbb{N} \cdot \_, \mathbb{N})$$

$$($$
(Rel $,+,0), \mathbb{N} \cdot \_, \mathbb{N} )$ 

$$($$
 (DSRel $,+,0), \mathbb{N} \cdot \_, \mathbb{N} )$ 

### Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

\* Pfn (partial functions)

$$rac{X o Y ext{ in Pfn}}{X o Y, ext{ partial function}} \quad ext{where } \mathcal{L}Y = \{\bot\} + Y$$
 $X o \mathcal{L}Y ext{ in Sets}$ 

\* Rel (relations)

$$\frac{X \to Y \text{ in Rel}}{\overline{R \subseteq X \times Y, \text{ relation}}} \quad \text{where } \mathcal{P} \text{ is the powerset monad}$$

$$\overline{X \to \mathcal{P}Y \text{ in Sets}}$$

\* DSRel

$$rac{X o Y ext{ in DSRel}}{X o \mathcal{D}Y ext{ in Sets}}$$
 where  $\mathcal{D}Y = \{d: Y o [0,1] \mid \sum_y d(y) \le 1\}$ 

Why Categories of sets and (functions with different branching/partiality)

Examples Giner Tital Tall [AHSU2]

\* Pfn (partial functions)

$$\frac{X \to Y \text{ in Pfn}}{X \to Y, \text{ partial function}} \quad \text{where } \mathcal{L}Y = \{\bot\} + Y$$

$$X \to \mathcal{L}Y \text{ in Sets}$$

\* Rel (relations)

$$\frac{X \to Y \text{ in Rel}}{\overline{R \subseteq X \times Y, \text{ relation}}} \quad \text{where } \mathcal{P} \text{ is the powerset monad}$$

$$\overline{X \to \mathcal{P}Y \text{ in Sets}}$$

\* DSRel

$$rac{X o Y ext{ in DSRel}}{X o \mathcal{D}Y ext{ in Sets}}$$
 where  $\mathcal{D}Y = \{d: Y o [0,1] \mid \sum_y d(y) \le 1\}$ 

Why Categories of sets and (functions with different branching/partiality)

Examples Gine

\* Pfn (partial functions)

(Potential) non-termination

$$rac{X o Y ext{ in Pfn}}{X o Y, ext{ partial function}} \quad ext{where } \mathcal{L}Y = \{\bot\} + Y$$
 $X o \mathcal{L}Y ext{ in Sets}$ 

\* Rel (relations)

Non-determinism

$$rac{X o Y ext{ in Rel}}{R \subseteq X imes Y, ext{ relation}}$$
 where  $\mathcal P$  is the powerset monad  $X o \mathcal P Y ext{ in Sets}$ 

\* DSRel

$$rac{X o Y ext{ in DSRel}}{X o \mathcal{D}Y ext{ in Sets}}$$
 where  $\mathcal{D}Y = \{d: Y o [0,1] \mid \sum_y d(y) \le 1\}$ 

Probabilistic branching

- \* Pfn (partial functions)
  - \* Pipes can be stuck
- \* Rel (relations)
  - \* Pipes can branch
- \* DSRel
  - \* Pipes can branch probabilistically



- Pfn (partial functions)
  - \* Pipes can be stuck
  - \* Rel (relations)
    - \* Pipes can branch
  - \* DSRel
    - \* Pipes can branch probabilistically



Monday, November 7, 2011

Hasuo (Tokyo)

- \* Pfn (partial functions)
  - \* Pipes can be stuck
- \* Rel (relations)
  - \* Pipes can branch
- \* DSRel
  - \* Pipes can branch probabilistically



- \* Pfn (partial functions)
  - \* Pipes can be stuck
- Rel (relations)
  - \* Pipes can branch
  - \* DSRel
    - \* Pipes can branch probabilistically



- \* Pfn (partial functions)
  - \* Pipes can be stuck
- \* Rel (relations)
  - \* Pipes can branch
- \* DSRel
  - \* Pipes can branch probabilistically



# Different Branching in The GoI Animation

- \* Pfn (partial functions)
  - \* Pipes can be stuck
- \* Rel (relations)
  - \* Pipes can branch



\* Pipes can branch probabilistically



# Different Branching in The GoI Animation

- \* Pfn (partial functions)
  - \* Pipes can be stuck
- \* Rel (relations)
  - \* Pipes can branch
- \* DSRel
  - \* Pipes can branch probabilistically



## Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

\* Pfn (partial functions)

$$rac{X o Y ext{ in Pfn}}{X o Y, ext{ partial function}} \quad ext{where } \mathcal{L}Y = \{\bot\} + Y$$
 $X o \mathcal{L}Y ext{ in Sets}$ 

