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Warning

- No deep mathematics

- Hopefully some deep physics

wave-particle duality follows from the uncertainty principle

- Invitation to YOU: apply your heavy mathematical
machinery to my topic



Wave-particle duality

Bullets show no
interference
pattern

... but electrons do

Data from: “Controlled double-slit electron diffraction” Bach et al. NJP (2013)

Bullets are just bunches of electrons mixed in with some
protons and neutrons, so why the change in behavior?



Wave-particle duality

The transition (from no interference to interference)
can even be seen with single electrons.

Data from: “Controlled double-slit electron
diffraction” Bach et al. NJP (2013)

The great mystery:

Each kind of thing (bullet, electron, bacteria, ...) has
the ability to exhibit wave behavior, i.e., produce
interference. Likewise, each can exhibit particle
behavior, i.e., have a well-defined path. But the two
behaviors compete — you either get one or the other.

Why? .... Nobody knows.

“You never get to understand quantum
mechanics, you just get used to it.”




Wave- partlcle duality: big molecules
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Wave- partlcle duallty
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While the behaviors
are mysterious, we

can get intuition for
how they compete.
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Feynman gives example of light

source with variable wavelength....
TR

.. tradeoff between spatial ELECTRON
GUN

resolution and momentum kick.




Wave-particle duality
getting quantitative

Dy
Simplification of double-slit: 0)
Two-path interferometer for BS) BS:
single photons (named after 1) ¢
Mach and Zehnder). Dy

Fringe visibility
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Wave-particle duality
getting quantitative

Simplification of double-slit:
Two-path interferometer for

single photons (named after
Mach and Zehnder).

Fringe visibility

0 0
V — pmax _pmln

p?nax T p?nin

0)

BS
B, ?

1)

Dy

Path predictability (e.g. asymmetric BS,)

Z =10), 1)}

P = 2pgueSS(Z) — 1

probability of guessing Z correctly



Wave-particle duality

getting quantitative
Wooters, Zurek (1979)
Greenberger, Yasin (1988) Dy
Englert (1996) |O>
Wave-particle duality relation BS,
(WPDR): BS;:
2 2 1) ¢
P+ Ve <1 Dy

Full particle behavior - No wave behavior
Full wave behavior = No particle behavior

Path predictability (e.g. asymmetric BS,)
Fringe visibility ; Z _ {‘O>7 |1>}
P = 2pguess(Z) —1

L p?nax — Pmin
V= 0 0
Prmax _I_pmin

probability of guessing Z correctly



Wave-particle duality

getting quantitative
Jaeger, Shimony, Vaidman (1995)
Englert (1996) Dy
0)

Let E be a (partial) which-path detector.
E could be gas of atoms whose internal BS:

. . BS,
state is sensitive to presence of photon. ) 0
Stronger WPDR: D

2 2
D+ VY <1
Path distinguishability

Fringe visibility D = 2pguess (Z ‘ E) — 1

Y — p(r)na,x o p?nin

probability of guessing Z correctly
0 0 . . ) :

pmaX ‘|‘ pmin given E (i.e., given optimal

measurement on E)



WPDRs

Where do they come from?

2 2
7) —1 V < ]_ Is wave-particle duality a fundamental
9 9 principle of quantum mechanics, or is it a
1 I f th inciple?
D V < ]_ corollary of some other principle

Englert: “... Does not make use of Heisenberg’s uncertainty principle in any form”
“... There is only one observable involved”

Is it a consequence of position/momentum AQA]? > h/z ?

uncertainty principle?

This was intensely debated in 1990’s:

“Path detection and the uncertainty principle” Storey et al. Nature (1994).
“Complementarity and uncertainty” Englert, Scully, Walther. Nature (1995),
and Reply by Storey et al.

“Uncertainty over complementarity?” Wiseman, Harrison. Nature (1995).

Looks to be inconclusive / still open to debate

Regardless, is it a consequence of the uncertainty principle for qubits?
(after all, a two-path interferometer is like a two-state system)



WPDRs

Where do they come from?

