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  No	
  deep	
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  -­‐	
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  some	
  deep	
  physics	
  

	
  -­‐	
  Invita2on	
  to	
  YOU:	
  apply	
  your	
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  mathema2cal	
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  topic	
  

wave-­‐par4cle	
  duality	
  	
  follows	
  from	
  the	
  uncertainty	
  principle	
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Figure 3. Buildup of electron diffraction. ‘Blobs’ indicate the locations of
detected electrons. Shown are intermediate build-up patterns from the central
five orders of the diffraction pattern (P12) magnified from figure 2, with 2, 7,
209, 1004, and 6235 electrons (a)–(e). A full movie of the electron build-up is
included in the supplementary data (see supplementary movie 2, available from
stacks.iop.org/NJP/15/033018/mmedia).
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Bullets	
  are	
  just	
  bunches	
  of	
  electrons	
  mixed	
  in	
  with	
  some	
  
protons	
  and	
  neutrons,	
  so	
  why	
  the	
  change	
  in	
  behavior?	
  

…	
  but	
  electrons	
  do	
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The	
  transi2on	
  (from	
  no	
  interference	
  to	
  interference)	
  
can	
  even	
  be	
  seen	
  with	
  single	
  electrons.	
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The	
  great	
  mystery:	
  	
  
Each	
  kind	
  of	
  thing	
  (bullet,	
  electron,	
  bacteria,	
  …)	
  has	
  
the	
  ability	
  to	
  exhibit	
  wave	
  behavior,	
  i.e.,	
  produce	
  
interference.	
  Likewise,	
  each	
  can	
  exhibit	
  par2cle	
  
behavior,	
  i.e.,	
  have	
  a	
  well-­‐defined	
  path.	
  But	
  the	
  two	
  
behaviors	
  compete	
  –	
  you	
  either	
  get	
  one	
  or	
  the	
  other.	
  

“You	
  never	
  get	
  to	
  understand	
  quantum	
  
mechanics,	
  you	
  just	
  get	
  used	
  to	
  it.”	
  

Why?	
  ….	
  Nobody	
  knows.	
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Fig. 2a, can be achieved by allowing for a gaussian variation of the
slit widths over the grating, with a mean open gap width centred at
s0 ¼ 38 nm with a full-width at half-maximum of 18 nm. That best-
fit value for the most probable open gap width s0 is significantly
smaller than the 55 ! 5 nm specified by the manufacturer (T. A.
Savas and H. Smith, personal communication). This trend is
consistent with results obtained in the diffraction of noble gases
and He clusters, where the apparently narrower slit was interpreted
as being due to the influence of the van der Waals interaction with
the SiNx grating during the passage of the molecules15. This effect is
expected to be even more pronounced for C60 molecules owing to
their larger polarizability. The width of the distribution seems also
justified in the light of previous experiments with similar gratings:
both the manufacturing process and adsorbents could account
for this fact (ref. 16, and T. A. Savras and H. Smith, personal
communication). Recently, we also observed interference of C70

molecules.
Observation of quantum interference with fullerenes is interest-

ing for various reasons. First, the agreement between our measured
and calculated interference contrast suggests that not only the
highly symmetric, isotopically pure 12C60 molecules contribute to
the interference pattern but also the less symmetric isotopomeric
variants 12C59

13C and 12C58
13C2 which occur with a total natural

abundance of about 50%. If only the isotopically pure 12C60

molecules contributed to the interference, we would observe a
much larger background.

Second, we emphasize that for calculating the de Broglie wave-
length, l ¼ h=Mv, we have to use the complete mass M of the object.
Thus, each C60 molecule acts as a whole undivided particle during its
centre-of-mass propagation.

Last, the rather high temperature of the C60 molecules implies
broad distributions, both of their kinetic energy and of their internal
energies. Our good quantitative agreement between experiment and
theory indicates that the latter do not influence the observed
coherence. All these observations support the view that each C60

molecule interferes with itself only.

In quantum interference experiments, coherent superposition
only arises if no information whatsoever can be obtained, even in
principle, about which path the interfering particle took. Interac-
tion with the environment could therefore lead to decoherence. We
now analyse why decoherence has not occurred in our experiment
and how modifications of our experiment could allow studies of
decoherence using the rich internal structure of fullerenes.

In an experiment of the kind reported here, ‘which-path’ infor-
mation could be given by the molecules in scattering or emission
processes, resulting in entanglement with the environment and a
loss of interference. Among all possible processes, the following are
the most relevant: decay of vibrational excitations via emission of
infrared radiation, emission or absorption of thermal blackbody
radiation over a continuous spectrum, Rayleigh scattering, and
collisions.

When considering these effects, one should keep in mind that
only those scattering processes which allow us to determine the path
of a C60 molecule will completely destroy in a single event the
interference between paths through neighbouring slits. This
requires l p d; that is, the wavelength l of the incident or emitted
radiation has to be smaller than the distance d between neighbour-
ing slits, which amounts to 100 nm in our experiment. When this
condition is not fulfilled decoherence is however also possible via
multi-photon scattering7,8,17.

At T ! 900 K, as in our experiment, each C60 molecule has on
average a total vibrational energy of Ev ! 7 eV (ref. 18) stored in 174
vibrational modes, four of which may emit infrared radiation at
lvib ! 7–19 "m (ref. 10) each with an Einstein coefficient of
Ak ! 100 s # 1 (ref. 18). During its time of flight from the grating
towards the detector (t ! 6 ms) a C60 molecule may thus emit on
average 2–3 such photons.

In addition, hot C60 has been observed19 to emit continuous
blackbody radiation, in agreement with Planck’s law, with a mea-
sured integrated emissivity of e ! 4:5 ð ! 2:0Þ $ 10 # 5 (ref. 18). For
a typical value of T ! 900 K, the average energy emitted during the
time of flight can then be estimated as only Ebb ! 0:1 eV. This
corresponds to the emission of (for example) a single photon at
l ! 10 "m. Absorption of blackbody radiation has an even smaller
influence as the environment is at a lower temperature than the
molecule. Finally, since the mean free path for neutral C60 exceeds
100 m in our experiment, collisions with background molecules can
be neglected.

As shown above, the wavelengths involved are too large for single
photon decoherence. Also, the scattering rates are far too small to
induce sufficient phase diffusion. This explains the decoupling of
internal and external degrees of freedom, and the persistence of
interference in our present experiment.

A variety of unusual decoherence experiments would be possible
in a future extension of the experiment, using a large-area inter-
ferometer. A three-grating Mach–Zehnder interferometer6 seems to
be a particularly favourable choice, since for a grating separation of
up to 1 m we will have a molecular beam separation of up to 30 "m,
much larger than the wavelength of a typical thermal photon. In this
case, the environment obtains ‘which-path’ information even
through a single thermal photon, and the interference contrast
should thus be completely destroyed. The parameters that could be
controlled continuously in such an experiment would then be the
internal temperature of the fullerenes, the temperature of the
environment, the intensity and frequency of external laser radiation,
the interferometer size, and the background pressure of various
gases.

An improved interferometer could have other applications. For
example, in contrast to previous atom-optical experiments20–22

which were limited to the interaction with only a few lines in the
whole spectrum, interferometry with fullerenes would enable us to
study these naturally occurring and ubiquitous thermal processes
and wavelength-dependent decoherence mechanisms for (we
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Figure 2 Interference pattern produced by C60 molecules. a, Experimental recording
(open circles) and fit using Kirchhoff diffraction theory (continuous line). The expected
zeroth and first-order maxima can be clearly seen. Details of the theory are discussed in
the text. b, The molecular beam profile without the grating in the path of the molecules.
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  duality	
  

While	
  the	
  behaviors	
  
are	
  mysterious,	
  we	
  
can	
  get	
  intui2on	
  for	
  
how	
  they	
  compete.	
  

Feynman	
  gives	
  example	
  of	
  light	
  
source	
  with	
  variable	
  wavelength….	
  
	
  
…	
  tradeoff	
  between	
  spa2al	
  
resolu2on	
  and	
  momentum	
  kick.	
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Entropic framework for wave-particle duality relations
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(Dated: March 29, 2014)

Previously we showed that wave-particle duality is a special case of entropic uncertainty, and we
noted that the latter provides a powerful framework from which to derive novel wave-particle duality
relations (WPDRs). Here we give a more detailed treatment, further laying out the foundations of
our entropic framework for WPDRs. We treat several interesting examples, such as asymmetric and
quantum beam splitters, quantum which-way detectors, and polarisation-enhanced visibility.
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C. Preparation vs. measurement uncertainty

III. INTERFEROMETER MODELS

A. Mach-Zehnder

To illustrate this, we consider the celebrated Mach-
Zehnder interferometer, shown schematically in Fig. ??.
In the simplest case one sends in a single photon towards
a 50/50 (i.e., symmetric) beam splitter, BS1, which re-
sults in the state |+〉 = (|0〉 + |1〉)/

√
2, where Z =

{|0〉, |1〉} is the which-path basis, then a phase φ is ap-
plied to the lower arm giving the state (|0〉+ eiφ|1〉)/

√
2.

