情報論理・プログラムの数理 第5回演習レポート(5月18日出題)解答

1.

For Σ -terms $\mathbf{t}, \mathbf{s}_1, \dots, \mathbf{s}_n$ and mutually different variables $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbf{Var}$, the *simultaneous substitution* of $\mathbf{s}_1, \dots, \mathbf{s}_n$ for $\mathbf{x}_1, \dots, \mathbf{x}_n$ in \mathbf{t} is denoted by $\mathbf{t}[\mathbf{s}_1, \dots, \mathbf{s}_n/\mathbf{x}_1, \dots, \mathbf{x}_n]$. It is defined as the Σ -term obtained by replacing free occurrences of $\mathbf{x}_1, \dots, \mathbf{x}_n$ in \mathbf{t} with $\mathbf{s}_1, \dots, \mathbf{s}_n$ respectively. Note here that free occurrences of $\mathbf{x}_1, \dots, \mathbf{x}_n$ in \mathbf{s}_i are not replaced.

Then by induction on the construction of the term \mathbf{t} , we can prove the following proposition that is a generalization of Proposition 2.5.7.

Proposition 1.
$$[\![\mathbf{t}[\mathbf{s}_1,\ldots,\mathbf{s}_n/\mathbf{x}_1,\ldots,\mathbf{x}_n]\!]\!]_{\mathbb{X},J} = [\![\mathbf{t}]\!]_{\mathbb{X},J[\mathbf{x}_1\mapsto [\![\mathbf{s}_1]\!]_{\mathbb{X},J},\ldots,\mathbf{x}_n\mapsto [\![\mathbf{s}_n]\!]_{\mathbb{X},J}]}$$
.

Proof for Sublemma 2.6.9. By Definition 2.5.11, in order to prove that \mathbb{X} is a (Σ, E) -algebra, it suffices to show that for all $(\mathbf{s} = \mathbf{t}) \in E$, we have $\mathbb{X} \models \mathbf{s} = \mathbf{t}$, i.e. $[\![\mathbf{s}]\!]_{\mathbb{X},J} = [\![\mathbf{t}]\!]_{\mathbb{X},J}$ for each valuation $J: \mathbf{Var} \to X$ on \mathbb{X} .

Let $(\mathbf{s} = \mathbf{t}) \in E$ and $J : \mathbf{Var} \to X$ be a valuation on \mathbb{X} . Moreover, as the numbers of variables in \mathbf{s} and \mathbf{t} are finite, let $FV(\mathbf{s}) \cup FV(\mathbf{t}) = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$. For each $i \in \{1, \dots, n\}$, let $J(\mathbf{x}_i) = [\mathbf{u}_i]_{\sim_E}$. Then we have:

$$\mathbf{s}_{X,J} = \mathbf{s}_{X,J_c[\mathbf{x}_1 \mapsto J(\mathbf{x}_1), \dots, \mathbf{x}_n \mapsto J(\mathbf{x}_n)]} \qquad \text{(by Lemma 2.5.5)}$$

$$= \mathbf{s}_{X,J_c[\mathbf{x}_1 \mapsto [\mathbf{u}_1]_{\sim_E}, \dots, \mathbf{x}_n \mapsto [\mathbf{u}_n]_{\sim_E}]} \qquad \text{(by definition)}$$

$$= \mathbf{s}_{X,J_c[\mathbf{x}_1 \mapsto [\mathbf{u}_1]_{X,J_c}, \dots, \mathbf{x}_n \mapsto [\mathbf{u}_n]_{X,J_c}]} \qquad \text{(by Sublemma 2.6.8)}$$

$$= \mathbf{s}_{X,J_c[\mathbf{x}_1 \mapsto [\mathbf{u}_1]_{X,J_c}, \dots, \mathbf{x}_n \mapsto [\mathbf{u}_n]_{X,J_c}]} \qquad \text{(by Proposition 1 above)}$$

$$= \mathbf{s}_{X,J_c[\mathbf{x}_1 \mapsto [\mathbf{u}_1]_{X,J_c}, \dots, \mathbf{x}_n]_{X,J_c}} \qquad \text{(by Sublemma 2.6.8)}$$

Here $J_c: \mathbf{Var} \to X$ denotes the canonical valuation introduced in the proof of Sublemma 2.6.7. Similarly, we have:

$$[\![\mathbf{t}]\!]_{\mathbb{X},J} = [\mathbf{t}[\mathbf{u}_1,\ldots,\mathbf{u}_n/\mathbf{x}_1,\ldots,\mathbf{x}_n]]_{\sim_E}$$

