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Some Backgrounds

I [1] B. Coecke, R. Duncan. Interacting quantum observables:
Categorical algebra and diagrammatics.

I Provided a general framework of dagger symmetric monoidal
categories for axiomatising complementarity of quantum
observables.

I Introduced the intuitive and universal ZX Calculus for qubits.

I [2] A. Lang and B. Coecke. Trichromatic open digraphs for
understanding qubits.

I Introduced a trichromatic graphical calculus.
I ‘Dichromatic ZX Calculus + Euler angle decomposition of the

Hadamard gate = Trichromatic calculus’.



Qutrit RG Generators
We define a category RG where the objects are n-fold monoidal
products of an object ∗, denoted ∗n(n ≥ 0). In RG, a morphism
from ∗m to ∗n is a finite undirected open graph from m wires to n
wires, built from

δZ = δ†Z = εZ = ε†Z = PZ (α, β) = α
β

δX = δ†X = εX = ε†X = PX (α, β) = α
β

H = H H† = H†

where α, β ∈ [0, 2π). For convenience, we denote the frequently
used angles 2π

3 and 4π
3 by 1 and 2 respectively.



Qutrit RG Rules

RG morphisms are also subject to the following equations:

1. Equations in the following figure.

2. All equations hold under flip of graphs, negation of angles,
and exchange of H and H†.

3. All equations hold under flip of colours (except for rules K2
and H2).



Qutrit RG Rules
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Some Derived Rules
These equations are very useful when wanting to demonstrates
some more complex equalities in describing quantum protocols[4]
and algorithms[6].
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Dagger Functor
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RG is a dagger symmetric monoidal category.



RG Interpretation
We give an interpretation [·]RG : RG→ FdHilbQ[ ]
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Differences Between Qutrit and Qubit Rules I

I In qubit case, = . For qutrit duliser, =D :=

I The qubit dualizer (identical permutation) is an even
permutation, while the qutrit dualizer is an odd permutation.

I There is only one odd permutation π in qubit case satisfying
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Differences Between Qutrit and Qubit Rules II

I In qubit case the K2 rule still holds when flipping the colours,

π
=
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Whereas it doesn’t hold in qutrit case

1
2

α
β

=
1
2

=
2
1

α
β

2
1

β-α
-α

-β
α-β

=
1
2

=

2
1

α
β

1
2

α
β

2
1

β-α
-α

-β
α-β



Decomposition of the Hadamard Gate

I Euler decomposition of the Hadamard gate:
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Euler Decomposition Not Derivable

I In the qubit case, Duncan and Perdrix [5] proved that the
Euler decomposition is not derivable from ZX calculus.

I The Euler decomposition is not derivable from RG.

I Proof: We define an alternative interpretation functor
[·]0 : RG→ FdHilbQ exactly as [·]RG with the following
change:

[PX (α, β)]0 = [PX (0, 0)]RG [PZ (α, β)]0 = [PZ (0, 0)]RG

This functor preserves all the rules, so its image is indeed a
valid model of the theory. However we have the following
inequality

[H]0 6= [PX (
4π

3
,

4π

3
)]0 ◦ [PZ (
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3
,

4π

3
)]0 ◦ [PX (
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3
,
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3
)]0

hence the Euler decomposition is not derivable from RG.



Qutrit RGB Generators

Similarly, we define a category RGB where morphism from ∗m to
∗n is a finite undirected open graph from m wires to n wires, built
from
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Qutrit RGB Rules
RGB morphisms are subject to the following equations

1. Each colour respects the equations (S1) and (S2).
2. All equations hold under flip of graphs and negation of angles.
3. The following quadruples form bialgebras:(
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Qutrit RGB Rules
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Dagger Functor

I Dagger functor (only showing the blue one):( )†
=

( )†
=

( )†
=

( )†
=
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)†
= -α

-β

I RGB is a dagger symmetric monoidal category.



RGB Interpretation
We give an interpretation [·]RGB : RGB→ FdHilbQ[ ]

= |+〉

[ ]
= 〈+|

[ ]
= |00〉 〈0|+ |11〉 〈1|+ |22〉 〈2|

[ ]
= |0〉 〈00|+|1〉 〈11|+|2〉 〈22|

[
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]
= |0〉 〈0|+e iα |1〉 〈1|+e iβ |2〉 〈2|
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= |u〉 〈u|+e iα |t〉 〈t|+e iβ |v〉 〈v |



RGB Interpretation

where ω = e
2
3
πi , ω̄ = e

4
3
πi , and

|+〉 = |0〉+ |1〉+ |2〉
|ω〉 = |0〉+ ω |1〉+ ω̄ |2〉
|ω̄〉 = |0〉+ ω̄ |1〉+ ω |2〉
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|u〉 = |0〉+ ω̄ |1〉+ ω̄ |2〉
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RG to RGB Translation

We have a functor T : RG→ RGB

T
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Single Qutrit Quantum Algorithm

I Recently, Gedik[6] introduces a simple algorithm using only a
single qutrit to determine the parity of permutations.