Finally the two paths are recombined on a second 50/50
beam splitter BS2 and the output modes are detected by
detectors D0 and D1. Visibility is then defined as

V =
p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.

BS1

BS2

|0〉

|1〉

D0

D1

E

t1 t2

φ

FIG. 1: Mach-Zehnder interferometer for single photons.
Identifying Z = {|0〉, |1〉} as the which-path basis, a super-
position of these states is created at time t1. An environment
E may then obtain some which-path information. Finally at
time t2 a phase shift φ is applied to the lower arm and the
two beams are recombined on a second beam splitter.

B. Quantum beam splitters

C. Quantum which-way detectors

IV. MEASURES OF WAVE AND PARTICLE
BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.

Fringe	
  visibility	
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II. PRELIMINARIES

A. Entropies

B. Entropic uncertainty relations

C. Preparation vs. measurement uncertainty

III. INTERFEROMETER MODELS

A. Mach-Zehnder

To illustrate this, we consider the celebrated Mach-
Zehnder interferometer, shown schematically in Fig. 1. In
the simplest case one sends in a single photon towards a
50/50 (i.e., symmetric) beam splitter, BS1, which results
in the state |+〉 = (|0〉 + |1〉)/

√
2, where Z = {|0〉, |1〉}

2

is the which-path basis, then a phase φ is applied to the
lower arm giving the state (|0〉+ eiφ|1〉)/

√
2. Finally the

two paths are recombined on a second 50/50 beam split-
ter BS2 and the output modes are detected by detectors
D0 and D1. Visibility is then defined as

V =
p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.

B. Quantum beam splitters

C. Quantum which-way detectors

IV. MEASURES OF WAVE AND PARTICLE
BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.

B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,

refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.

The output distinguishability is defined by

D := 2pguess(Z|E)− 1,

where pguess(Z|E) is the probability for correctly guess-
ing the photon’s path Z at time t2 given that the exper-
imenter performs the optimally helpful measurement on
E.

To experimentally measure predictability P or more
generally output distinguishability D, the experimenter
removes BS2 and sees how well he/she can guess which
detector clicks, see Fig. 2A. (BS2 can either be phys-
ically removed or effectively removed by exploiting an-
other degree of freedom [? ].) We emphasise that this
procedure falls into the general framework of prepara-
tion uncertainty, i.e., predicting the outcomes of future
measurements.

3. Input distinguishability

A conceptually different notion of distinguishability is
depicted in Fig. 2B. Here, one fixes the output measure-
ment of the interferometer and asks how well it can dis-
tinguish between two equally possible inputs to the in-
terferometer. The two inputs are states of definite path,
|0〉 or |1〉, and these are generated by simply blocking
the opposite arm of the interferometer. One can imagine
this as a game, where Bob controls the blocker and Alice
has control over both E and the detectors, Bob flips a
coin to determine which path he will block, and Alice’s

2
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p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.
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Identifying Z = {|0〉, |1〉} as the which-path basis, a super-
position of these states is created at time t1. An environment
E may then obtain some which-path information. Finally at
time t2 a phase shift φ is applied to the lower arm and the
two beams are recombined on a second beam splitter.
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C. Quantum which-way detectors

IV. MEASURES OF WAVE AND PARTICLE
BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.
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B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,
refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.

The output distinguishability is defined by

D := 2pguess(Z|E)− 1,

where pguess(Z|E) is the probability for correctly guess-
ing the photon’s path Z at time t2 given that the exper-
imenter performs the optimally helpful measurement on
E.

To experimentally measure predictability P or more
generally output distinguishability D, the experimenter
removes BS2 and sees how well he/she can guess which
detector clicks, see Fig. ??A. (BS2 can either be phys-
ically removed or effectively removed by exploiting an-
other degree of freedom [? ].) We emphasise that this
procedure falls into the general framework of prepara-
tion uncertainty, i.e., predicting the outcomes of future
measurements.

removed

E

φ

(A)

blocker

E

φ

(B)

register

E

|0〉

φ

(C)

FIG. 2: Output, input, and register distinguishability. (A)
Output distinguishability D is measured by removing BS2

and considering the probability of guessing correctly (given
E) which detector clicks. (B) Input distinguishability Di is
measured by inserting a blocker into one of the interferome-
ter arms and considering the probability of guessing correctly
(given E and also C) which arm was unblocked. (C) Register
distinguishability DR is measured by copying the path infor-
mation at time t1 to a register R, via a controlled-not gate,
and then considering the probability of guessing correctly the
measurement outcome on R.

3. Input distinguishability

A conceptually different notion of distinguishability is
depicted in Fig. ??B. Here, one fixes the output mea-
surement of the interferometer and asks how well it can
distinguish between two equally possible inputs to the in-
terferometer. The two inputs are states of definite path,
|0〉 or |1〉, and these are generated by simply blocking
the opposite arm of the interferometer. One can imagine
this as a game, where Bob controls the blocker and Alice
has control over both E and the detectors, Bob flips a
coin to determine which path he will block, and Alice’s
goal is to guess what Bob did. The relevant parameter
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To illustrate this, we consider the celebrated Mach-
Zehnder interferometer, shown schematically in Fig. ??.
In the simplest case one sends in a single photon towards
a 50/50 (i.e., symmetric) beam splitter, BS1, which re-
sults in the state |+〉 = (|0〉 + |1〉)/

√
2, where Z =

{|0〉, |1〉} is the which-path basis, then a phase φ is ap-
plied to the lower arm giving the state (|0〉+ eiφ|1〉)/

√
2.

Finally the two paths are recombined on a second 50/50
beam splitter BS2 and the output modes are detected by
detectors D0 and D1. Visibility is then defined as

V =
p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.
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Identifying Z = {|0〉, |1〉} as the which-path basis, a super-
position of these states is created at time t1. An environment
E may then obtain some which-path information. Finally at
time t2 a phase shift φ is applied to the lower arm and the
two beams are recombined on a second beam splitter.
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BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.
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In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.
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B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,
refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.

The output distinguishability is defined by

D := 2pguess(Z|E)− 1,

where pguess(Z|E) is the probability for correctly guess-
ing the photon’s path Z at time t2 given that the exper-
imenter performs the optimally helpful measurement on
E.

To experimentally measure predictability P or more
generally output distinguishability D, the experimenter
removes BS2 and sees how well he/she can guess which
detector clicks, see Fig. ??A. (BS2 can either be phys-
ically removed or effectively removed by exploiting an-
other degree of freedom [? ].) We emphasise that this
procedure falls into the general framework of prepara-
tion uncertainty, i.e., predicting the outcomes of future
measurements.
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FIG. 2: Output, input, and register distinguishability. (A)
Output distinguishability D is measured by removing BS2

and considering the probability of guessing correctly (given
E) which detector clicks. (B) Input distinguishability Di is
measured by inserting a blocker into one of the interferome-
ter arms and considering the probability of guessing correctly
(given E and also C) which arm was unblocked. (C) Register
distinguishability DR is measured by copying the path infor-
mation at time t1 to a register R, via a controlled-not gate,
and then considering the probability of guessing correctly the
measurement outcome on R.

3. Input distinguishability

A conceptually different notion of distinguishability is
depicted in Fig. ??B. Here, one fixes the output mea-
surement of the interferometer and asks how well it can
distinguish between two equally possible inputs to the in-
terferometer. The two inputs are states of definite path,
|0〉 or |1〉, and these are generated by simply blocking
the opposite arm of the interferometer. One can imagine
this as a game, where Bob controls the blocker and Alice
has control over both E and the detectors, Bob flips a
coin to determine which path he will block, and Alice’s
goal is to guess what Bob did. The relevant parameter
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In the simplest case one sends in a single photon towards
a 50/50 (i.e., symmetric) beam splitter, BS1, which re-
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beam splitter BS2 and the output modes are detected by
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V =
p0max − p0min

p0max + p0min
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where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
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Identifying Z = {|0〉, |1〉} as the which-path basis, a super-
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E may then obtain some which-path information. Finally at
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two beams are recombined on a second beam splitter.

B. Quantum beam splitters

C. Quantum which-way detectors
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A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
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C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is

predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at
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beam splitter BS2 and the output modes are detected by
detectors D0 and D1. Visibility is then defined as
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(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.
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cle behaviour - predictability and distinguishability - and
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ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
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superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.
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B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,
refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.