Let $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbf{Var}$ be mutually different variables such that $\mathbf{y}_1, \dots, \mathbf{y}_n \notin \mathrm{FV}(\mathbf{s}) \cup \mathrm{FV}(\mathbf{t}) \cup \mathrm{FV}(\mathbf{u}_1) \cup \dots \mathrm{FV}(\mathbf{u}_n)$ (as \mathbf{Var} is an infinite set, such a family indeed exists). Then we have the following proof tree.

$$\frac{\frac{\overline{\mathbf{s} = \mathbf{t}} \ (\text{Axiom}), \ (\mathbf{s} = \mathbf{t}) \in E}{\mathbf{s}[\mathbf{y}_{1}/\mathbf{x}_{1}] = \mathbf{t}[\mathbf{y}_{1}/\mathbf{x}_{1}]} \frac{(\text{Subst})}{(\text{Subst})}}{(\text{Subst})}$$

$$\frac{\vdots}{\mathbf{s}[\mathbf{y}_{1}/\mathbf{x}_{1}] \dots [\mathbf{y}_{n}/\mathbf{x}_{n}] = \mathbf{t}[\mathbf{y}_{1}/\mathbf{x}_{1}] \dots [\mathbf{y}_{n}/\mathbf{x}_{n}]} \frac{(\text{Subst})}{(\text{Subst})}$$

$$\frac{\mathbf{s}[\mathbf{y}_{1}/\mathbf{x}_{1}] \dots [\mathbf{y}_{n}/\mathbf{x}_{n}][\mathbf{u}_{1}/\mathbf{y}_{1}] = \mathbf{t}[\mathbf{y}_{1}/\mathbf{x}_{1}] \dots [\mathbf{y}_{n}/\mathbf{x}_{n}][\mathbf{u}_{1}/\mathbf{y}_{1}]}{(\text{Subst})}$$

$$\vdots$$

$$\mathbf{s}[\mathbf{y}_{1}/\mathbf{x}_{1}] \dots [\mathbf{y}_{n}/\mathbf{x}_{n}][\mathbf{u}_{1}/\mathbf{y}_{1}] \dots [\mathbf{u}_{n}/\mathbf{y}_{n}] = \mathbf{t}[\mathbf{y}_{1}/\mathbf{x}_{1}] \dots [\mathbf{y}_{n}/\mathbf{x}_{n}][\mathbf{u}_{1}/\mathbf{y}_{1}] \dots [\mathbf{u}_{n}/\mathbf{y}_{n}]}$$
(Subst)

Note here that

$$\mathbf{s}[\mathbf{y}_1/\mathbf{x}_1]\dots[\mathbf{y}_n/\mathbf{x}_n][\mathbf{u}_1/\mathbf{y}_1]\dots[\mathbf{u}_n/\mathbf{y}_n] \equiv \mathbf{s}[\mathbf{u}_1,\dots,\mathbf{u}_n/\mathbf{x}_1,\dots,\mathbf{x}_n]$$

and

$$\mathbf{t}[\mathbf{y}_1/\mathbf{x}_1]\dots[\mathbf{y}_n/\mathbf{x}_n][\mathbf{u}_1/\mathbf{y}_1]\dots[\mathbf{u}_n/\mathbf{y}_n] \equiv \mathbf{t}[\mathbf{u}_1,\dots,\mathbf{u}_n/\mathbf{x}_1,\dots,\mathbf{x}_n]$$
.

Hence by the definition of \sim_E (equation (2.18)), we have

$$[\mathbf{s}[\mathbf{u}_1,\ldots,\mathbf{u}_n/\mathbf{x}_1,\ldots,\mathbf{x}_n]]_{\sim_E} = [\mathbf{t}[\mathbf{u}_1,\ldots,\mathbf{u}_n/\mathbf{x}_1,\ldots,\mathbf{x}_n]]_{\sim_E}.$$

Hence we have $[\![\mathbf{s}]\!]_{\mathbb{X},J} = [\![\mathbf{t}]\!]_{\mathbb{X},J}$ and this concludes the proof.

2 (Exercise 3.2).

 $\frac{A \Rightarrow A}{\neg A, A \Rightarrow} (\text{INIT}) \\
 \hline A \Rightarrow \neg \neg A (\neg - \text{L}) \\
 \hline A \Rightarrow \neg \neg A (\neg - \text{R})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{R}) \\
 \hline \neg \neg A \Rightarrow A (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow A}{\Rightarrow A, \neg A} (\neg - \text{L})$ $\frac{A \Rightarrow B \Rightarrow A}{\Rightarrow A \Rightarrow A} (\neg - \text{R})$ $\Rightarrow A \Rightarrow (B \Rightarrow A) (\neg - \text{R})$

3.

4.

