

Functional QPL: Semantics

- * Semantics = mathematical model
- * Operational semantics: [Selinger & Valiron, '09]
 - "Quantum closure," reduction with probabilistic branching

$$\begin{split} & [\alpha|Q_0\rangle + \beta|Q_1\rangle, |x_1 \dots x_n\rangle, meas \ x_i \] \rightarrow_{|\alpha|^2} [|Q_0\rangle, |x_1 \dots x_n\rangle, 0] \\ & [\alpha|Q_0\rangle + \beta|Q_1\rangle, |x_1 \dots x_n\rangle, meas \ x_i \] \rightarrow_{|\beta|^2} [|Q_1\rangle, |x_1 \dots x_n\rangle, 1] \end{split}$$

Allows to identify linear logic \otimes and quantum \otimes (feature of the Selinger-Valiron language; not in ours)

Hasuo (Tokyo)

<section-header><list-item><list-item><list-item><list-item><code-block></code>

Linear			ry Algebra
	(LCA	•)	What we want (outcome)
Defn. (LCA) A linear combinatory algebra (LCA) is a set A equipped with • a binary operator (called an <i>applicative structure</i>) $\cdot : A^2 \longrightarrow A$ • a unary operator $! : A \longrightarrow A$		*	Model of untyped linear λ
		≉ a ∈ A ≈ closed linear λ-term	
• (combinators) distinguished satisfying $\mathbf{B}xyz = x(yz)$	l elements $\mathbf{B}, \mathbf{C}, \mathbf{I}, \mathbf{K}, \mathbf{W}, \mathbf{D}, \delta, \mathbf{F}$ Composition, Cut	*	No S or K (linear!)
Cxyz = (xz)y $Ix = x$ $Kx ! y = x$ $Wx ! y = x ! y ! y$	Exchange Identity Weakening Contraction	*	Combinatory completeness: e.g.
b(x : y = x : y : y) D! x = x $\delta! x = !! x$ F! x! y = !(xy)	Dereliction Comultiplication Monoidal functoriality		$\lambda xyz. zxy$
Here: \cdot associates to the less stronger than \cdot does.	ft; \cdot is suppressed; and $!$ binds		designates an elem. of A Hasuo (Tokyo)

	What we use (ingredient)
GoI sit	uation
Defn. (GoI situation [AHS02]) A <i>GoI situation</i> is a triple (\mathbb{C}, F ,	
• $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced (TSMC);	l symmetric monoidal category
	l symmetric monoidal functor, retractions (which are monoidal
$e~:~FF \lhd F~:~e$	
$d~:~\mathrm{id} \lhd F~:~ d$	d' Dereliction
$c~:~F\otimes F \lhd F~:~c$	c' Contraction
$w~:~K_{I} \lhd F~:~w$	w' Weakening
Here K_I is the constant fur	nctor into the monoidal unit I ;
• $U \in \mathbb{C}$ is an object (called the following retractions.	reflexive object), equipped with
$j:U\otimes$	$U \triangleleft U : k$
	$I \lhd U$
u : I	FU⊲U:v Hasuo (Toky

fn. (GoI situation [AHS02]) GoI situation is a triple (C, F,	U) where	Traced sym. monoidal cat.
 (TSMC); F : C → C is a traced 	symmetric monoidal category symmetric monoidal functor, retractions (which are monoidal	* Where one can "feedback
$e:FF \lhd F:e$ $d:\operatorname{id} \lhd F:a$ $c:F \otimes F \lhd F:c$ $w:K_I \lhd F:a$	U Dereliction Contraction	$\begin{array}{c} A & C \\ f \\ B & C \end{array} \xrightarrow{\operatorname{tr}} f \\ B & B \end{array}$
	ctor into the monoidal unit I ; reflexive object), equipped with	* Why for GoI?
-	$egin{array}{llllllllllllllllllllllllllllllllllll$	

Categorical GoI: Constr. of an LCA Thm. ([AHS02]) f $\mathbb{C}(U,U)$ * $!f := u \circ Ff \circ v$

Summary: Categorical GoI		
 Defn. (GoI situation [AHS02]) A GoI situation is a triple (C, F, U) where C = (C, ⊗, I) is a traced symmetric monoidal category (TSMC); F : C → C is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal 	Thm. ([AHS02]) Given a GoI situation (\mathbb{C} , F , U), the homset $\mathbb{C}(U, U)$ carries a canonical LCA structure.	
natural transformations). $e : FF \lhd F : e'$ Comultiplication $d : id \lhd F : d'$ Dereliction $c : F \otimes F \lhd F : c'$ Contraction $w : K_I \lhd F : w'$ Weakening		
 Here K_I is the constant functor into the monoidal unit I; U ∈ C is an object (called <i>reflexive object</i>), equipped with the following retractions. j : U ⊗ U ⊲ U : k 		
$egin{array}{c} I \lhd U \ u : FU \lhd U : v \end{array}$	Hasuo (Tokyo)	

