Semantics of Higher－Order Quantum Computation via Geometry of Interaction

In：Proc．Logic in Computer Science（LICS），June 2011

Ichiro Hasuo
University of Tokyo（JP）

東京大学
Naohiko Hoshino RIMS，Kyoto University（JP）

Part 1

Functional QPL：

Some Contexts

Quantum Programming Language

Classical	Quantum	
（Boolean） circuit	Quantum circuit	
Programming language int i, j ； int factorial（int k ） \｛ factor \qquad return j ；	Quantum programming language	
＊For discovery of algorithms		
＊For reasoning，verification Hasuo（Tokyo）		

Functional Quantum
 Programming Language

* A real man's programming style
* Heavily used in the financial sector
* ...
* Mathematically nice and clean
* Aids semantical study
* Transfer from classical to quantum

Functional QPL:
 Syntax

* Linear λ-calculus

Preparation/Unitary transformation/Measurement

+ quantum primitives [van Tonder, Selinger, Valiron, ...]
* Linearity for no-cloning
* "Input can be used only once"
* Not allowed/typable: $\quad \lambda x \cdot\langle\operatorname{meas} x, \operatorname{meas} x\rangle$
* Duplicable (classical) data: by the !-modality

Functional QPL: Semantics

* Denotational semantics
* $\llbracket \boldsymbol{M} \rrbracket$: a function, or an arrow of a category
* Compositionality: $\llbracket M N \rrbracket=\llbracket M \rrbracket \circ \llbracket N \rrbracket$
* Linear category: [Benton \& Wadler, Bierman] (axioms for) a categorical model of linear $\boldsymbol{\lambda}$-calculus

Defn.

A linear category $(\mathbb{C}, \otimes, \mathbf{I}, \multimap,!)$ is a sym. monoidal
closed cat. with a linear exponential comonad !.

* For functional QPL? Is Hilb (or alike) a linear cat.?

Functional QPL:
 Semantics

* Hilb (or alike) is not a linear category
monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, \multimap)$ duality $V \cong V^{\perp}$
! (for duplicable data)
infinite dim.
\square

What We Do

* GoI (Geometry of Interaction) [Girard '89] An "implementation" of classical control

$$
\begin{aligned}
& \operatorname{tr}(f)= \\
& f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)
\end{aligned}
$$

* Categorical GoI [Abramsky, Haghverdi, Scott '02] Its categorical axiomatics
* We add a quantum layer to GoI
* \rightarrow "Quantum data, classical control"
* Used: theory of coalgebra [Hasuo, Jacobs, Sokolova '07] [Jacobs '10]

Part 2

The Categorical GoI Workflow

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
* But I'm no linear logician!
* In this talk:
* Its categorical formulation [Abramsky, Haghverdi, Scott '02]
* "The GoI Animation"

The GoI Animation

* Function application $\llbracket M N \rrbracket$
* by "parallel composition + hiding"

The GoI Animation

$\llbracket M \rrbracket=(\mathbb{N} \rightharpoonup \mathbb{N}$, a partial function $)$

The Categorical GoI Workflow

```
Traced monoidal category C
    + other constructs }->\mathrm{ "GoI situation" [AHSO2]
```


Categorical GoI

* Axiomatics of GoI in the categorical language
* Our main reference:
* [AHSO2] S. Abramsky, E. Haghverdi, and P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002
* Especially its technical report version (Oxford CL), since it's a bit more detailed

Linear Combinatory Algebra

What
we want (outcome)

* Model of untyped linear λ
* $a \in A \approx$
closed linear λ-term
* No S or K (linear!)
* Combinatory
completeness: e.g.

$$
\lambda x y z . z x y
$$

designates an elem. of A
Hasuo (Tokyo)

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial functions $\mathbb{N} \rightharpoonup \mathbb{N}$

Traced Sym. Monoidal Category

 (Pfn,,+ 0)* Category Pfn of partial functions
* Obj. A set X
* Arr. A partial function

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{X \rightarrow \boldsymbol{Y}, \text { partial function }}} \quad \underset{Y}{\boldsymbol{X} \mid}
$$

* is traced symmetric monoidal

Traced Sym. Monoidal Category (Pfn,,+ 0)