\* Rel (relations)

$$\frac{X \to Y \text{ in Rel}}{\overline{R \subseteq X \times Y, \text{ relation}}} \quad \text{where } \mathcal{P} \text{ is the powerset monad}$$

$$\overline{X \to \mathcal{P}Y \text{ in Sets}}$$

\* DSRel

$$rac{X o Y ext{ in DSRel}}{X o \mathcal{D}Y ext{ in Sets}}$$
 where  $\mathcal{D}Y = \{d: Y o [0,1] \mid \sum_y d(y) \le 1\}$ 



## Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

\* Pfn (partial functions)

$$rac{X o Y ext{ in Pfn}}{X o Y, ext{ partial function}}$$
 where  $\mathcal{L}Y = \{\bot\} + Y$ 
 $X o \mathcal{L}Y ext{ in Sets}$ 

\* Rel (relations)

$$rac{X o Y ext{ in Rel}}{R \subseteq X imes Y, ext{ relation}}$$
 where  $\mathcal P$  is the powerset monad  $X o \mathcal P Y ext{ in Sets}$ 



$$rac{X o Y ext{ in DSRel}}{X o \mathcal{D}Y ext{ in Sets}}$$
 where  $\mathcal{D}Y = \{d: Y o [0,1] \mid \sum_y d(y) \le 1\}$ 

Essential to have subdistribution, for infinite loops



### The Coauthor

- \* Naohiko Hoshino
  - \* DSc (Kyoto, 2011)
    - \* Supervisor:

      Masahito "Hassei" Hasegawa
  - \* Currently at RIMS, Kyoto U.



## A Coalgebraic View

\* Theory of coalgebra =
Categorical theory of state-based dynamic
systems (LTS, automaton, Markov chain, ...)

- \* In [Hasuo, Jacobs, Sokolova '07]:
  - \* Coalgebras in a Kleisli category Kl(B)

$$rac{X 
ightarrow Y ext{ in } \mathcal{K}\ell(B)}{X 
ightarrow BY ext{ in Sets}}$$

⇒ Generic theory of "trace semantics"

# Why Categories of sets and (functions with different branching/partiality) Examples of sets and transfer to the set of t

\* Pfn (partial functions)

(Potential) non-termination

$$\frac{X \to Y \text{ in Pfn}}{X \to Y, \text{ partial function}} \quad \text{where } \mathcal{L}Y = \{\bot\} + Y$$

$$X \to \mathcal{L}Y \text{ in Sets}$$

\* Rel (relations)

Non-determinism

$$rac{X o Y ext{ in Rel}}{\overline{R \subseteq X imes Y}, ext{ relation}}{X o \mathcal{P} Y ext{ in Sets}} \quad ext{where } \mathcal{P} ext{ is the powerset monad}$$

\* DSRel

$$rac{X o Y ext{ in DSRel}}{X o \mathcal{D}Y ext{ in Sets}}$$
 where  $\mathcal{D}Y = \{d: Y o [0,1] \mid \sum_y d(y) \le 1\}$ 

# Why Catego Kl(B) for different branching monads B

\* Pfn (partial functions)

(Potential) non-termination

$$\frac{X \to Y \text{ in Pfn}}{X \to Y, \text{ partial function}} \quad \text{where } \mathcal{L}Y = \{\bot\} + Y$$

$$X \to \mathcal{L}Y \text{ in Sets}$$

\* Rel (relations)

Non-determinism

$$rac{X o Y ext{ in Rel}}{\overline{R \subseteq X imes Y}, ext{ relation}}{X o \mathcal{P} Y ext{ in Sets}}$$
 where  $\mathcal P$  is the powerset monad

\* DSRel

$$rac{X o Y ext{ in DSRel}}{X o \mathcal{D}Y ext{ in Sets}}$$
 where  $\mathcal{D}Y = \{d: Y o [0,1] \mid \sum_y d(y) \le 1\}$ 

# Branching Monad: Source of Particle-Style GoI Situations

**Thm.** ([Jacobs,CMCS10]) Given a "branching monad"  $\boldsymbol{B}$  on **Sets**, the monoidal category

$$(\mathcal{K}\ell(B),+,0)$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.  $(\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot\_, \mathbb{N})$  is a GoI situation.