Why Categorical Generalizatio Examples Other Than Pfn [AHSO	
* Strategy: find a TSMC!	90
* "Wave-style" examples	
★ ⊗ is Cartesian product(-like)	
in which case,	
trace ≈ fixed point operator [Hasegawa/Hyland]	
* An example: $((\omega - \text{Cpo}, \times, 1), (_)^{\mathbb{N}}, A^{\mathbb{N}})$	
* (less of a dynamic flavor)	Hasuo (Tokyo)

Why Categorical Generalization?: Examples Other Than Pfn [AH502] * Pfn (partial functions) $X \to Y$ in Pfn $\overline{X \rightharpoonup Y}$, partial function where $\mathcal{L}Y = \{\bot\} + Y$ $X \to \mathcal{L}Y$ in Sets M* Rel (relations) $X \to Y$ in Rel $\overline{R \subset X \times Y}$, relation where $\boldsymbol{\mathcal{P}}$ is the powerset monad $X \to \mathcal{P}Y$ in Sets * DSRel $X \to Y$ in DSRel Essential to have $\overline{X \to \mathcal{D}Y}$ in Sets where $\mathcal{D}Y = \{d: Y ightarrow [0,1] \mid \sum d(y) \leq 1\}$ subdistribution. for infinite loops

The Coauthor

- * DSc (Kyoto, 2011)
 - Supervisor: Masahito "Hassei" Hasegawa

Currently at RIMS, Kyoto U.

http://www.kurims.kyoto-u.ac.jp/ ~naophiko/

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10]) Given a "branching monad" \boldsymbol{B} on Sets , the monoidal category	(Roughly) monads in [Hasuo, Jacobs, Sokolova '07]
$(\mathcal{K}\ell(B),+,0)$ is	 * KI(B) is Cpo⊥-enriched * like L, P, D
 a unique decomposition category [Haghverdi,PhD00], hence is a traced symmetric monoidal category. 	Particle-style: trace via the execution formula
Cor. $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_{-}, \mathbb{N})$ is a GoI situation.	$\operatorname{tr}(f) = f_{XY} \sqcup \left(\prod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} \right)$

	Future Directions
Part 3	· GoI 2: Non-converging algons (Untyped J-calc / PCF) - Uses more topological info on operator algo
	- Go I 3: Uses additives & additive prog rats -
Phil Scott. Tutorial on Geometry of Interaction, FMCS 2004. Page 47/47	GOI 4 (leot month): Von Neumann algebras: EX(f, Z) for f and (not coming from proof) Quantum GOI?

Indeed...

- * The monad Q qualifies as a "branching monad"
- * The quantum GoI workflow leads to a linear category PER_Q
- * From which we construct an adequate denotational model

End of the Story? * No! All the technicalities are yet to come: * CPS-style interpretation (for partial measurement) * Result type: a final coalgebra in PER_Q

- * Admissible PERs for recursion
- * On the next occasion :-)

* ...

Hasuo (Tokyo)

Hasuo (Tokyo)

Operational Semantics

 $E[(\lambda x^A.M)V] \rightarrow_1 E[M[V/x]]$ $E[\operatorname{let}\langle x^A, y^B \rangle = \langle V, W \rangle \operatorname{in} M] \rightarrow_1 E[M[V/x, W/y]]$ $E[\operatorname{let} * = *\operatorname{in} M] \rightarrow_1 E[M]$ $E[\operatorname{match}(\operatorname{inj}_{\ell}^{B}V) \operatorname{with}(x^{!^{n}A} \mapsto M \mid y^{!^{n}B} \mapsto N)]$ $\rightarrow_1 E[M[V/x]]$ $E[\operatorname{match}(\operatorname{inj}_{r}^{A}V) \operatorname{with}(x^{!^{n}A} \mapsto M \mid y^{!^{n}B} \mapsto N)]$ $\rightarrow_1 E[N[V/y]]$ $E[\operatorname{letrec} f^{A \multimap B} x = M \operatorname{in} N]$ $\rightarrow_1 E[N[\lambda x^A. \text{letrec } f^{A \multimap B}x = M \text{ in } M/f]]$ $E[\operatorname{meas}_i^{n+1}(\operatorname{new}\rho)] \to_1 E[\langle \operatorname{tt}, \operatorname{new} \langle 0_i | \rho | 0_i \rangle \rangle]$ $E[\operatorname{meas}_{i}^{n+1}(\operatorname{new}\rho)] \rightarrow_{1} E[\langle \operatorname{ff}, \operatorname{new}\langle 1_{i}|\rho|1_{i}\rangle\rangle]$ $E[\operatorname{meas}_{1}^{1}(\operatorname{new} \rho)] \rightarrow_{\langle 0|\rho|0\rangle} E[\operatorname{tt}]$ $E[\operatorname{meas}_{1}^{\hat{1}}(\operatorname{new} \rho)] \rightarrow_{\langle 1|\rho|1\rangle} E[\operatorname{ff}]$ $E[U(\operatorname{new} \rho)] \rightarrow_1 E[\operatorname{new} (U\rho)]$ $E[\operatorname{cmp}_{m,n}(\operatorname{new}\rho,\operatorname{new}\sigma)] \rightarrow_1 E[\operatorname{new}(\rho \otimes \sigma)]$ * Standard small-step one, CBV, but with probabilistic branching (measurement)

Hasuo (Tokyo)