* $\frac{X+Z \xrightarrow{f} Y+Z \quad \text { in } P f n}{X \xrightarrow{\operatorname{tr}(f)} Y \text { in } \mathbf{P f n}}$ How?
*

$$
\begin{aligned}
& f_{X Y}(x):= \begin{cases}f(x) & \text { if } f(x) \in Y \\
\perp & \text { o.w. }\end{cases} \\
& \text { Similar for } f_{X Z}, f_{Z Y}, f_{Z Z}
\end{aligned}
$$

* Trace operator:

* Execution formula (Girard)

* Partiality is essential (infinite loop)

$\operatorname{tr}(f)=$
$f_{X Y} \sqcup\left(\coprod_{n \in \mathbb{N}} f_{Z Y} \circ\left(f_{Z Z}\right)^{n} \circ f_{X Z}\right)$ \qquad

GoI situation

Defn. (Gol situation [AHSO2])
 - F equiped with the following retractions (which are monoidal natural transformations)

$$
\begin{array}{rlll}
e: F F \triangleleft F: e^{\prime} & & \text { Comultiplication } \\
d: \operatorname{id} \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I}
$j: U \otimes U \triangleleft U: k$
$u: F U \triangleleft U: v$

* Traced sym. monoidal cat.
* Where one can "feedback"

* Why for GoI?

GoI situation

Defn. (Retraction) A retraction from \boldsymbol{X} to \boldsymbol{Y}

$$
f: X \triangleleft Y: g
$$

is a pair of arrows
"embedding"

such that $g \circ f=\operatorname{id}_{X}$

* Functor F
* For obtaining ! $: A \rightarrow A$

GoI situation

Defn. (Gol situation [AHS02])
A Gol situation is a triple ($\mathbb{C}, \boldsymbol{F}, \boldsymbol{U}$) where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category
- $\boldsymbol{F}: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor equipped with the following retractions (which are monoidal natural transformations
$e: F F \triangleleft F: e^{\prime}$
$d:$ id $\triangleleft F: d^{\prime}$
$d:$ id $\triangleleft \boldsymbol{F}: d^{\prime} \quad$ Dereliction
$\boldsymbol{E} \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} \quad$ Contraction
$\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} \quad$ Weakening
Here K_{I} is the constant functor into the monoidal unit I; - $U \in \mathbb{C}$ is an object (called reffexive object), equipped with the following retraction

$$
j: U \otimes U \triangleleft U: k
$$

$$
\begin{gathered}
I \triangleleft U \\
u: F U \triangleleft U: v
\end{gathered}
$$

* The reflexive object U

Categorical GoI:
 Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset $\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})$
carries a canonical LCA structure.

Categorical GoI:
 Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation ($\mathbb{C}, \boldsymbol{F}, \boldsymbol{U}$), the homset $\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})$

$$
\frac{\mid \boldsymbol{U}}{\mid \boldsymbol{f}} \in \mathbb{C}(\boldsymbol{U}, \boldsymbol{U})
$$

carries a canonical LCA structure.

* Applicative str.
* ! operator
* Combinators B, C, I, ...

$$
\begin{aligned}
& \text { * } g \cdot f \\
& :=\operatorname{tr}((U \otimes f) \circ k \circ g \circ j)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hasuo (Tokyo) }
\end{aligned}
$$

Categorical GoI: Constr. of an LCA

* Combinator $B x y z=x(y z)$

Figure 7: Composition Combinator B

Categorical GoI:
 Constr. of an LCA

* Combinator $B x y z=x(y z)$

Summary: Categorical GoI

Defn. (GoI situation [AHS02])
A GoI situation is a triple $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$ where

- $\mathbb{C}=(\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F: \mathbb{C} \rightarrow \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal

$$
\begin{array}{rll}
\boldsymbol{e}: \boldsymbol{F F} \triangleleft \boldsymbol{F}: \boldsymbol{e}^{\prime} & & \text { Comultiplication } \\
\boldsymbol{d}: \text { id } \triangleleft \boldsymbol{F}: \boldsymbol{d}^{\prime} & & \text { Dereliction } \\
\boldsymbol{c}: \boldsymbol{F} \otimes \boldsymbol{F} \triangleleft \boldsymbol{F}: \boldsymbol{c}^{\prime} & & \text { Contraction } \\
\boldsymbol{w}: \boldsymbol{K}_{I} \triangleleft \boldsymbol{F}: \boldsymbol{w}^{\prime} & & \text { Weakening }
\end{array}
$$

Here $\boldsymbol{K}_{\boldsymbol{I}}$ is the constant functor into the monoidal unit \boldsymbol{I};