The output distinguishability is defined by

D := 2pguess(Z|E)− 1,

where pguess(Z|E) is the probability for correctly guess-
ing the photon’s path Z at time t2 given that the exper-
imenter performs the optimally helpful measurement on
E.

To experimentally measure predictability P or more
generally output distinguishability D, the experimenter
removes BS2 and sees how well he/she can guess which
detector clicks, see Fig. ??A. (BS2 can either be phys-
ically removed or effectively removed by exploiting an-
other degree of freedom [? ].) We emphasise that this
procedure falls into the general framework of prepara-
tion uncertainty, i.e., predicting the outcomes of future
measurements.

removed

E

φ

(A)

blocker

E

φ

(B)

register

E

|0〉

φ

(C)

FIG. 2: Output, input, and register distinguishability. (A)
Output distinguishability D is measured by removing BS2

and considering the probability of guessing correctly (given
E) which detector clicks. (B) Input distinguishability Di is
measured by inserting a blocker into one of the interferome-
ter arms and considering the probability of guessing correctly
(given E and also C) which arm was unblocked. (C) Register
distinguishability DR is measured by copying the path infor-
mation at time t1 to a register R, via a controlled-not gate,
and then considering the probability of guessing correctly the
measurement outcome on R.

3. Input distinguishability

A conceptually different notion of distinguishability is
depicted in Fig. ??B. Here, one fixes the output mea-
surement of the interferometer and asks how well it can
distinguish between two equally possible inputs to the in-
terferometer. The two inputs are states of definite path,
|0〉 or |1〉, and these are generated by simply blocking
the opposite arm of the interferometer. One can imagine
this as a game, where Bob controls the blocker and Alice
has control over both E and the detectors, Bob flips a
coin to determine which path he will block, and Alice’s
goal is to guess what Bob did. The relevant parameter
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C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is

predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at
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We present a new paradigm for capturing the complementarity of two observables. It is based on
the entanglement created by the interaction between the system observed and the two measurement
devices used to measure the observables sequentially. Our main result is a lower bound on this
entanglement and resembles well-known entropic uncertainty relations. Besides its fundamental
interest, this result directly bounds the effectiveness of measurement operations for generating
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Entanglement created ! log(1/c)

Distance to uncorrelated state " log d− log(1/c)

Quantum channel capacity ! log(1/c)

H(X)ρS +H(Z)ρS ! log(1/c)

H(Z|X)ρS ! log(1/c)

∆q∆p ! !/2

Heisenberg’s original formulation of the uncertainty
principle considered sequential measurements of comple-
mentary observables, like position and momentum, per-
formed on the same physical system, and the principle
was that the second observable is unavoidably disturbed
by the measurement of the first [? ]. An alternative
scenario considers unavoidable uncertainty related to the
independent measurement of the two observables, with
the measurements performed on two distinct but identi-
cally prepared quantum systems [? ? ].
The latter formulation of the uncertainty principle

seems to receive more attention in modern times. For ex-
ample, entropic uncertainty relations [? ] typically cap-
ture this unavoidable uncertainty; consider a well-known
example from Maassen and Uffink [? ]. For any state ρS
of a finite-dimensional quantum system S they find

H(X) +H(Z) ! log2(1/c), (1)

where X = {|Xj〉} and Z = {|Zk〉} are any two orthonor-
mal bases of HS , H(X) := −

∑
j p(Xj) log2 p(Xj) is the

Shannon entropy associated with the probability distri-
bution p(Xj) := 〈Xj |ρS |Xj〉 (similarly for H(Z)), and
c := maxj,k |〈Xj |Zk〉|2 quantifies the complementarity
between the X and Z observables.

Ref. [? ] showed that an entropic uncertainty relation
like (1) has a correspondent entanglement certainty rela-
tion. They considered the generation of entanglement be-
tween measurement devices and independent, identically-
prepared copies of some system, and proved that, when
dealing with complementary observables, there is un-
avoidable creation of entanglement between at least one
copy of the system and one measuring device.

Main result.—In this work, we offer a new point of
view on what complementarity entails. As Heisenberg
did originally, we consider sequential measurements per-
formed on the same physical system, rather than idepen-
dent copies of the system; on the other hand, following [?
? ? ], we focus on the entanglement generated between
the system and the measurement devices. In general,
for any X and Z, we can lower-bound the entanglement
E(X,Z) between the system and the measurement de-
vices created from sequentially measuring X and Z with

E(X,Z) ! log2(1/c), (2)

where the c factor appearing here is precisely the same c
appearing in Eq. (1). Here, we take E to be the distillable
entanglement, i.e., the optimal rate to distill Einstein-
Podolsky-Rosen (EPR) pairs using local operations and
classical communication (LOCC) in the asymptotic limit
of infinitely many copies of the state.

Our approach relates in a novel way two basic
concepts of quantum mechanics: complementarity—
in the sequential-measurement scenario—and entangle-
ment. Besides this fundamental interest, our results
have direct operational interpretations. On one hand,
they provide bounds on the usefulness of sequential bi-
partite operations—corresponding to the measurement
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condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at
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In their seminal paper, Einstein, Podolsky and Rosen (EPR) show that an observer who is maxi-
mally entangled with the system to be measured can perfectly predict the outcome of two incompat-
ible measurements. This feat stands in stark contrast to Heisenberg’s uncertainty principle which
tell us that if the observer is not entangled with the system at all, then his ability to predict the
outcomes of incompatible measurements such as position and momentum is extremely limited. The
observations made by EPR and Heisenberg illustrate two extreme cases of the interplay between
entanglement and uncertainty. On the one hand, no entanglement means that measurements will
be maximally uncertain. Yet on the other hand, maximal entanglement means that there is no
more uncertainty at all. Here we show that this apparent rift can be reconciled in that it is indeed
possible to have an exact relation - an equality - between the amount of uncertainty and the amount
of entanglement.

Heisenberg’s uncertainty principle forms one of the fundamental elements of quantum mechanics. Originally proven
for measurements of position and momentum, it is one of the most striking examples of the difference between a
quantum and a classical world [1]. Uncertainty relations today are probably best known in the form given by
Robertson [2], who extended Heisenberg’s result to two arbitrary observables X and Z. More precisely, Robertson’s
relation states that when measuring the state |ψ〉 using either X or Z, then

∆X∆Z ! 1

2
|〈ψ|[X,Z]|ψ〉| , (1)

where ∆Y =
√
〈ψ|Y 2|ψ〉 − 〈ψ|Y |ψ〉2 for Y ∈ {X,Z} is the standard deviation resulting from measuring |ψ〉 with

observable Y .
In the modern day literature, uncertainty is usually measured in terms of entropies [3, 4] (see [5] for a survey). One

of the reasons this is desirable is that (1) makes no statement if |ψ〉 happens to give zero expectation on [X,Z] [4].
To see how uncertainty can be quantified in terms of entropies, let us start with a simple example. Throughout, we
let Alice (A) denote the system to be measured. For now, let us consider measuring a single qubit in the state ρA
using two incompatible measurements given by the Pauli σx or σz eigenbases. We have from [6] that for any ρA

H(K|Θ) =
1

2
[H(K|Θ = σx) +H(K|Θ = σz)] !

1

2
, (2)

where H(K|Θ = θ) = −
∑

k pk|Θ=θ log pk|Θ=θ is the Shannon entropy1 of the probability distribution over measure-
ment outcomes k ∈ {0, 1} when we perform the measurement labeled θ on the state ρA, and each measurement is
chosen with probability pθ = 1/2. To see that this is an uncertainty relation note that if one of the two entropies
is zero, then (2) tells us that the other is necessarily non-zero, i.e., there is at least some amount of uncertainty. If
we measure a dA-dimensional system A in two orthonormal bases θ0 = {|x0〉}dA

x=1 and θ1 = {|x1〉}dA
x=1 then the r.h.s.

of (2) becomes log(1/c), where c = maxx0,x1 |〈x0|x1〉|2 [6]. The largest amount of uncertainty, i.e., the largest log(1/c),
is thereby obtained when |〈x0|x1〉| = 1/

√
dA, that is, the two bases are mutually unbiased (MUB) [7].

When thinking about uncertainty, it is often illustrative to adopt the perspective of an “uncertainty game” [8, 9],
commonly used in quantum cryptography [10]. In particular, we will think about uncertainty from the perspective of
an observer called Bob holding a second system (B) whose task is to guess the outcome of the measurement on Alice’s
system successfully. Bob thereby knows ahead of time what measurements could be made and the probability that a
particular measurement setting is chosen. To help him win the game, Bob may even prepare ρA himself, and Alice
tells him which measurement she performed before he has to make his guess. The amount of uncertainty as measured
by entropies can be understood as a limit on how well Bob can guess Alice’s measurement outcome - the more difficult
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1 All logarithms are base 2 in this article.
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the auxiliary state variables r ⌘ 1
2

q
s2

x + s2
y and tan ✓ ⌘ sy

sx

allow us to write

hV̂�i = 2r cos(✓ � �) and hV̂ ?
� i = 2r sin(✓ � �).