# Branching Monad: Source of Particle-Style GoI Situations

**Thm.** ([Jacobs,CMCS10]) Given a "branching monad"  $\boldsymbol{B}$  on **Sets**, the monoidal category

$$(\mathcal{K}\ell(B),+,0)$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

### Cor. $(\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot\_, \mathbb{N})$ is a GoI situation.

(Roughly) monads in [Hasuo, Jacobs, Sokolova '07]

- \* Kl(B) is Cpo<sub>\(\text{-enriched}\)</sub>
- \* like  $\mathcal{L}$ ,  $\mathcal{P}$ ,  $\mathcal{D}$

# Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs, CMCS10])
Given a "branching monad"  $\boldsymbol{B}$  on Sets, the monoidal category

$$(\mathcal{K}\ell(B),+,0)$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

### Cor. $(\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot\_, \mathbb{N})$ is a GoI situation.

(Roughly) monads in [Hasuo, Jacobs, Sokolova '07]

- \* Kl(B) is Cpo<sub>\(\text{-enriched}\)</sub>
- \* like  $\mathcal{L}$ ,  $\mathcal{P}$ ,  $\mathcal{D}$

Particle-style: trace via the execution formula

$$\mathsf{tr}(f) = \ f_{XY} \sqcup \left( \coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} 
ight)$$

#### Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]



Linear combinatory algebra



Linear category

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]



Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]



Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]



Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Fancy LCA

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs → "GoI situation" [AHSO2]



Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Fancy TSMC

Fancy LCA

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]



Linear combinatory algebra



Realizability

Linear category

Fancy monad



Fancy LCA

## What is Fancy, Nowadays?

## What is Fancy, Nowadays?

\* Biology?

# What is Fancy, Nowadays?

- \* Biology?
- \* Hybrid systems?
  - \* Both discrete and continuous data, typically in cyber-physical systems (CPS)
  - Our approach via non-standard analysis [Suenaga, Hasuo ICALP'11]

# What is Fancy, Nowadays?

- \* Biology?
- \* Hybrid systems?
  - \* Both discrete and continuous data, typically in cyber-physical systems (CPS)
  - Our approach via non-standard analysis [Suenaga, Hasuo ICALP'11]
- \* Quantum?
  - \* Yes this worked!

## Part 3

Phil Scott.
Tutorial on Geometry of
Interaction, FMCS 2004.
Page 47/47

Future Directions

. Go I 2: Non-converging algors

(untigged I-calc [PCF])

— uses more topological info
m operator algo

- Go I 3: Uses additives & additive proof rets -

GOI 4 (last month): von Neumann algebras: EX(f, T) for f and (not recessarily from proof)

- Quantum GoI?

## Part 3

Phil Scott.
Tutorial on Geometry of
Interaction, FMCS 2004.
Page 47/47

Future Directions . Go I 2: Non-converging algors (unatoped 7-calc (PCF) - Uses more topological info on operator algo -GoI3: Uses additives 2 additive proof nots -Von Neumann GOI 4 (last month): algebras: EX(f, z) for fand (not roming from proof)

Quantum GoI?

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]



Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]



Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Quantum branching monad



Quantum TSMC



Quantum LCA



Model of quantum language (Tokyo)

$$\mathcal{Q}Y = \left\{c: Y 
ightarrow \prod_{m,n \in \mathbb{N}} \mathrm{QO}_{m,n} \ \middle| \ ext{the trace condition} 
ight\}$$

 $\mathbf{QO}_{m,n} := \left\{ egin{array}{l} \mathrm{quantum\ operations}, \ \mathrm{from\ dim.}\ m\ \mathrm{to\ dim.}\ n \end{array} 
ight\}$ 

$$\mathcal{Q}Y = \left\{c: Y 
ightarrow \prod_{m,n \in \mathbb{N}} \mathrm{QO}_{m,n} \, \middle| \, ext{the trace condition} 
ight\}$$

 $\mathbf{QO}_{m,n} := \left\{ egin{array}{l} \mathrm{quantum\ operations}, \ \mathrm{from\ dim.}\ m\ \mathrm{to\ dim.}\ n \end{array} 
ight\}$ 

$$\mathcal{Q}Y = \left\{c: Y 
ightarrow \prod_{m,n \in \mathbb{N}} \mathrm{QO}_{m,n} \, \middle| \, ext{the trace condition} 
ight\}$$

$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} \mathsf{tr} \big[ \big( c(y) \big)_{m,n}(\rho) \big] \leq 1 \enspace ,$$

$$\forall m \in \mathbb{N}, \ \forall \rho \in D_m$$
.