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with following retraction

$$
j: U \otimes U \triangleleft U: k
$$

$$
I \triangleleft U
$$

$u: F U \triangleleft U: v$

Thm. ([AHS02])

Given a GoI situation $(\mathbb{C}, \boldsymbol{F}, \boldsymbol{U})$, the homset $\mathbb{C}(\boldsymbol{U}, \boldsymbol{U})$
carries a canonical LCA structure.
\square

Why Categorical Generalization?:
 Examples Other Than Pfn [atsor]

* Strategy: find a TSMC!
* "Wave-style" examples
* \otimes is Cartesian product(-like)

* in which case,
trace \approx fixed point operator [Hasegawa/Hyland]
* An example: $\quad\left((\omega-\mathrm{Cpo}, \times, \mathbf{1}),\left(_\right)^{\mathbb{N}}, \boldsymbol{A}^{\mathbb{N}}\right)$
* (... less of a dynamic flavor)

Why Categorical Generalization?:
 Examples Other Than Pfn [atsoz]

* "Particle-style" examples
* Obj. $X \in C$ is set-like; \otimes is coproduct-like
* The GoI animation is valid
* Examples:
* Partial functions ((Pfn, +, 0), $\left.\mathbb{N} ._{-}, \mathbb{N}\right)$
* Binary relations $\left((\operatorname{Rel},+, \mathbf{0}), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$
* "Discrete stochastic ((DSRel,,$\left.+ \mathbf{0}), \mathbb{N} \cdot{ }_{-}, \mathbb{N}\right)$
relations"

Different Branching in The GoI Animation

Pfn (partial functions)

* Pipes can be stuck

Rel (relations)

* Pipes can branch

DSRel

* Pipes can branch probabilistically

Why Categ ${ }_{\text {(functions with different branching/partiality) }}^{\text {Categories of sets and }}$

* Pfn (partial functions) (Potential) non-termination

$$
\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\frac{\overline{\boldsymbol{X}-\boldsymbol{Y}, \text { partial function }}}{\boldsymbol{X} \rightarrow \mathcal{L} \boldsymbol{Y} \text { in Sets }}} \text { where } \mathcal{L} \boldsymbol{Y}=\{\perp\}+\boldsymbol{Y}
$$

* Rel (relations)

Non-determinism
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Rel }}{\underline{\overline{\boldsymbol{R} \subseteq X \times Y, \text { relation }}}}$
where \mathcal{P} is the powerset monad

* DSRel

Why Categorical Generalization?: Examples Other Than Pfn [a4soz]

*

* Rel (relations)

*

DSRel
$X \rightarrow Y$ in DSRel
$X X \rightarrow \mathcal{D} Y$ in Sets
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$

The Coauthor

Naohiko Hoshino

* DSc (Kyoto, 2011)
* Supervisor:

Masahito "Hassei" Hasegawa

* Currently at RIMS, Kyoto U.
* http://www.kurims.kyoto-u.ac.jp/ ~naophiko/

Why Categ $\int \begin{aligned} & K l(B) \text { for different branching } \\ & \text { monads } B\end{aligned}$ monads B

* Pfn (partial functions)
(Potential) non-termination
$\frac{\boldsymbol{X} \rightarrow \boldsymbol{Y} \text { in Pfn }}{\overline{\overline{\boldsymbol{X}-\boldsymbol{Y}, \text { partial function }}}}$ where $\mathcal{L} Y=\{\perp\}+\boldsymbol{Y}$
Rel (relations)

$X \rightarrow Y$	in Rel
$R X \times Y$	

Non-determinism
$\underline{\overline{\overline{\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}, \text { relation }}}}$ where \mathcal{P} is the powerset monad

* DSRel

$X \rightarrow Y$ in DSRel $X \rightarrow \mathcal{D} Y$ in Sets	Probabilistic branching
where $\mathcal{D} Y=\left\{d: Y \rightarrow[0,1] \mid \sum_{y} d(y) \leq 1\right\}$	

A Coalgebraic View

* Theory of coalgebra =

Categorical theory of state-based dynamic
systems (LTS, automaton, Markov chain, ...)