Thus the visibility, which is given by the maximum
absolute expectation value of these observables, is equal to
2r and can be obtained using V̂� if one sets the phase shifter
such that � = ✓ , or using V̂ ?

� and setting � = ✓ � ⇡/2. Note
that arranging the apparatus PS (see figure 1) with a phase
difference of ⇡ with respect to these angles gives also the
same value of visibility. Finally, due to the positivity of the
density matrix, the complementarity relation (1) is directly
obtained:

P2 + V 2 = s2
x + s2

y + s2
z 6 1 (6)

and it is saturated whenever kEsk = 1, i.e. for any pure state.
Note that the measurements of any two observables (3)
and (4), or (3) and (5), can only be carried out in two
incompatible experimental setups and that joint measurement
is not involved. Therefore the trade-off relation (1) expresses
preparation complementarity [7], that is, the impossibility of
preparing the system in a state in which the two observables
would simultaneously exhibit sharp values.

3. Connections between complementarity and
uncertainty relations

3.1. The P–V duality relation is equivalent to variance-based
uncertainty inequalities

The relationship between the predictability–visibility
inequality (1) and URs based on variances (A.1) can be
readily analyzed using the Bloch representation of the
pertinent operators and the density matrix. First of all, the
variances of the operators given in equations (3)–(5) are
obtained in terms of the predictability P and the visibility V
as [9]

(1P̂)2 = 1 � P2, (7)

(1V̂�)2 = 1 � V 2 cos2(✓ � �), (8)

(1V̂ ?
� )2 = 1 � V 2 sin2(✓ � �), (9)

where ✓ is a state variable (recall section 2). Let us remark that
the choice of adequate observables (understood as Hermitian
operators acting on Hilbert space) is a first step in order to
show whether equation (1) is the expression of a UR.

The connection between the CP relation and
variance-based URs has been analyzed in [7, 9, 10].
Some critical comments are in order concerning those
studies. In [10], the equivalence between both principles is
highlighted: indeed, the Heisenberg–Robertson (HR) UR is
computed there for the pair of observables P̂ and V̂ ?

✓ , and
also for V̂✓ and V̂ ?

✓ (setting the phase shifter to an angle
� = ✓ ). By doing so, the following uncertainty inequalities
are obtained:

(1P̂)2(1V̂ ?
✓ )2 = 1 � P2>V 2, (10)

(1V̂✓ )
2(1V̂ ?

✓ )2 = 1 � V 2>P2 (11)

and it comes out that both are equivalent to (1) (for every ✓ ).
The main drawback that the authors note in their derivation
is the use of V̂ ?

✓ , which has no direct interpretation in terms
of either predictability or visibility in connection with the MZ
interferometry experiment, because of the results hV̂ ?

✓ i = 0
and 1V̂ ?

✓ = 1. Moreover, when dealing with P̂ and V̂✓ , the
corresponding HR UR becomes trivial: (1P̂)2(1V̂✓ )

2>0.
Independently, Björk et al [9] also dealt with the

problem of connecting CP with UP. The SR UR is deeply
connected with the duality relation (1). The analysis consists
in obtaining expressions (7) and (8) followed by an appeal
to (1V̂�)2>(1V̂✓ )

2 (from basic trigonometry), with the
purpose of linking the two fundamental principles of quantum
mechanics.

A complete proof of the alluded to equivalence dealing
with the appropriate observables P̂ and V̂✓ and the full SR UR
is given in [7]. We reproduce it here—although in a slightly
different way—for the sake of completeness. For arbitrary �,
the UR prescribed by Schrödinger and Robertson reads

(1 � P2)[1 � V 2 cos2(✓ � �)]

> P2 V 2 cos2(✓ � �) + V 2 sin2(✓ � �), (12)

where equality holds for any pure state. It is straightforward
to show that this family of inequalities reduces to the duality
relation (1).

We stress that (12) is valid for any phase � introduced by
the phase shifter in the MZ interferometer. We then conclude
that, in particular, the appropriate choice � = ✓ implies
equivalence with the trade-off relation between predictability
and visibility. This circumvents the drawback pointed out
in [10]. With this simple result, a rather sharp conclusion is
drawn from the discussion about complementarity between P
and V , including the status of (1) as an UR.

Finally, we mention that in [8] a relationship between
wave–particle duality and quantum uncertainty has been
investigated, both theoretically and experimentally, by
recourse to variances of the operators P̂ and V̂ ✓ . However,
this is done without appealing to Heisenberg-like inequalities.

3.2. The P–V duality relation is equivalent to the
Landau–Pollak uncertainty inequality

We demonstrate now that inequality (1) becomes equivalent to
LP UR [15], a so far uncovered feature, as far as we know. The
maximum probabilities associated with observables P̂ and V̂✓ ,
in terms of predictability and visibility, are

M1(P̂) = 1 + P
2

, (13)

M1(V̂ ✓ ) = 1 + V
2

. (14)

Replacing these probabilities in (A.3) and setting c = 1/
p

2,
we attain the situation of complementary operators. Thus, we

3
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the auxiliary state variables r ⌘ 1
2

q
s2

x + s2
y and tan ✓ ⌘ sy

sx

allow us to write

hV̂�i = 2r cos(✓ � �) and hV̂ ?
� i = 2r sin(✓ � �).

Thus the visibility, which is given by the maximum
absolute expectation value of these observables, is equal to
2r and can be obtained using V̂� if one sets the phase shifter
such that � = ✓ , or using V̂ ?

� and setting � = ✓ � ⇡/2. Note
that arranging the apparatus PS (see figure 1) with a phase
difference of ⇡ with respect to these angles gives also the
same value of visibility. Finally, due to the positivity of the
density matrix, the complementarity relation (1) is directly
obtained:

P2 + V 2 = s2
x + s2

y + s2
z 6 1 (6)

and it is saturated whenever kEsk = 1, i.e. for any pure state.
Note that the measurements of any two observables (3)
and (4), or (3) and (5), can only be carried out in two
incompatible experimental setups and that joint measurement
is not involved. Therefore the trade-off relation (1) expresses
preparation complementarity [7], that is, the impossibility of
preparing the system in a state in which the two observables
would simultaneously exhibit sharp values.

3. Connections between complementarity and
uncertainty relations

3.1. The P–V duality relation is equivalent to variance-based
uncertainty inequalities

The relationship between the predictability–visibility
inequality (1) and URs based on variances (A.1) can be
readily analyzed using the Bloch representation of the
pertinent operators and the density matrix. First of all, the
variances of the operators given in equations (3)–(5) are
obtained in terms of the predictability P and the visibility V
as [9]

(1P̂)2 = 1 � P2, (7)

(1V̂�)2 = 1 � V 2 cos2(✓ � �), (8)

(1V̂ ?
� )2 = 1 � V 2 sin2(✓ � �), (9)

where ✓ is a state variable (recall section 2). Let us remark that
the choice of adequate observables (understood as Hermitian
operators acting on Hilbert space) is a first step in order to
show whether equation (1) is the expression of a UR.

The connection between the CP relation and
variance-based URs has been analyzed in [7, 9, 10].
Some critical comments are in order concerning those
studies. In [10], the equivalence between both principles is
highlighted: indeed, the Heisenberg–Robertson (HR) UR is
computed there for the pair of observables P̂ and V̂ ?

✓ , and
also for V̂✓ and V̂ ?

✓ (setting the phase shifter to an angle
� = ✓ ). By doing so, the following uncertainty inequalities
are obtained:

(1P̂)2(1V̂ ?
✓ )2 = 1 � P2>V 2, (10)

(1V̂✓ )
2(1V̂ ?

✓ )2 = 1 � V 2>P2 (11)

and it comes out that both are equivalent to (1) (for every ✓ ).
The main drawback that the authors note in their derivation
is the use of V̂ ?

✓ , which has no direct interpretation in terms
of either predictability or visibility in connection with the MZ
interferometry experiment, because of the results hV̂ ?

✓ i = 0
and 1V̂ ?

✓ = 1. Moreover, when dealing with P̂ and V̂✓ , the
corresponding HR UR becomes trivial: (1P̂)2(1V̂✓ )

2>0.
Independently, Björk et al [9] also dealt with the

problem of connecting CP with UP. The SR UR is deeply
connected with the duality relation (1). The analysis consists
in obtaining expressions (7) and (8) followed by an appeal
to (1V̂�)2>(1V̂✓ )

2 (from basic trigonometry), with the
purpose of linking the two fundamental principles of quantum
mechanics.