 $\mathbf{QO}_{m,n} := \left\{ egin{array}{l} \mathrm{quantum\ operations}, \ \mathrm{from\ dim.}\ m \ \mathrm{to\ dim.}\ n \end{array} 
ight\}$ 

$$\mathcal{Q}Y = \left\{c: Y 
ightarrow \prod_{m,n \in \mathbb{N}} \mathrm{QO}_{m,n} \ \middle| \ ext{the trace condition} 
ight\}$$

$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} \mathsf{tr} \big[ \big( c(y) \big)_{m,n}(\rho) \big] \leq 1 \ ,$$

 $orall m \in \mathbb{N}, \ orall 
ho \in D_m.$ 

#### \* Compare with

$$\mathcal{P}Y = \left\{c: Y 
ightarrow 2
ight\}$$

$$\mathcal{D}Y = \left\{c: Y 
ightarrow [0,1] \ \middle| \ \sum_{y \in Y} c(y) \leq 1
ight\}$$

 $\mathbf{QO}_{m,n} := \left\{ egin{array}{l} \mathrm{quantum\ operations}, \ \mathrm{from\ dim.}\ m \ \mathrm{to\ dim.}\ n \end{array} 
ight\}$ 

$$\mathcal{Q}Y = \left\{c: Y 
ightarrow igcap_{m,n} \middle| ext{ the trace condition} 
ight\}$$

$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} \mathsf{tr} \big[ \big( c(y) \big)_{m,n}(\rho) \big] \leq 1 \enspace ,$$

 $\forall m \in \mathbb{N}, \ \forall \rho \in D_m$ .

#### \* Compare with

$$\mathcal{P}Y = \left\{c: Y 
ightarrow 2
ight\}$$

$$\mathcal{D}Y = \left\{c: Y 
ightarrow [0,1] \middle| egin{array}{c} \sum_{y \in Y} c(y) \leq 1 
ight\}$$

 $\mathbf{QO}_{m,n} := \left\{ egin{array}{l} \mathrm{quantum\ operations}, \ \mathrm{from\ dim.}\ m \ \mathrm{to\ dim.}\ n \end{array} 
ight\}$ 

$$\mathcal{Q}Y = \left\{c: Y 
ightarrow igcap_{m,n} \middle| ext{ the trace condition} 
ight\}$$

$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} \mathsf{tr}ig[ig(c(y)ig)_{m,n}(
ho)ig] \leq 1 \;\;, \ orall m \in \mathbb{N}, \; orall 
ho \in D_m.$$

\* Compare with

$$\mathcal{P}Y = \left\{c: Y 
ightarrow 2
ight\}$$

$$\mathcal{D}Y = \left\{c: Y 
ightarrow [0,1] \middle| egin{array}{c} \sum_{y \in Y} c(y) \leq 1 
ight\}$$

$$\mathcal{Q}Y = \left\{c: Y 
ightarrow \prod_{m,n \in \mathbb{N}} \mathrm{QO}_{m,n} \ \middle| \ ext{the trace condition} 
ight\}$$

$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} \mathsf{tr}ig[ig(c(y)ig)_{m,n}(
ho)ig] \leq 1 \;\;, \ orall m \in \mathbb{N}, \; orall 
ho \in D_m.$$

$$X \stackrel{f}{ o} Y ext{ in } \mathcal{K}\ell(\mathcal{Q})$$

 $X \stackrel{f}{\rightarrow} \mathcal{Q}Y$  in Sets

\* Given  $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$  determines a quantum operation

$$\Big(f(x)(y)\Big)_{m,n}\;:\;D_m o D_n$$

\* Subject to the trace condition

$$\mathcal{Q}Y = \left\{c: Y 
ightarrow \prod_{m,n \in \mathbb{N}} \mathrm{QO}_{m,n} \ \middle| \ ext{the trace condition} 
ight\}$$

$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}ig[ig(c(y)ig)_{m,n}(
ho)ig] \leq 1 \ ,$$

 $\forall m \in \mathbb{N}, \ \forall \rho \in D_m.$ 

$$rac{X \stackrel{f}{
ightarrow} Y ext{ in } \mathcal{K}\ell(\mathcal{Q})}{X \stackrel{f}{
ightarrow} \mathcal{Q}Y ext{ in Sets}}$$

\* Given  $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$  determines a quantum operation

$$\Big(f(x)(y)\Big)_{m,n}\;:\;D_m o D_n$$

\* Subject to the trace condition

Any opr. on quantum data:

combination of

- preparation
- unitary transf.
- measurement

$$rac{X \stackrel{f}{
ightarrow} Y ext{ in } \mathcal{K}\ell(\mathcal{Q})}{X \stackrel{f}{
ightarrow} \mathcal{Q}Y ext{ in Sets}}$$

- \* Given  $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$  determines a quantum operation  $\left(f(x)(y)\right)_{m,n}$
- \* trace cond.:



$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} \mathrm{tr} \big[ \big( c(y) \big)_{m,n}(\rho) \big] \leq 1 \ ,$$

 $\forall m \in \mathbb{N}, \ \forall \rho \in D_m.$ 



$$rac{X \stackrel{f}{
ightarrow} Y ext{ in } \mathcal{K}\ell(\mathcal{Q})}{X \stackrel{f}{
ightarrow} \mathcal{Q}Y ext{ in Sets}}$$

entrance exit dim. out dim.

