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1 (Exercise 1.16).

(~y is an equivalence relation) By definition of equivalence relations, it suffices to show that
~ y satisfies reflexivity, symmetry and transitivity.

For each x € X, we have f(x) = f(x). Hence we have x ~y x by definition of ~. Therefore
~  satisfies reflexivity.

Let 2,2’ € X and assume that # ~y 2/. Then by definition of ~¢, we have f(z) = f(z').
Therefore f(z') = f(x) and we have 2’ ~¢ x by definition. Hence ~ satisfies symmetry.

Let z,2’,2" € X and assume that « ~y 2/ and 2’ ~; 2. Then by definition of ~¢, we have
f(z) = f(2’) and f(z') = f(2"). Therefore f(z) = f(2") and we have x ~¢ 2" by definition. Hence
~ s satisfies transitivity.

Therefore ~ is an equivalence relation.

(~y= Ax iff f is injective) Assume that ~ coincides with Ax. We further assume that
z, ¢’ € X satisfy f(x) = f(2'). By definition of ~¢, we have x ~f 2’. As ~y= Ay, by definition of
Ax, we have z = 2/. Hence f is injective.

Conversely, assume that f is injective. Then we have:

z~pr & flx) = f(2)) (by definition of ~)
sr=2a (as f is injective)
& rAxa’ (by definition of Ax).

Hence ~ coincides with Ax.
Therefore ~y= Ax if and only if f is injective.

2 (Exercise 1.19).

1. By definition of equivalence relations, it suffices to show that ~ satisfies reflexivity, symmetry
and transitivity.

For z € X, by reflexivity of <, we have z < z. Hence we have (S N 2)x (i.e. z ~ ), and
therefore ~ satisfies reflexivity.

Let z,2' € X and assume that  ~ 2’. Then by definition of ~, we have z < 2’ and = 2> 2’
Therefore we have 2’ ~ x by definition of ~, and this implies that ~ satisfies symmetry.

Let z,2',2” € X and assume that x ~ 2’ and 2’ ~ z”. Then by definition of ~, we have z < 2/,
x 2o, <2’ and o' 22" By x S 2/, 2/ <2 and transitivity of <, we have x < z”. Similarly,
by x 2 2/, ' 2 2", we have z 2 2. Therefore we have x ~ z” by definition, and this implies that
~ satisfies transitivity.

Therefore ~ is an equivalence relation.



2. Assume x ~ 2/, y ~ 3y and x < y. By definition of ~, x ~ 2/ implies 2’ < x, and y ~ 3 implies
y < o/. Therefore by transitivity of <, we have 2/ < y/.

3. By definition of partial orders, it suffices to show that < satisfies reflexivity, antisymmetry and
transitivity.

For each = € X, by reflexivity of <, we have z < z. Hence we have [z]. < [z]~ by definition,
and therefore < on X/ ~ satisfies reflexivity.

Let z,2’ € X and assume that [z]. < [2/]~ and [z]. 2= [2]~. Then by definition of < on X/ ~,
we have < 2/ and 2 > 2/. Then we have 2 ~ 2/ by definition of ~, and this implies [z]. = [2/]~.
Hence < satisfies antisymmetry.

Let x,2’,2"” € X and assume that [z]. < [2']~ and [2/]~ < [2”]~. Then by definition of < on
X/ ~, we have x < 2/ and 2/ < 2”. By transitivity of < on X, we have x < 2”. Therefore we have
[z]~ < [2”] by definition, and this implies that < on X/ ~ satisfies transitivity.

Therefore < is a partial order.