Consider: 732 -+ V2 <1

Several authors showed that this WPDR is

equivalent to Robertson’s uncertainty /\X/\Z ‘ <ZM [X Z] ‘w> ‘

relation for particular qubit observables

Busch and Shilladay (2006) Qubit observables:

Bjork et al. (1999) .

Durr and Rempe (2000) E o UZ .

Bosyk et al. (2013) V(P — (COS ¢) o, + (Sln ¢) O_y

(AP)? =1— P?

Variances: (A"\/(p)z —1_ Vz COSZ(Q - ¢)
Plugging into (1— P2)[1 —V? 0082(9 —¢)]
Robertson’s

relation gives: > P? V?cos? @ —o¢)+ V? sin? 0 — o)



WPDRs

Where do they come from?

So we have

1

G AXAZ > - |(WIX, 2]

Note that distinguishability involves conditioning on system E. This is
not so natural for standard deviation, but is quite natural for entropies.
Could the D-V relation be related to the entropic uncertainty principle?

D = 2guess(Z|E) — 1



WPDRs
Consider again: 732 —+ V2 <1

Bosyk et al. [Phys. Scr. (2013)] considered entropic uncertainty
relations (EURs), of the form:

H,(P)+H,(V) > B,
e[+’

1 1+ V\? 1 —V\?]
Hy(V)=-—n| (——) +(——
_q _ _

They argue that such EURs are inequivalent to the P-V relation!

for Renyi entropies:  H,(P) =

But Maassen & Uffink (1988) proved an EUR that involves
different q’s, for example,

Hoo(P)+ Hypo(V) 21

Our first result: This EUR is equivalent to the P-V relation!!!!



WPDRs
Hoo(P) + Hypo(V) 2 1
INVITATION: Plug these formulas in to obtain P-V relation
Hoo(P) =1 —1log(1 + P)
Hy/5(V) =log (1++/1—V2)

So we have

<1 @) Ho(P)+ Hyp2(V) 21
D? + V2 <1 Gmmp 22
APOLOGY: In what follows, | will switch notation:

HOO(P) — Hmin(Z) H1/2(V) — HmaX(W)



Goals of our work

1.) Unify a vast literature on WPDRs. Many complicated versions of WPDRs
have been formulated, for scenarios involving asymmetric beam splitters,
guantum beam splitters, and photon polarization interactions. We show that
all these WPDRs correspond to special cases of a single inequality.

2.) Show where WPDRs come from. Namely, show that they come from the
entropic uncertainty relation (EUR) for the min- and max-entropies. Hence
we unify the entropic uncertainty principle with the wave-particle duality
principle.

3.) Provide a general, robust framework for discussing WPDRs and deriving
novel WPDRs. Once WPDRs are reformulated as EURs, it becomes obvious
how to apply them to novel interferometric models. It becomes clear that you
can simply condition the entropy terms on various degrees of freedom and
the relation still holds. We illustrate this by deriving a novel WPDR for a
guantum beam splittter.

4.) Emphasize the distinction between preparation WPDRs and
measurement WPDRs. That is, we emphasize that EURs can be applied in
two conceptually different ways.



Main Result

For a two-path interferometer for single quantons, we identify particle and
wave behaviors with the knowledge of specific (complementary) qubit
observables, or lack of behavior with ignorance, as quantified by the min- and
max-entropies commonly used in quantum information theory (e.g., QKD).

lack of particle behavior: Hpyin(Z]|J)

lack of wave behavior: min Hy,. (W |K)
WeXy

Z : which-path observable

W : orthonormal basis observable in XY plane
J, K : some other quantum systems that help to
reveal the behavior

Our general WPDR:

Hpin(Z]J) + min Hp . (W|K) > 1
weXY

L Interestingly, this has been used to prove
security of quantum key distribution




DistinguishabiIity-\I/isibiIilty tradeoff

I I
t 1o

I I DO
Recall scenario: I0> | |
photon interacts | I
with E inside I | BS,
interferometer BSl | |

) | 1K
| | Dy

Apply unéertainty relation at time t,

P2+v2<1<ﬂ
Y

> Hmin(Z)t2 _I_ WHEll)l(:lY HmaX(W)tg > 1

D2+V2<1<ﬂ

Hmin(ZIE)tQ—I_ min HmaX(W)t
weXY

> 1

2




DistinguishabiIity-\/isibiIity tradeoff

t to

I
I I
I I DO
Recall scenario: IO> | |
photon interacts | I
with E inside | | BSs
interferometer BS; : : ¢
1
| >I | D
I I
| |
Hmin(ZIE)t2 + min HmaX(W)t2 > 1

weXY
Hmin(ZIE)tz =1- Og(l + D)

. — I _ )2
i Hppax (W), = log(1 4 /1 = V?)