- \* Given  $x \in X$ ,  $y \in Y$ ,  $m \in \mathbb{N}$ ,  $n \in \mathbb{N}$  determines a quantum operation  $(f(x)(y))_{m,n}$
- \* trace cond.:



$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} ext{tr}ig[ig(c(y)ig)_{m,n}(
ho)ig] \leq 1 \ ,$$

 $\forall m \in \mathbb{N}, \ \forall \rho \in D_m.$ 



••

y y'

$$X \stackrel{f}{ o} Y \text{ in } \mathcal{K}\ell(\mathcal{Q})$$

 $X \stackrel{f}{ o} \mathcal{Q} Y$  in Sets

entrance exit dim.

out dim.

- \* Given  $x \in X$ ,  $y \in Y$ ,  $m \in \mathbb{N}$ ,  $n \in \mathbb{N}$  determines a quantum operation  $(f(x)(y))_{m,n}$
- \* trace cond.:



## The Quantum Branching Monad

$$X \stackrel{f}{\to} Y \text{ in } \mathcal{K}\ell(\mathcal{Q})$$

 $X \stackrel{f}{\rightarrow} \mathcal{Q}Y$  in Sets

entrance exit dim.

out dim.

- \* Given  $x \in X$ ,  $y \in Y$ ,  $m \in \mathbb{N}$ ,  $n \in \mathbb{N}$  determines a quantum operation  $(f(x)(y))_{m,n}$
- \* trace cond.:



## The Quantum Branching Monad

$$X \stackrel{f}{ o} Y \text{ in } \mathcal{K}\ell(\mathcal{Q})$$

 $X \stackrel{f}{\rightarrow} \mathcal{Q}Y$  in Sets

entrance exit dim.

out dim.

- \* Given  $x \in X$ ,  $y \in Y$ ,  $m \in \mathbb{N}$ ,  $n \in \mathbb{N}$  determines a quantum operation  $(f(x)(y))_{m,n}$
- \* trace cond.:



## The Quantum Branching Monad

$$rac{X \stackrel{f}{
ightarrow} Y ext{ in } \mathcal{K}\ell(\mathcal{Q})}{X \stackrel{f}{
ightarrow} \mathcal{Q}Y ext{ in Sets}}$$

entrance exit dim.

out dim.

- \* Given  $x \in X$ ,  $y \in Y$ ,  $m \in \mathbb{N}$ ,  $n \in \mathbb{N}$  determines a quantum operation  $(f(x)(y))_{m,n}$
- \* trace cond.:

$$\sum_{\boldsymbol{y},\boldsymbol{n}} \mathbf{Pr} \begin{pmatrix} \mathsf{Token\ led} \\ \mathsf{to\ } \boldsymbol{y} \\ \mathsf{with\ dim.\ } n \end{pmatrix} \leq 1$$





 $\llbracket M \rrbracket =$ 

Not just a token/ particle, but quantum state!



.. (countably many)

$$\llbracket \boldsymbol{M} \rrbracket = M$$



Not just a token/
particle, but
quantum state!

Hasu





"Quantum Data"

Not just a token/ particle, but quantum state!





### Indeed...

- \* The monad Q qualifies as a "branching monad"
- \* The quantum GoI workflow leads to a linear category PERQ
- \* From which we construct an adequate denotational model

### End of the Story?

- \* No! All the technicalities are yet to come:
  - \* CPS-style interpretation (for partial measurement)
  - pprox Result type: a final coalgebra in  $PER_Q$
  - \* Admissible PERs for recursion
  - \* ...

\* On the next occasion :-)

#### Conclusion: the Categorical GoI Workflow

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]

Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Quantum branching monad



TSMC

Quantum LCA

Model of quantum languagetasuo (Tokyo)

#### Conclusion: the Cate

### Thank you for your attention! Ichiro Hasuo (Dept. CS, U Tokyo)

http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

Branching monad B



Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHSO2]



Categorical GoI [AHS02]

Linear combinatory algebra



Realizability

Linear category

Quantum branching monad



Quantum TSMC



Quantum LCA



Model of quantum language (Tokyo)

## The Language 926

- \* Roughly: linear  $\lambda$  + quantum primitives
- \* "Quantum data, classical control"
  - \* No superposed threads
- \* Based on [Selinger&Valiron'09]
  - \* With slight modifications
  - \* Notably: quantum ⊗ vs. linear logic ⊠
    - \* The same in [Selinger&Valiron'09]
      - → clean type system, aids programming
    - \* But... problem with GoI-style semantics

## The Language 9Xl

The types of  $\mathbf{q}\lambda_{\ell}$  are:

$$A,B::=n$$
-qbit  $|\:!A\:|\:A\multimap B\:|\:\top\:|\:A\boxtimes B\:|\:A+B\:$ , with conventions qbit  $:=1$ -qbit and bit  $:=\top+\top$  .