A complete proof of the alluded to equivalence dealing
with the appropriate observables P̂ and V̂✓ and the full SR UR
is given in [7]. We reproduce it here—although in a slightly
different way—for the sake of completeness. For arbitrary �,
the UR prescribed by Schrödinger and Robertson reads

(1 � P2)[1 � V 2 cos2(✓ � �)]

> P2 V 2 cos2(✓ � �) + V 2 sin2(✓ � �), (12)

where equality holds for any pure state. It is straightforward
to show that this family of inequalities reduces to the duality
relation (1).

We stress that (12) is valid for any phase � introduced by
the phase shifter in the MZ interferometer. We then conclude
that, in particular, the appropriate choice � = ✓ implies
equivalence with the trade-off relation between predictability
and visibility. This circumvents the drawback pointed out
in [10]. With this simple result, a rather sharp conclusion is
drawn from the discussion about complementarity between P
and V , including the status of (1) as an UR.

Finally, we mention that in [8] a relationship between
wave–particle duality and quantum uncertainty has been
investigated, both theoretically and experimentally, by
recourse to variances of the operators P̂ and V̂ ✓ . However,
this is done without appealing to Heisenberg-like inequalities.

3.2. The P–V duality relation is equivalent to the
Landau–Pollak uncertainty inequality

We demonstrate now that inequality (1) becomes equivalent to
LP UR [15], a so far uncovered feature, as far as we know. The
maximum probabilities associated with observables P̂ and V̂✓ ,
in terms of predictability and visibility, are

M1(P̂) = 1 + P
2

, (13)

M1(V̂ ✓ ) = 1 + V
2

. (14)

Replacing these probabilities in (A.3) and setting c = 1/
p

2,
we attain the situation of complementary operators. Thus, we
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the auxiliary state variables r ⌘ 1
2

q
s2

x + s2
y and tan ✓ ⌘ sy

sx

allow us to write

hV̂�i = 2r cos(✓ � �) and hV̂ ?
� i = 2r sin(✓ � �).

Thus the visibility, which is given by the maximum
absolute expectation value of these observables, is equal to
2r and can be obtained using V̂� if one sets the phase shifter
such that � = ✓ , or using V̂ ?

� and setting � = ✓ � ⇡/2. Note
that arranging the apparatus PS (see figure 1) with a phase
difference of ⇡ with respect to these angles gives also the
same value of visibility. Finally, due to the positivity of the
density matrix, the complementarity relation (1) is directly
obtained:

P2 + V 2 = s2
x + s2

y + s2
z 6 1 (6)

and it is saturated whenever kEsk = 1, i.e. for any pure state.
Note that the measurements of any two observables (3)
and (4), or (3) and (5), can only be carried out in two
incompatible experimental setups and that joint measurement
is not involved. Therefore the trade-off relation (1) expresses
preparation complementarity [7], that is, the impossibility of
preparing the system in a state in which the two observables
would simultaneously exhibit sharp values.

3. Connections between complementarity and
uncertainty relations

3.1. The P–V duality relation is equivalent to variance-based
uncertainty inequalities

The relationship between the predictability–visibility
inequality (1) and URs based on variances (A.1) can be
readily analyzed using the Bloch representation of the
pertinent operators and the density matrix. First of all, the
variances of the operators given in equations (3)–(5) are
obtained in terms of the predictability P and the visibility V
as [9]

(1P̂)2 = 1 � P2, (7)

(1V̂�)2 = 1 � V 2 cos2(✓ � �), (8)

(1V̂ ?
� )2 = 1 � V 2 sin2(✓ � �), (9)

where ✓ is a state variable (recall section 2). Let us remark that
the choice of adequate observables (understood as Hermitian
operators acting on Hilbert space) is a first step in order to
show whether equation (1) is the expression of a UR.

The connection between the CP relation and
variance-based URs has been analyzed in [7, 9, 10].
Some critical comments are in order concerning those
studies. In [10], the equivalence between both principles is
highlighted: indeed, the Heisenberg–Robertson (HR) UR is
computed there for the pair of observables P̂ and V̂ ?

✓ , and
also for V̂✓ and V̂ ?

✓ (setting the phase shifter to an angle
� = ✓ ). By doing so, the following uncertainty inequalities
are obtained:

(1P̂)2(1V̂ ?
✓ )2 = 1 � P2>V 2, (10)

(1V̂✓ )
2(1V̂ ?

✓ )2 = 1 � V 2>P2 (11)

and it comes out that both are equivalent to (1) (for every ✓ ).
The main drawback that the authors note in their derivation
is the use of V̂ ?

✓ , which has no direct interpretation in terms
of either predictability or visibility in connection with the MZ
interferometry experiment, because of the results hV̂ ?

✓ i = 0
and 1V̂ ?

✓ = 1. Moreover, when dealing with P̂ and V̂✓ , the
corresponding HR UR becomes trivial: (1P̂)2(1V̂✓ )

2>0.
Independently, Björk et al [9] also dealt with the

problem of connecting CP with UP. The SR UR is deeply
connected with the duality relation (1). The analysis consists
in obtaining expressions (7) and (8) followed by an appeal
to (1V̂�)2>(1V̂✓ )

2 (from basic trigonometry), with the
purpose of linking the two fundamental principles of quantum
mechanics.

A complete proof of the alluded to equivalence dealing
with the appropriate observables P̂ and V̂✓ and the full SR UR
is given in [7]. We reproduce it here—although in a slightly
different way—for the sake of completeness. For arbitrary �,
the UR prescribed by Schrödinger and Robertson reads

(1 � P2)[1 � V 2 cos2(✓ � �)]

> P2 V 2 cos2(✓ � �) + V 2 sin2(✓ � �), (12)

where equality holds for any pure state. It is straightforward
to show that this family of inequalities reduces to the duality
relation (1).

We stress that (12) is valid for any phase � introduced by
the phase shifter in the MZ interferometer. We then conclude
that, in particular, the appropriate choice � = ✓ implies
equivalence with the trade-off relation between predictability
and visibility. This circumvents the drawback pointed out
in [10]. With this simple result, a rather sharp conclusion is
drawn from the discussion about complementarity between P
and V , including the status of (1) as an UR.

Finally, we mention that in [8] a relationship between
wave–particle duality and quantum uncertainty has been
investigated, both theoretically and experimentally, by
recourse to variances of the operators P̂ and V̂ ✓ . However,
this is done without appealing to Heisenberg-like inequalities.

3.2. The P–V duality relation is equivalent to the
Landau–Pollak uncertainty inequality

We demonstrate now that inequality (1) becomes equivalent to
LP UR [15], a so far uncovered feature, as far as we know. The
maximum probabilities associated with observables P̂ and V̂✓ ,
in terms of predictability and visibility, are

M1(P̂) = 1 + P
2

, (13)

M1(V̂ ✓ ) = 1 + V
2

. (14)

Replacing these probabilities in (A.3) and setting c = 1/
p

2,
we attain the situation of complementary operators. Thus, we
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have been provided. Our goal here is to shed some light
on this discussion. We first revisit the link between the
duality relation (equation (1)) and the Schrödinger–Robertson
(SR) variance-based uncertainty inequalities. Having at
our disposal other uncertainty relations (URs), such as
the Landau–Pollak (LP) one and those based on Rényi
entropic measures, it is interesting to address the question
of their relationship with (1). We find equivalence in the
former case but not in the latter. Indeed, for entropy-based
uncertainty inequalities, regimes with distinct qualitative
behavior arise according to the different possible values of
the entropic parameter. This can be used for detecting special
minimum-uncertainty states. The origin of these regimes
(already noted in [12]) is not yet clearly understood. Our
present discussion delves deeply into the nature of these
regimes and may contribute to a better understanding of Rényi
entropic measures.

The outline of this paper is as follows. In section 2
we review, for double-slit-like experiments, the derivation
of the duality relation (1) and the discussion on which are
the relevant operators that account for path information and
fringe visibility. In section 3, we address the problem of
linkage between CP and UP. After revisiting the equivalence
of (1) to the uncertainty inequality prescribed by SR (choosing
different pairs of observables), we provide a demonstration
of equivalence for the LP case. Additionally, we introduce
the analysis of entropic uncertainty inequalities showing that
they are not equivalent to the complementarity relation posed
by equation (1). After stating clearly the meaning of this
non-equivalence, in section 4 we show that, due to this
fact, the entropic uncertainty inequalities yield non-trivial
information about the system. This is shown by studying
states that saturate the UR. We discuss the meaning of
the different regimes which appear depending on the value
of the entropic parameter and comment on their potential
applicability for informational purposes. Some conclusions
are drawn in section 5. For self-consistency, we include in the
appendix a summary of various quantitative formulations of
the UP, by employing variances as well as entropic and other
measures.