* In [Hasuo, Jacobs, Sokolova '07]:
* Coalgebras in a Kleisli category $K l(B)$

$$
\frac{X \rightarrow Y \text { in } \mathcal{K} \ell(B)}{\bar{X} \rightarrow \boldsymbol{B} Y \text { in Sets }}
$$

* \rightarrow Generic theory of "trace semantics"

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a "branching monad" B on Sets, the
monoidal category
(Roughly) monads in [Hasuo, Jacobs, Sokolova '07]

$$
(\mathcal{K} \ell(B),+, 0)
$$

is

- a unique decomposition category [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.
$((\mathcal{K} \ell(B),+, 0), \mathbb{N} .,, \mathbb{N})$ is a GoI situation.

* $\mathrm{KI}(\mathrm{B})$ is Cpo_{\perp}-enriched
* like $\mathcal{L}, \mathcal{P}, \mathcal{D}$

The Categorical GoI Workflow

Branching monad B	Fancy
Coalgebraic trace semantics	
Traced monoidal category C	Fancy
+other constructs \rightarrow "Go situation"[AHSO2]	TSMC
Categorical GoI [AHsoz]	
Linear combinatory algebra	Fancy
RCA	

What is Fancy, Nowadays?

* Biology?
* Hybrid systems?
* Both discrete and continuous data, typically in cyber-physical systems (CPS)
* \rightarrow Our approach via non-standard analysis [Suenaga, Hasuo ICALP'11]
* Quantum?
* Yes this worked!

The Categorical GoI Workflow

Future Directions

Go 2: Non-converging algms (undojped λ-calc /PCF)

- uses more topological info m operate algs

Go I 3: usesadditives \& additive prof nets -
Go 4 (loot month): Van Neccmann algebras: $E x(f, \tau)$ to f arb (nottrecoming from proof) Quantuen Go

Branching monad B

Coalgebraic trace semantics
Traced monoidal category C

+ other constructs \rightarrow "Got situation" [AHSO2]
Categorical Got [AHSO2]
Linear combinatory algebra
- Realizability

```
Linear category
```

Quantum branching
monad

TSMC

The Quantum Branching

$\mathcal{Q Y}=\left\{c: Y \rightarrow \prod_{m_{n \in \mathbb{N}}}^{\mathbf{Q O}_{m, n}:=\left\{\begin{array}{l}\text { quantum operations, } \\ \text { from dim. } m \text { to dim. } n\end{array}\right\}}\right.$ the trace condition $\}$

* Compare with

$$
\begin{aligned}
& \mathcal{P} Y=\{c: Y \rightarrow 2\} \\
& \mathcal{D} Y=\left\{c: Y \rightarrow[0,1] \mid \sum_{y \in Y} c(y) \leq 1\right\}
\end{aligned}
$$

Indeed...

* The monad Q qualifies as a "branching monad"
* The quantum GoI workflow leads to a linear category $\mathbf{P E R}_{Q}$
* From which we construct an adequate denotational model

End of the Story?

* No! All the technicalities are yet to come:
* CPS-style interpretation (for partial measurement)
* Result type: a final coalgebra in $\mathbf{P E R}_{Q}$
* Admissible PERs for recursion
* ...
* On the next occasion :-)

The Language $q \lambda e$

* Roughly: linear $\lambda+$ quantum primitives
* "Quantum data, classical control"
* No superposed threads
* Based on [Selinger\&Valiron'09]
* With slight modifications
* Notably: quantum \otimes vs. linear logic \boxtimes
* The same in [Selinger\&Valiron'09]
\rightarrow clean type system, aids programming
* But... problem with GoI-style semantics

The Langua

Different from quantum \otimes (Unlike [Selinger-Valiron'09]); same as the one in PER
2-qbit \cong qbit \otimes qbit
$A, B::=n$-qbit $|!A| A \multimap B|\top| A \boxtimes B \mid A+B$,
with conventions qbit $:=1$-qbit and bit $:=\top+\top$.
The terms of $\mathbf{q} \boldsymbol{\lambda}_{\boldsymbol{\ell}}$ are:

$$
M, N, P::=
$$

$x\left|\lambda x^{A} \cdot M\right| M N|\langle M, N\rangle| * \mid$
let $\left\langle x^{A}, y^{B}\right\rangle=M$ in $N \mid \operatorname{let} *=M$ in $N \mid$
$\operatorname{inj}_{\ell}^{B} M\left|\operatorname{inj}_{r}^{A} M\right|$