The terms of  $\mathbf{q}\lambda_{\ell}$  are:

```
M, N, P := 
x \mid \lambda x^A.M \mid MN \mid \langle M, N \rangle \mid * \mid 
\det \langle x^A, y^B \rangle = M \text{ in } N \mid \det * = M \text{ in } N \mid 
\operatorname{inj}_{\ell}^B M \mid \operatorname{inj}_r^A M \mid 
\operatorname{match} P \text{ with } (x^A \mapsto M \mid y^B \mapsto N) \mid 
\operatorname{letrec} f^A x = M \text{ in } N \mid 
\operatorname{new} |0\rangle \mid \operatorname{meas}_i^{n+1} \mid U \mid \operatorname{cmp}_{m,n} , 
\operatorname{with conventions} \operatorname{tt} := \operatorname{inj}_{\ell}^{\top}(*) \text{ and } \operatorname{ff} := \operatorname{inj}_{r}^{\top}(*) .
```

(Unlike [Selinger-Valiron'09]); same as the one in PER

The types of  $\mathbf{q}\lambda_{\ell}$  are:

$$A,B:=n$$
-qbit  $|\:!A\:|\:A\multimap B\:|\:\top\:|\:A\boxtimes B\:|\:A+B\:,$  with conventions qbit  $:=1$ -qbit and bit  $:=\top+\top$  .

The terms of  $\mathbf{q}\lambda_{\ell}$  are:

```
M, N, P ::=
    x \mid \lambda x^A.M \mid MN \mid \langle M,N \rangle \mid * \mid
    \ket{\det \langle x^A, y^B \rangle} = M 	ext{ in } N \mid \ket{\det * = M 	ext{ in } N \mid}
    \operatorname{inj}_{\ell}^B M \mid \operatorname{inj}_{r}^A M \mid
    \mathtt{match}\, P\, \mathtt{with}\, (x^A \mapsto M \mid y^B \mapsto N) \mid
    	ext{letrec}\,f^Ax=M\,	ext{in}\,N\,|
    \mathtt{new} \ket{0} \mid \mathtt{meas}_i^{n+1} \mid U \mid \mathtt{cmp}_{m,n} ,
             with conventions \mathsf{tt} := \mathsf{inj}_{\ell}^{\top}(*) and \mathsf{ff} := \mathsf{inj}_{r}^{\top}(*).
```

(Unlike [Selinger-Valiron'09]); same as the one in PER

2-qbit  $\cong$  qbit  $\otimes$  qbit

$$A,B:=n$$
-qbit  $|\,!A\,|\,A\multimap B\,|\,\top\,|\,A\boxtimes B\,|\,A+B$  , with conventions qbit  $:=1$ -qbit and bit  $:=\top+\top$  .

The terms of  $\mathbf{q}\lambda_{\ell}$  are:

```
M, N, P ::=
    x \mid \lambda x^A.M \mid MN \mid \langle M,N \rangle \mid * \mid
    \ket{\det \langle x^A, y^B \rangle} = M 	ext{ in } N \mid \ket{\det * = M 	ext{ in } N \mid}
    \operatorname{inj}_{\ell}^B M \mid \operatorname{inj}_{r}^A M \mid
    \mathtt{match}\, P\, \mathtt{with}\, (x^A \mapsto M \mid y^B \mapsto N) \mid
    \operatorname{letrec} f^A x = M \operatorname{in} N
    \mathtt{new} \ket{0} \mid \mathtt{meas}_i^{n+1} \mid U \mid \mathtt{cmp}_{m,n} ,
             with conventions \mathsf{tt} := \mathsf{inj}_{\ell}^{\top}(*) and \mathsf{ff} := \mathsf{inj}_{r}^{\top}(*).
```

(Unlike [Selinger-Valiron'09]); same as the one in PER

2-qbit  $\cong$  qbit  $\otimes$  qbit

$$A,B:=n$$
-qbit  $|\:!A\:|A\multimap B\:|\top\:|A\boxtimes B\:|A+B\:,$  with conventions qbit  $:=1$ -qbit and bit  $:=\top+\top$  .

with conventions  $\mathsf{tt} := \mathsf{inj}_{\ell}^{\top}(*)$  and  $\mathsf{ff} := \mathsf{inj}_{r}^{\top}(*)$ .