D? +V? < 1



Preparation Uncertainty

Remark

We applied the preparation uncertainty relation at time t, to derive
the WPDR. Preparation uncertainty restricts one’s ability to predict
future measurements. Englert noted in his 1996 PRL that, to measure P
or D, one removes the second beam splitter (BS,) and tries to predict
which detector clicks. To be clear we call this output distinguishability.

D := 2pguess(Z‘E)t2 —1

(A) Output

distinguishability removed
I

OO

t



Measurement Uncertainty

But uncertainty relations can be applied in a conceptually different
way. Instead of fixing the input state and considering complementary
output measurements, one can fix the output measurement and

consider complementary input ensembles:

Guessing game ’wi> — (‘O

The Z; states are generated by Bob flipping a coin and blocking either
the top or bottom arm depending on flip outcome. Alice tries to guess
Bob’s coin flip, given E and given which detector clicks, denoted by C.

(B) Input E—
distinguishability

Which was
blocked?

blocker

o)

D; = 2pguess(Zi‘EC) — 1



Preparation vs. Measurement

Uncertainty

Output diSﬁngUiShabi“ty ((iiAs)tigguljiI;lﬁ;bility removed DO

D = 2pyuess(Z|E)y, — 1 —
Output visibility @ 5 o

0 0
_ Pmax 7 Pmin
V= 0 0 D ?
Prmax + Pmin 1
Input distinguishability éB)t,InP‘}th L — Dy
1stinguishability
blocker Which was

D; = 2pguess(Zi|EC) — 1 ~
Input visibility @ ¢ e
Vi == max (pw—|—|D0 _pw—|D0) D1?

weXY



Preparation vs. Measurement
Uncertainty

Output distinguishability
D .= 2pguess(Z‘E)t2 —1

Output visibility
Ponax — Prai
V — max min

p?na,x T p?nin

Input distinguishability

D; = 2pguess(Zi|EC) —1

Input visibility

), := max — Dapy—
1 Wexy (pw—i—|D0 Pw |D0)

“Preparation” WPDR
D +V? <1

Addresses question of how well
Alice can prepare a state with
low uncertainty in Zand W.

“Measurement” WPDR
2 2
D? + V2 < 1

Addresses question of how well
Alice can jointly measure Bob’s
Z and W observables




Example: qguantum beam splitter

(2) w(2)>< (2) |

|¢P ) = cosa|H) 4+ sinalV)

Feeding in a polarization
superposition means that BS,
is in a superposition of
“absent” and “present”.

D + V7 < 1
V.=V
D +V* <1

1.0

Science
(2012)

0.5

0.0-

80 60 40 20 o)
Angle o (deg)



Example: qguantum beam splitter

-I .O | 1.0;
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D; +V° <1

This relation is untight, and more
importantly, does not capture
beam splitter’s coherence!!




Example: qguantum beam splitter

Our framework easily provides a tight relation that
captures beam splitter’s coherence.

Define polarization-enhanced distinguishability

D := 2Pguess(Z|ECP) — 1

D; +V° <1

1.0

(D) +V? <1

L 1 L L L 1 L 1
60 80




Final Remarks

- We have shown that WPDRs are EURs in disguise, namely, the
uncertainty relation for the min- and max-entropies applied to qubit
observables. Are WPDRs useful for quantum cryptography?

- All of our WPDRs hold if you replace both min and max with von
Neumann.

- Our framework provides two classes of WPDRs associated with
preparation uncertainty and measurement uncertainty.

- Our framework makes it obvious how to derive novel WPDRs. (We did
this for the QBS.)

- Our framework can be applied fairly universally to single-quanton two-
path interferometers. It would be interesting to extend this to mutli-
photons or multi-paths.