2. The Mach–Zehnder interferometer scheme and
the complementarity relation

The MZ interferometer (see figure 1) is a device that has been
used in several branches of physics, in particular, for the study
of the CP. In that context, an important quantity is the ‘which
way’ information, which is quantified by the predictability P
defined as P = 2L � 1, where L = max{w+, w�} and w+ and
w� are the probabilities of the particle taking path ‘+’ or path
‘�’, respectively. On the other hand, the fringe visibility is
quantified via a natural extension of the usual measure for
intensity of light, that is, V = pmax�pmin

pmax+pmin
where p stands for

the probability that the particle be detected in some position
in space, with pmax and pmin denoting, respectively, the
maximum and minimum of this probability. The quantitative
formulation of CP for the MZ-interferometer scheme is the
celebrated duality relation given by equation (1) [5, 6], where
the equals sign holds (only) for pure states. This relation was
also implicitly alluded to in [13, 14].

Figure 1. A source emits a photon which, after passing through the
beam splitter BS1, splits into paths ‘+’ and ‘�’. It reflects in mirrors
M1 and M2 and is finally observed using detectors D1 and D2. A
phase shifter PS and another beam splitter BS2 may be inserted into
the setup in order to produce interference.

The MZ interferometer, having two relevant spatial
modes, can be represented by a two-dimensional Hilbert
space spanned for instance by the set {|0i, |1i}, which is
the so-called computational basis. States |0i and |1i are
eigenstates of the Pauli spin operator �z , representing the two
paths. We use the Bloch representation to describe quantum
density operators, namely

⇢ = I + Es · E�
2

, (2)

where E� = (�x , �y, �z) denote the Pauli matrices, I is the 2 ⇥
2 identity matrix and Es = (sx , sy, sz) is the Bloch vector (with
kEsk61) that characterizes the state of the system. The action
of a 50 : 50 beam splitter can be described by the unitary
transformation UBS = e�i⇡�y/4, which implies a rotation of
⇡/2 of the Bloch vector around the y-axis. A phase shifter
introduces a phase difference � between the paths, and it is
formally represented by the unitary operator U� = e�i��z/2.

Following [9], a single sharp observable P̂ can be
associated with predictability, while two families of sharp
observables V̂� and V̂ ?

� can be associated with visibility. It is
possible to express these operators in terms of the Pauli spin
ones as

P̂ = �z, (3)

V̂� = (cos �) �x + (sin �) �y, (4)

V̂ ?
� = � (sin �) �x + (cos �) �y (5)

with � ranging, in principle, between 0 and 2⇡ . Note that P̂ ,
V̂� and V̂ ?

� are (for each �) a set of mutually complementary
observables, that is, if one is certain about the value of one
observable, then maximum ignorance reigns concerning the
value of any of the other two. We mention that an alternative
definition for visibility that could be used is the one given
in [11].

For a system in state ⇢ with Bloch vector Es, equation (2),
the predictability P is given by

P = |hP̂i| = |sz|.
The visibility V can be derived either from observable

V̂� or from V̂ ?
� by properly choosing the parameter �. Using

an alternative representation for the density ⇢ as
⇣

!+ r e�i✓

r ei✓ !�

⌘
,

2
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have been provided. Our goal here is to shed some light
on this discussion. We first revisit the link between the
duality relation (equation (1)) and the Schrödinger–Robertson
(SR) variance-based uncertainty inequalities. Having at
our disposal other uncertainty relations (URs), such as
the Landau–Pollak (LP) one and those based on Rényi
entropic measures, it is interesting to address the question
of their relationship with (1). We find equivalence in the
former case but not in the latter. Indeed, for entropy-based
uncertainty inequalities, regimes with distinct qualitative
behavior arise according to the different possible values of
the entropic parameter. This can be used for detecting special
minimum-uncertainty states. The origin of these regimes
(already noted in [12]) is not yet clearly understood. Our
present discussion delves deeply into the nature of these
regimes and may contribute to a better understanding of Rényi
entropic measures.

The outline of this paper is as follows. In section 2
we review, for double-slit-like experiments, the derivation
of the duality relation (1) and the discussion on which are
the relevant operators that account for path information and
fringe visibility. In section 3, we address the problem of
linkage between CP and UP. After revisiting the equivalence
of (1) to the uncertainty inequality prescribed by SR (choosing
different pairs of observables), we provide a demonstration
of equivalence for the LP case. Additionally, we introduce
the analysis of entropic uncertainty inequalities showing that
they are not equivalent to the complementarity relation posed
by equation (1). After stating clearly the meaning of this
non-equivalence, in section 4 we show that, due to this
fact, the entropic uncertainty inequalities yield non-trivial
information about the system. This is shown by studying
states that saturate the UR. We discuss the meaning of
the different regimes which appear depending on the value
of the entropic parameter and comment on their potential
applicability for informational purposes. Some conclusions
are drawn in section 5. For self-consistency, we include in the
appendix a summary of various quantitative formulations of
the UP, by employing variances as well as entropic and other
measures.

2. The Mach–Zehnder interferometer scheme and
the complementarity relation

The MZ interferometer (see figure 1) is a device that has been
used in several branches of physics, in particular, for the study
of the CP. In that context, an important quantity is the ‘which
way’ information, which is quantified by the predictability P
defined as P = 2L � 1, where L = max{w+, w�} and w+ and
w� are the probabilities of the particle taking path ‘+’ or path
‘�’, respectively. On the other hand, the fringe visibility is
quantified via a natural extension of the usual measure for
intensity of light, that is, V = pmax�pmin

pmax+pmin
where p stands for

the probability that the particle be detected in some position
in space, with pmax and pmin denoting, respectively, the
maximum and minimum of this probability. The quantitative
formulation of CP for the MZ-interferometer scheme is the
celebrated duality relation given by equation (1) [5, 6], where
the equals sign holds (only) for pure states. This relation was
also implicitly alluded to in [13, 14].

Figure 1. A source emits a photon which, after passing through the
beam splitter BS1, splits into paths ‘+’ and ‘�’. It reflects in mirrors
M1 and M2 and is finally observed using detectors D1 and D2. A
phase shifter PS and another beam splitter BS2 may be inserted into
the setup in order to produce interference.

The MZ interferometer, having two relevant spatial
modes, can be represented by a two-dimensional Hilbert
space spanned for instance by the set {|0i, |1i}, which is
the so-called computational basis. States |0i and |1i are
eigenstates of the Pauli spin operator �z , representing the two
paths. We use the Bloch representation to describe quantum
density operators, namely

⇢ = I + Es · E�
2

, (2)

where E� = (�x , �y, �z) denote the Pauli matrices, I is the 2 ⇥
2 identity matrix and Es = (sx , sy, sz) is the Bloch vector (with
kEsk61) that characterizes the state of the system. The action
of a 50 : 50 beam splitter can be described by the unitary
transformation UBS = e�i⇡�y/4, which implies a rotation of
⇡/2 of the Bloch vector around the y-axis. A phase shifter
introduces a phase difference � between the paths, and it is
formally represented by the unitary operator U� = e�i��z/2.

Following [9], a single sharp observable P̂ can be
associated with predictability, while two families of sharp
observables V̂� and V̂ ?

� can be associated with visibility. It is
possible to express these operators in terms of the Pauli spin
ones as

P̂ = �z, (3)

V̂� = (cos �) �x + (sin �) �y, (4)

V̂ ?
� = � (sin �) �x + (cos �) �y (5)

with � ranging, in principle, between 0 and 2⇡ . Note that P̂ ,
V̂� and V̂ ?

� are (for each �) a set of mutually complementary
observables, that is, if one is certain about the value of one
observable, then maximum ignorance reigns concerning the
value of any of the other two. We mention that an alternative
definition for visibility that could be used is the one given
in [11].

For a system in state ⇢ with Bloch vector Es, equation (2),
the predictability P is given by

P = |hP̂i| = |sz|.
The visibility V can be derived either from observable

V̂� or from V̂ ?
� by properly choosing the parameter �. Using
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C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is

predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at
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In their seminal paper, Einstein, Podolsky and Rosen (EPR) show that an observer who is maxi-
mally entangled with the system to be measured can perfectly predict the outcome of two incompat-
ible measurements. This feat stands in stark contrast to Heisenberg’s uncertainty principle which
tell us that if the observer is not entangled with the system at all, then his ability to predict the
outcomes of incompatible measurements such as position and momentum is extremely limited. The
observations made by EPR and Heisenberg illustrate two extreme cases of the interplay between
entanglement and uncertainty. On the one hand, no entanglement means that measurements will
be maximally uncertain. Yet on the other hand, maximal entanglement means that there is no
more uncertainty at all. Here we show that this apparent rift can be reconciled in that it is indeed
possible to have an exact relation - an equality - between the amount of uncertainty and the amount
of entanglement.