1.

$$\frac{\overline{B\Rightarrow B}}{A, B\Rightarrow B} \xrightarrow{\text{(INIT)}} \frac{B\Rightarrow B}{C \Rightarrow B} \xrightarrow{\text{(INIT)}} \frac{\overline{C\Rightarrow C}}{C\Rightarrow C} \xrightarrow{\text{(INIT)}} \frac{\overline{B\Rightarrow B}}{C \Rightarrow C} \xrightarrow{\text{(\supset-L$)}} \frac{\overline{B\Rightarrow B} \times \overline{C}}{B \Rightarrow C} \xrightarrow{\text{(\supset-L$)}} \frac{\overline{A\Rightarrow B} \times \overline{C}}{B \Rightarrow C} \xrightarrow{\text{(\supset-L$)}} \frac{\overline{A\Rightarrow B} \times \overline{C}}{B \Rightarrow C} \xrightarrow{\text{($A\Rightarrow B$)} \Rightarrow C} \xrightarrow{\text{(\supset-L$)}} \frac{\overline{A\Rightarrow B} \times \overline{C}}{B \Rightarrow C} \xrightarrow{\text{($EXCHANGE-L$)}} \xrightarrow{\text{($EXCHANGE-L$)}} \frac{\overline{B\Rightarrow B} \times \overline{C}}{A \Rightarrow C} \xrightarrow{\text{($CABB$)} \Rightarrow C$$

$$\frac{ \frac{\overline{A} \Rightarrow \overline{A} \text{ (INIT)}}{\overline{A} \land B \Rightarrow A} \text{ (\wedge-L1)}}{\frac{\overline{A} \land B \Rightarrow A}{\neg A, A \land B \Rightarrow} \text{ (\neg-L)}} \frac{ \frac{\overline{B} \Rightarrow \overline{B} \text{ (INIT)}}{\overline{A} \land B \Rightarrow B} \text{ (\wedge-L2)}}{\frac{\overline{A} \land B \Rightarrow \overline{A} \land B \Rightarrow}{\overline{A} \land B \Rightarrow} \text{ (\neg-L)}}$$

$$\frac{\overline{A} \land B \Rightarrow \overline{A} \land B \Rightarrow}{\overline{A} \land B \Rightarrow \overline{A} \land B \Rightarrow} \text{ (\neg-R)}}{\frac{\overline{A} \land B \Rightarrow \overline{A} \land B \Rightarrow \overline{A} \land B \Rightarrow}{\overline{A} \land B \Rightarrow} \text{ (\neg-R)}}}$$

$$\frac{\overline{A} \land B \Rightarrow \overline{A} \land B \Rightarrow}{\overline{A} \land B \Rightarrow} \text{ (\neg-R)}}$$

3 (Exercise 3.9).

An expression $\models A$ denotes that the formula A is a tautology. For $\not\models A$, we have:

$$\not\models A \Leftrightarrow A \text{ is not a tautology}$$
 (by definition)

$$\Leftrightarrow (\forall J : \mathbf{PVar} \to \{\mathsf{tt}, \mathsf{ff}\}. \ \llbracket A \rrbracket_J = \mathsf{tt}) \text{ does not hold}$$
 (by Definition 3.3.3)

$$\Leftrightarrow \exists J : \mathbf{PVar} \to \{\mathsf{tt}, \mathsf{ff}\}. \ \llbracket A \rrbracket_J = \mathsf{ff}.$$

In contrast, for $\models \neg A$, we have:

$$\models \neg A \Leftrightarrow \neg A \text{ is a tautology}$$
 (by definition)
$$\Leftrightarrow \forall J : \mathbf{PVar} \to \{\mathsf{tt}, \mathsf{ff}\}. \llbracket \neg A \rrbracket_J = \mathsf{tt}$$
 (by Definition 3.3.3)
$$\Leftrightarrow \forall J : \mathbf{PVar} \to \{\mathsf{tt}, \mathsf{ff}\}. \llbracket A \rrbracket_J = \mathsf{ff}$$
 (by Definition 3.3.2).

Therefore $\not\models A$ and $\models \neg A$ are different. Indeed, if $A \equiv P \supset Q$ where $P, Q \in \mathbf{PVar}$ and $P \neq Q$, then $\not\models A$ holds as $[\![A]\!]_{J[P \mapsto \mathrm{tt}, Q \mapsto \mathrm{tf}]} = \mathrm{tf}$ while $\models \neg A$ does not hold as $[\![A]\!]_{J[P \mapsto \mathrm{tt}, Q \mapsto \mathrm{tf}]} = \mathrm{tt}$.

Moreover, by Definition 3.2.3, $\not\vdash A$ iff there does not exist a proof tree whose root is $\Rightarrow A$. In contrast, $\vdash \neg A$ iff there exists a proof tree whose root is $\Rightarrow \neg A$. Indeed, if $A \equiv P \supset Q$ where $P, Q \in \mathbf{PVar}$ and $P \neq Q$, then $\not\vdash A$ holds while $\vdash \neg A$ does not hold.