The terms of  $\mathbf{q}\lambda_{\ell}$  are:

$$egin{aligned} M,N,P ::= & x \mid \lambda x^A.M \mid MN \mid \langle M,N 
angle \mid * \mid \ & \det \langle x^A,y^B 
angle = M & \ln N \mid \det * = M & \ln N \mid \ & \inf_{\ell}^B M \mid & \inf_{r}^A M \mid \ & \operatorname{match} P & \operatorname{with} (x^A \mapsto M \mid y^B \mapsto N) \mid \ & \operatorname{letrec} f^A x = M & \ln N \mid \ & \operatorname{new} \mid \! 0 
angle \mid & \operatorname{meas}_i^{n+1} \mid U \mid & \operatorname{cmp}_{m,n} \end{aligned},$$

Recursion

(Unlike [Selinger-Valiron'09]); same as the one in PER

2-qbit  $\cong$  qbit  $\otimes$  qbit

$$A,B:=n$$
-qbit  $|\:!A\:|A\multimap B\:|\top\:|A\boxtimes B\:|A+B\:,$  with conventions qbit  $:=1$ -qbit and bit  $:=\top+\top$  .

with conventions  $\mathsf{tt} := \mathsf{inj}_{\ell}^{\top}(*)$  and  $\mathsf{ff} := \mathsf{inj}_{r}^{\top}(*)$ .

The terms of  $\mathbf{q}\lambda_{\ell}$  are:

$$egin{aligned} M,N,P ::= & x \mid \lambda x^A.M \mid MN \mid \langle M,N 
angle \mid * \mid \ & \det \langle x^A,y^B 
angle = M ext{ in } N \mid \det * = M ext{ in } N \mid \ & \inf_{\ell}^B M \mid & \inf_{r}^A M \mid \ & \operatorname{match} P ext{ with } (x^A \mapsto M \mid y^B \mapsto N) \mid \ & \det P ^A x = M ext{ in } N \mid \ & \operatorname{new} \mid 0 
angle \mid & \operatorname{meas}_i^{n+1} \mid U \mid & \operatorname{cmp}_{m,n} \end{aligned},$$

Recursion

Quantum primitives

Implicit linearity tracking via subtyping <:
e.g. !A <: A, !A <: !!A

(following [Selinger-Valiron'09])

$$\frac{n = 0 \Rightarrow m = 0 \ (*)}{!^{n} \ k\text{-qbit}} \ (k\text{-qbit}) \quad \frac{n = 0 \Rightarrow m = 0}{!^{n} \ \top <: !^{m} \ \top} \ (\top)$$

$$\frac{A_{1} <: B_{1} \quad A_{2} <: B_{2} \quad (*)}{!^{n} (A_{1} \ \Box A_{2}) <: !^{m} (B_{1} \ \Box B_{2})} \ (\boxdot) \ \text{with} \ \boxdot \in \{\boxtimes, +\}$$

$$\frac{B_{1} <: A_{1} \quad A_{2} <: B_{2} \quad (*)}{!^{n} (A_{1} \ \multimap A_{2}) <: !^{m} (B_{1} \ \multimap B_{2})} \ (\multimap)$$

#### Measurements

$$egin{array}{lll} A_{ exttt{new}\mid 0
angle} &:=& ext{qbit} \ A_{ exttt{meas}_i^{n+1}} &:=& (n+1) ext{-qbit} \multimap ( ext{bit}oxtimes n ext{-qbit}) ext{ for } n\geq 1 \ A_{ ext{meas}_i^1} &:=& ext{qbit} \multimap ext{bit} \ A_U &:=& n ext{-qbit} \multimap n ext{-qbit} ext{ for a } 2^n ext{ x} 2^n ext{ matrix } U \ A_{ ext{cmp}_{m,n}} &:=& (m ext{-qbit}oxtimes n ext{-qbit}) \multimap (m+n) ext{-qbit} \end{array}$$