Heisenberg’s uncertainty principle forms one of the fundamental elements of quantum mechanics. Originally proven
for measurements of position and momentum, it is one of the most striking examples of the difference between a
quantum and a classical world [1]. Uncertainty relations today are probably best known in the form given by
Robertson [2], who extended Heisenberg’s result to two arbitrary observables X and Z. More precisely, Robertson’s
relation states that when measuring the state |ψ〉 using either X or Z, then

∆X∆Z ! 1

2
|〈ψ|[X,Z]|ψ〉| , (1)

where ∆Y =
√
〈ψ|Y 2|ψ〉 − 〈ψ|Y |ψ〉2 for Y ∈ {X,Z} is the standard deviation resulting from measuring |ψ〉 with

observable Y .
In the modern day literature, uncertainty is usually measured in terms of entropies [3, 4] (see [5] for a survey). One

of the reasons this is desirable is that (1) makes no statement if |ψ〉 happens to give zero expectation on [X,Z] [4].
To see how uncertainty can be quantified in terms of entropies, let us start with a simple example. Throughout, we
let Alice (A) denote the system to be measured. For now, let us consider measuring a single qubit in the state ρA
using two incompatible measurements given by the Pauli σx or σz eigenbases. We have from [6] that for any ρA

H(K|Θ) =
1

2
[H(K|Θ = σx) +H(K|Θ = σz)] !

1

2
, (2)

where H(K|Θ = θ) = −
∑

k pk|Θ=θ log pk|Θ=θ is the Shannon entropy1 of the probability distribution over measure-
ment outcomes k ∈ {0, 1} when we perform the measurement labeled θ on the state ρA, and each measurement is
chosen with probability pθ = 1/2. To see that this is an uncertainty relation note that if one of the two entropies
is zero, then (2) tells us that the other is necessarily non-zero, i.e., there is at least some amount of uncertainty. If
we measure a dA-dimensional system A in two orthonormal bases θ0 = {|x0〉}dA

x=1 and θ1 = {|x1〉}dA
x=1 then the r.h.s.

of (2) becomes log(1/c), where c = maxx0,x1 |〈x0|x1〉|2 [6]. The largest amount of uncertainty, i.e., the largest log(1/c),
is thereby obtained when |〈x0|x1〉| = 1/

√
dA, that is, the two bases are mutually unbiased (MUB) [7].

When thinking about uncertainty, it is often illustrative to adopt the perspective of an “uncertainty game” [8, 9],
commonly used in quantum cryptography [10]. In particular, we will think about uncertainty from the perspective of
an observer called Bob holding a second system (B) whose task is to guess the outcome of the measurement on Alice’s
system successfully. Bob thereby knows ahead of time what measurements could be made and the probability that a
particular measurement setting is chosen. To help him win the game, Bob may even prepare ρA himself, and Alice
tells him which measurement she performed before he has to make his guess. The amount of uncertainty as measured
by entropies can be understood as a limit on how well Bob can guess Alice’s measurement outcome - the more difficult

∗berta@phys.ethz.ch
†pat@nus.edu.sg
‡wehner@nus.edu.sg
1 All logarithms are base 2 in this article.
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C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is

predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at
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B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,
refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.

The output distinguishability is defined by

D := 2pguess(Z|E)− 1,

where pguess(Z|E) is the probability for correctly guess-
ing the photon’s path Z at time t2 given that the exper-
imenter performs the optimally helpful measurement on
E.

To experimentally measure predictability P or more
generally output distinguishability D, the experimenter
removes BS2 and sees how well he/she can guess which
detector clicks, see Fig. ??A. (BS2 can either be phys-
ically removed or effectively removed by exploiting an-
other degree of freedom [? ].) We emphasise that this
procedure falls into the general framework of prepara-
tion uncertainty, i.e., predicting the outcomes of future
measurements.

removed

E

φ

(A)

blocker

E

φ

(B)

register

E

|0〉

φ

(C)

FIG. 2: Output, input, and register distinguishability. (A)
Output distinguishability D is measured by removing BS2

and considering the probability of guessing correctly (given
E) which detector clicks. (B) Input distinguishability Di is
measured by inserting a blocker into one of the interferome-
ter arms and considering the probability of guessing correctly
(given E and also C) which arm was unblocked. (C) Register
distinguishability DR is measured by copying the path infor-
mation at time t1 to a register R, via a controlled-not gate,
and then considering the probability of guessing correctly the
measurement outcome on R.

3. Input distinguishability

A conceptually different notion of distinguishability is
depicted in Fig. ??B. Here, one fixes the output mea-
surement of the interferometer and asks how well it can
distinguish between two equally possible inputs to the in-
terferometer. The two inputs are states of definite path,
|0〉 or |1〉, and these are generated by simply blocking
the opposite arm of the interferometer. One can imagine
this as a game, where Bob controls the blocker and Alice
has control over both E and the detectors, Bob flips a
coin to determine which path he will block, and Alice’s
goal is to guess what Bob did. The relevant parameter
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C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is

predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at

Consider	
  again:	
  

Phys. Scr. 87 (2013) 065002 G M Bosyk et al

Figure 2. The constraint P2 + V 2 = 1 (solid line) and contour plots (dashed lines) of the sum of Rényi q-entropies for two representative
entropic indices: (a) q = 1 (Shannon entropy) and (b) q = 2 (collision entropy). The values chosen for the entropy sum are indicated next to
each contour line: 1, 2H1(1/

p
2) ⇡ 0.833 (left inset only), ln 2 ⇡ 0.693 and 2H2(1/

p
2) ⇡ 0.576 (right inset only).
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Squaring both sides of this inequality and regrouping terms
conveniently, we immediately arrive at the relation

(1 � P2)(1 � V 2)> (PV )2, (16)

which coincides with (12) for � = ✓ and, as mentioned
before, can be easily recast in the fashion P2 + V 2 6 1.
This implies that the duality relation (1) can be deduced
from the LP inequality, and vice versa. As a consequence,
full correspondence between SR and LP URs is obtained,
a remarkable fact that is not valid for general pairs of
observables.

3.3. Non-equivalence between the P–V duality relation and
entropic uncertainty inequalities

Having clarified the above equivalences, we now consider the
problem of elucidating the connection between entropic URs
(EURs) and the duality relation (1). For an arbitrary state ⇢,
the expressions for the Rényi q-entropies (A.4) corresponding
to P̂ and V̂✓ are

Hq(P) = 1
1 � q

ln
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where, to simplify notation, we have renamed Hq(P̂; ⇢) ⌘
Hq(P) and Hq(V̂✓ ; ⇢) ⌘ Hq(V ).

For our purposes, we must first find the minimum of the
sum of these Rényi entropies over all available states, that is,
min

⇢
{Hq(P̂; ⇢) + Hq(V̂✓ ; ⇢)}. This constitutes the application

of the UR (A.5) for the P–V case of MZ interferometry.
Appealing to the concavity property of Rényi entropy when

q 2 (0, 2], we can restrict our calculations to pure states and
then the constrained minimization problem can be recast in
the fashion

min
P2+V 2=1

{Hq(P) + Hq(V )} (19)

for every value of q . The final expressions for the EURs take
the form

Hq(P) + Hq(V )> Bq ⌘
(

ln 2 if 0<q6q⇤,
2

1�q ln
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p

2
2
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⌘qi
if q⇤<q62,

(20)

where q⇤ ⇡ 1.4316 is obtained by solving (numerically) the
equation 2Hq⇤(1/

p
2) = ln 2. Concerning the optimal P–V

values, it is seen that three qualitatively different regimes
appear:

(i) for 0 < q < q⇤: the minimum sum is attained at V = 0
and P = 1 or V = 1 and P = 0;

(ii) at q = q⇤: the minimum value corresponds to the cases
V = 0 and P = 1, V = 1 and P = 0 or V = P = 1/

p
2;

(iii) for q⇤ < q 6 2: the minimum sum is attained at V = P =
1/

p
2.