Measurements

$\begin{aligned}\left.A_{\text {nexpl0 }}\right) & :=\text { qbit } \\ A_{\text {meas }}^{n+1} & :=(n+1)\end{aligned}$
$A_{\text {meas }_{1}^{1}}:=$ qbit \multimap bit
$\begin{gathered}A_{\text {neas }}^{1} \\ A_{U}\end{gathered}:=n$ qbit \rightarrow-qbit $\rightarrow n$-qbit for a $2^{n} \times 2^{n}$ matrix U
$A_{\text {cmp }_{m, n}}:=(m$-qbit $\boxtimes n$-qbit $) \multimap(m+n)$-qbit

$$
\frac{A<: A^{\prime}}{!\Delta, x: A \vdash x: A^{\prime}}(\mathrm{Ax.} .1) \quad \frac{!A_{c}<: A}{!\Delta \vdash c: A}(\mathrm{Ax} .2)
$$

$$
\frac{\Delta \vdash M:!^{n} A}{\Delta \vdash \operatorname{inj}_{\ell}^{B} M:!^{n}(A+B)}\left(+. \mathrm{I}_{1}\right)
$$

$$
\begin{gathered}
\Delta \vdash M: A^{\prime} A \\
\Delta \vdash \operatorname{inj}{ }_{\ell}^{B} M:!^{n}(A+B \\
\Delta \vdash N:!^{n} B
\end{gathered}
$$

$\overline{\Delta \vdash \mathrm{inj}_{r}^{A} N:!^{n}(A+B)}{ }^{\left(+. \mathrm{I}_{2}\right)}$
$\Gamma_{2}, x:!^{n} A \vdash M: C$

$\vdash \operatorname{match} P$ with $\left(x^{1^{n} A} \mapsto M \mid y^{!^{n} B} \mapsto N\right): C$
$\frac{x: A, \Delta \vdash M: B}{\Delta \vdash \lambda x^{A} \cdot M: A \multimap B}\left(\circ . \mathrm{I}_{1}\right)$
$\left.\overline{\Delta \vdash \lambda x^{A} \cdot M: A \rightarrow B}{ }^{(}\right)$
$\frac{x: A,!\Delta \vdash M: B}{!\Delta \vdash \lambda x^{A} \cdot M:!^{n}(A \rightarrow B)}\left(一 \mathrm{I}_{2}\right)$
$\frac{!\Delta, \Gamma_{1} \vdash M: A \rightarrow B!\Delta, \Gamma_{2} \vdash N: A}{!\Delta, \Gamma_{1}, \Gamma_{2} \vdash M N: B}(\rightarrow . \mathrm{E}),(\dagger)$
$!\Delta, \Gamma_{1}+M_{1}:!^{n} A_{1}!\Delta, \Gamma_{2}$
$\frac{!\Delta, \Gamma_{1} \vdash M_{1}:!A_{1}!\Delta, \Gamma_{2} \vdash M_{2}:!^{n} A_{2}}{!\Delta, \Gamma_{1}, \Gamma_{2} \vdash\left\langle M_{1}, M_{2}\right\rangle:!^{n}\left(A_{1} \boxtimes A_{2}\right)}(\boxtimes . \mathrm{I}),(\dagger)$
$\overline{!\Delta \vdash *:!^{n} \top}{ }^{\text {(T.I) }}$
$\Delta, \Gamma_{2}, x_{1}:!^{n} A_{1}, x_{2}:!^{n} A_{2} \vdash N: A$
$\vdots \Delta, \Gamma_{1} \vdash M:!^{n}\left(\boldsymbol{A}_{1} \boxtimes A_{2}\right)$
$\frac{!\Delta, \Gamma_{1} \vdash M:!^{n}\left(A_{1} \otimes A_{2}\right)}{!\Delta, \Gamma_{1}, \Gamma_{2} \vdash \text { let }\left\langle x_{1}^{!^{n} A_{1}}, x_{2}^{!_{2}} A_{2}\right\rangle=M \text { in } N: A}$
$\frac{!\Delta, \Gamma_{1} \vdash M: \top!\Delta, \Gamma_{2} \vdash N: A}{1 \Delta \Gamma_{1} \Gamma_{2} \vdash{ }^{2}}$ (T.E), (\dagger)

$!\Delta, f:!(A \rightarrow B), x: A \vdash M: B$
$\square \Delta, \Gamma \vdash$ letrec $f^{A \rightarrow B} x=M$ in $N: C$ (rec), (\dagger)

Operational Semantics

* Standard small-step one, CBV, but with probabilistic branching (measurement)