Bookkeeping (due to  $\otimes$  vs.  $\boxtimes$  )

$$\frac{A <: A'}{!\Delta, x : A \vdash x : A'} \text{ (Ax.1)} \qquad \frac{!A_c <: A}{!\Delta \vdash c : A} \text{ (Ax.2)}$$

$$\frac{\Delta \vdash M : !^n A}{\Delta \vdash \text{inj}_\ell^B M : !^n (A + B)} \text{ (+.I_1)}$$

$$\frac{\Delta \vdash N : !^n B}{\Delta \vdash \text{inj}_r^A N : !^n (A + B)} \text{ (+.I_2)}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2}{!\Delta, \Gamma_1, \Gamma_2} \vdash \text{match } P \text{ with } (x!^n A \mapsto M \mid y!^n B \mapsto N) : C$$

$$\frac{x : A, \Delta \vdash M : B}{\Delta \vdash \lambda x^A . M : A \multimap B} \text{ (-0.I_1)}$$

$$\frac{x : A, !\Delta \vdash M : B}{!\Delta, \Gamma_1, \Gamma_2 \vdash MN : B} \text{ (-0.E), (†)}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2 \vdash MN : B}{!\Delta, \Gamma_1, \Gamma_2 \vdash MN : B} \text{ (-0.E), (†)}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2 \vdash MN : B}{!\Delta, \Gamma_1, \Gamma_2 \vdash MN : B} \text{ (-0.E), (†)}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2 \vdash (M_1, M_2) : !^n (A_1 \boxtimes A_2)}{!\Delta, \Gamma_1, \Gamma_2 \vdash (M_1, M_2) : !^n (A_1 \boxtimes A_2)} \text{ (\boxtimes.I), (†)}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{ind}_1 : !^n A_1, x_2 : !^n A_2 \vdash N : A}{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } \langle x_1^{l^n A_1}, x_2^{l^n A_2} \rangle = M \text{ in } N : A}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } \langle x_1^{l^n A_1}, x_2^{l^n A_2} \rangle = M \text{ in } N : A}{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } * = M \text{ in } N : A} \text{ (\boxtimes.E), (†)}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } * = M \text{ in } N : A}{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } * = M \text{ in } N : A} \text{ (\boxtimes.E), (†)}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } * = M \text{ in } N : A}{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } * = M \text{ in } N : A} \text{ (\boxtimes.E), (†)}$$

$$\frac{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } * = M \text{ in } N : A}{!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let } * = M \text{ in } N : A} \text{ (\boxtimes.E), (†)}$$

### Operational Semantics

```
E[(\lambda x^A.M)V] \rightarrow_1 E[M[V/x]]
E[\operatorname{let}\langle x^A,y^B
angle = \langle V,W
angle \operatorname{in} M] 
ightarrow_1 E[M[V/x,W/y]]
E[\,\mathtt{let}\, *= *\,\mathtt{in}\, M\,] 	o_1 E[\,M\,]
E[\operatorname{match}\left(\operatorname{inj}_{\ell}^{B}V
ight)\operatorname{with}\left(x^{!^{n}A}\mapsto M\mid y^{!^{n}B}\mapsto N
ight)]
                                                                                               \rightarrow_1 E[M[V/x]]
E[	ext{match}\,(	ext{inj}_{r}^{A}V)\,	ext{with}\,(x^{!^{n}\,A}\mapsto M\mid y^{!^{n}\,B}\mapsto N)\,]
                                                                                                 \rightarrow_1 E[N[V/y]]
E[\operatorname{letrec} f^{A \multimap B} x = M \operatorname{in} N]

ightarrow_1 E[N[\lambda x^A. \mathrm{letrec}\, f^{A \multimap B} x = M \, \mathrm{in}\, M/f]]
E[\,	exttt{meas}_i^{n+1}(	exttt{new}\,
ho)\,] 
ightarrow_1 E[\,\langle\,	exttt{tt},\,	exttt{new}\,\langle 0_i | 
ho | 0_i 
angle\,
angle\,]
E[\operatorname{\mathtt{meas}}_i^{n+1}(\operatorname{\mathtt{new}}
ho)] 	o_1 E[\langle\operatorname{\mathtt{ff}},\operatorname{\mathtt{new}}\langle 1_i|
ho|1_i\rangle\rangle]
E[\operatorname{meas}^1_1(\operatorname{new}
ho)] 	o_{\langle 0|
ho|0
angle} E[\operatorname{tt}]
E[\,	exttt{meas}_1^1(	exttt{new}\,
ho)\,] 	o_{\langle 1|
ho|1
angle}\, E[\,	exttt{ff}\,]
E[U(\operatorname{new}
ho)] 
ightarrow_1 E[\operatorname{new}(U
ho)]
E[\operatorname{cmp}_{m,n}\langle\operatorname{new}
ho,\operatorname{new}\sigma
angle\,]	o_1E[\operatorname{new}(
ho\otimes\sigma)\,]
```

\* Standard small-step one, CBV, but with probabilistic branching (measurement)

Hasuo (Tokyo)