I Like Deutsch’s algorithm, a speed-up relative to corresponding
classical algorithms is obtained.

I The algorithm can be depicted by the dichromatic calculus:
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Qudit ZX Calculus is Universal

The proof [3] that qudit ZX calculus is universal for quantum
mechanics is based on the facts that the d-dimensional phase gates
Zd ,Xd are sufficient to simulate all single qudit unitary transforms,
where

Zd(b0, b1..., bd−1) : b0 |0〉+ b1 |1〉+ ...+ bd−1 |d − 1〉 7→ |d − 1〉

(the d complex coefficients, b0, b1..., bd−1 are normalized to unity),

Xd(φ) :

{
|d − 1〉 7→ e iφ |d − 1〉
|p〉 7→ |p〉 for p 6= d − 1



Qudit ZX Calculus is Universal

It is proved [3] that some Zd phase gates can be realized by X
phase gate ΛX (α1, α2, ..., αd−1) in the qudit ZX calculus.
However, not every Zd phase gate can be represented by
ΛX (α1, α2, ..., αd−1). In fact, to realize any Zd(b0, b1..., bd−1) in
this way, we need to find α1, α2, ..., αd−1 such that

cjb0 + cj−1b1 + ...c0bj + cd−1bj+1 + ...cj+1bd−1 = d (1)

ckb0+ck−1b1+...c0bk +cd−1bk+1+...ck+1bd−1 = 0, ∀k 6= j (2)

where ck = 1 +
∑d−1

l=1 η
rk (l)e iαl , rk permutes the entries 1 (there is

one rk for each k), j = d .



Qudit ZX Calculus is Universal

Since
∑d−1

k=0 ck = d , summing up all the equations in (1) and (2),

we have
∑d−1

k=0 bk = 1. Of course, not every unit complex vector

(b0, b1..., bd−1) satisfies
∑d−1

k=0 bk = 1 or
∑d−1

k=0 bk = e iα up to a
global phase.

For example, (b0, b1..., bd−1) = (0, 1/
√

2, 1/
√

2, 0, ..., 0), d > 2, is
such a counterexample.

The above argument means that we need to find a proof of
universality of qudit ZX calculus in another way. We solve this
problem by the theory of Lie algebra.



Qudit ZX Calculus is Universal

Let

H =


 e iα0

. . .

e iαd−1


∣∣∣∣∣∣∣α0, ..., αd−1 ∈ R


V = 1√

d

∑d−1
j ,k=0 ω

jk |j〉 〈k | , ω = e i
2π
d ,H ′ = VHV−1. We give an

outline of the proof here, the details will be shown in a
forthcoming arXiv paper.

First step: Both H and H ′ are closed connected subgroups of the
compact Lie group of unitaries G = U(d).



Qudit ZX Calculus is Universal

Second step: H and H ′ generate a dense subgroup of G .

By [7], it amounts to showing that h and h′ generate g as a Lie
algebra, where h = Lie H, h′ = Lie H ′, g = Lie G .



Qudit ZX Calculus is Universal
The basis vectors of Lie algebra g consist of

σ
(jk)
x , (0 ≤ j < k ≤ d − 1), σ

(jk)
y , (0 ≤ j < k ≤ d − 1)

σ
(jk)
z , (j = 0, 1 ≤ k ≤ d − 1), iId

where

σ
(jk)
x = i |j〉 〈k |+ i |k〉 〈j | , σ(jk)y = |j〉 〈k| − |k〉 〈j |

σ
(jk)
z = i |j〉 〈j | − i |k〉 〈k|

The basis vectors of h consist of

σ
(0k)
z , (1 ≤ k ≤ d − 1), iId

thus the basis vectors of h′ consist of

Vσ
(0k)
z V−1, iId

By direct calculation, we can prove that h and h′ generate g.



Qudit ZX Calculus is Universal

Third step: H and H ′ generate G , i.e., H and V generate G . Thus
up to a global phase e iα, ΛX and ΛZ generate U(d). Here we use
the following lemma from [7].

Lemma: Let G be a compact Lie group. If H1, ...,Hk are closed
connected subgroups and they generate a dense group of G , then
in fact they generate G .
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