In figure 2 we display, in the V –P plane, the constraint
P2 + V 2 = 1 together with several contour lines for the sum
of Rényi q-entropies corresponding to two representative
values of the entropic parameter, in regimes (i) and (iii)
mentioned above. In both cases the contour lines correspond
to decreasing values toward the origin. In case (i), ln 2 is the
minimum-value contour line that intersects (tangentially) the
constraint, at the points (V, P) = (0, 1) or (V, P) = (1, 0).
In case (iii), the curve P2 + V 2 = 1 is intersected by the
minimum-value contour line Hq(P) + Hq(V ) = 2Hq(1/

p
2)

precisely at (V, P) = (1/
p

2, 1/
p

2).
Let us now show that the duality relation cannot be

deduced, in a way analogous to the case of SR and LP, from
an EUR of the form (20). From the point of view of the values
that P and V can take, equations (1) and (12) are equivalent,
i.e. they represent the same inequality, but written in different
forms. The same can be said about the relationship between
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sum of these Rényi entropies over all available states, that is,
min

⇢
{Hq(P̂; ⇢) + Hq(V̂✓ ; ⇢)}. This constitutes the application

of the UR (A.5) for the P–V case of MZ interferometry.
Appealing to the concavity property of Rényi entropy when
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Previously we showed that wave-particle duality is a special case of entropic uncertainty, and we
noted that the latter provides a powerful framework from which to derive novel wave-particle duality
relations (WPDRs). Here we give a more detailed treatment, further laying out the foundations of
our entropic framework for WPDRs. We treat several interesting examples, such as asymmetric and
quantum beam splitters, quantum which-way detectors, and polarisation-enhanced visibility.
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C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is

predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at
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A. Mach-Zehnder

Z = {|0〉, |1〉}

H∞(P ) +H1/2(V ) ! 1

2

H∞(P ) = 1− log(1 + P)

H1/2(V ) = log
(
1 +

√
1− V2

)

To illustrate this, we consider the celebrated Mach-
Zehnder interferometer, shown schematically in Fig. 1. In
the simplest case one sends in a single photon towards a
50/50 (i.e., symmetric) beam splitter, BS1, which results
in the state |+〉 = (|0〉 + |1〉)/

√
2, where Z = {|0〉, |1〉}

is the which-path basis, then a phase φ is applied to the
lower arm giving the state (|0〉+ eiφ|1〉)/

√
2. Finally the

two paths are recombined on a second 50/50 beam split-
ter BS2 and the output modes are detected by detectors
D0 and D1. Visibility is then defined as

V =
p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.

B. Quantum beam splitters

C. Quantum which-way detectors

IV. MEASURES OF WAVE AND PARTICLE
BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.

B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,
refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.

The output distinguishability is defined by

D := 2pguess(Z|E)− 1,

where pguess(Z|E) is the probability for correctly guess-
ing the photon’s path Z at time t2 given that the exper-
imenter performs the optimally helpful measurement on
E.

To experimentally measure predictability P or more
generally output distinguishability D, the experimenter
removes BS2 and sees how well he/she can guess which
detector clicks, see Fig. 2A. (BS2 can either be phys-
ically removed or effectively removed by exploiting an-
other degree of freedom [? ].) We emphasise that this
procedure falls into the general framework of prepara-
tion uncertainty, i.e., predicting the outcomes of future
measurements.
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where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
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ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
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In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.

B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,
refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.

The output distinguishability is defined by

D := 2pguess(Z|E)− 1,

where pguess(Z|E) is the probability for correctly guess-
ing the photon’s path Z at time t2 given that the exper-
imenter performs the optimally helpful measurement on
E.

To experimentally measure predictability P or more
generally output distinguishability D, the experimenter
removes BS2 and sees how well he/she can guess which
detector clicks, see Fig. 2A. (BS2 can either be phys-
ically removed or effectively removed by exploiting an-
other degree of freedom [? ].) We emphasise that this
procedure falls into the general framework of prepara-
tion uncertainty, i.e., predicting the outcomes of future
measurements.
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Goals	
  of	
  our	
  work	
  
1.)	
  Unify	
  a	
  vast	
  literature	
  on	
  WPDRs.	
  Many	
  complicated	
  versions	
  of	
  WPDRs	
  
have	
  been	
  formulated,	
  for	
  scenarios	
  involving	
  asymmetric	
  beam	
  spliIers,	
  
quantum	
  beam	
  spliIers,	
  and	
  photon	
  polariza2on	
  interac2ons.	
  We	
  show	
  that	
  
all	
  these	
  WPDRs	
  correspond	
  to	
  special	
  cases	
  of	
  a	
  single	
  inequality.	
  

2.)	
  Show	
  where	
  WPDRs	
  come	
  from.	
  Namely,	
  show	
  that	
  they	
  come	
  from	
  the	
  
entropic	
  uncertainty	
  rela2on	
  (EUR)	
  for	
  the	
  min-­‐	
  and	
  max-­‐entropies.	
  Hence	
  
we	
  unify	
  the	
  entropic	
  uncertainty	
  principle	
  with	
  the	
  wave-­‐par2cle	
  duality	
  
principle.	
  
	
  
3.)	
  Provide	
  a	
  general,	
  robust	
  framework	
  for	
  discussing	
  WPDRs	
  and	
  deriving	
  
novel	
  WPDRs.	
  Once	
  WPDRs	
  are	
  reformulated	
  as	
  EURs,	
  it	
  becomes	
  obvious	
  
how	
  to	
  apply	
  them	
  to	
  novel	
  interferometric	
  models.	
  It	
  becomes	
  clear	
  that	
  you	
  
can	
  simply	
  condi2on	
  the	
  entropy	
  terms	
  on	
  various	
  degrees	
  of	
  freedom	
  and	
  
the	
  rela2on	
  s2ll	
  holds.	
  We	
  illustrate	
  this	
  by	
  deriving	
  a	
  novel	
  WPDR	
  for	
  a	
  
quantum	
  beam	
  spliIter.	
  

4.)	
  Emphasize	
  the	
  dis2nc2on	
  between	
  prepara2on	
  WPDRs	
  and	
  
measurement	
  WPDRs.	
  That	
  is,	
  we	
  emphasize	
  that	
  EURs	
  can	
  be	
  applied	
  in	
  
two	
  conceptually	
  different	
  ways.	
  



Main	
  Result	
  
For	
  a	
  two-­‐path	
  interferometer	
  for	
  single	
  quantons,	
  we	
  iden2fy	
  par2cle	
  and	
  
wave	
  behaviors	
  with	
  the	
  knowledge	
  of	
  specific	
  (complementary)	
  qubit	
  
observables,	
  or	
  lack	
  of	
  behavior	
  with	
  ignorance,	
  as	
  quan2fied	
  by	
  the	
  min-­‐	
  and	
  
max-­‐entropies	
  commonly	
  used	
  in	
  quantum	
  informa2on	
  theory	
  (e.g.,	
  QKD).	
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vided by EURs is highly robust, and entropies have well-
characterized statistical meanings. Note that current ap-
proaches to deriving WPDRs often involve brute force
calculation of the quantities one aims to bound; there
is no general, elegant method currently in use. Our ap-
proach simply involves judicial application of the rele-
vant uncertainty relation. What’s more, we emphasize
that uncertainty relations can be applied to interferome-
ters in two different ways. One involves the principle of
preparation uncertainty, which says that a quantum state
cannot be prepared having low uncertainty for two com-
plementary observables, and it turns out this principle is
the one relevant to (1). The other involves the principle
of measurement uncertainty, which says that two com-
plementary observables cannot be jointly measured, and
we discuss why this principle is actually what was tested
in some recent interferometry experiments [29, 32]. Joint
measurability in the context of interferometers was also
discussed in [7, 33].

RESULTS

Our unified view associates a kind of behavior with the
availability of a kind of information, or lack of behavior
with missing information, as follows:

lack of particle behavior:H
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quantons, the sum of the ignorances about the particle
and wave behaviors is lower bounded by 1 (i.e., 1 bit).

To be clear, (2) is explicitly an entropic uncertainty
relation. The fact that it can be thought of as a WPDR,
and furthermore that it encompasses the majority of WP-
DRs found in the literature for two-path single-quanton
interferometers, is our result.
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may then obtain some which-path information, e.g., E could
be a gas of atoms whose internal states are affected by the
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applied to the lower arm and the two beams are recombined
on a second beam splitter.
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, which results
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detector DC clicks, with C 2 {0, 1}. In this trivial ex-
ample one has V = 1. However many more complicated
situations, for which the analysis is more interesting, have
been considered in the extensive literature; we now illus-
trate how these situations fall under the umbrella of our
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 ! 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)
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Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at

4

path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 ! 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 ! 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
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C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility
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√
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R)
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D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is

predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures
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ibility, is defined as
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p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
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2 and |w1〉 = (|0〉−eiφ|1〉)/

√
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probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
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1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 ! 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 ! 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
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Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system

4

path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Hmin(Z|E)t2 = 1− log(1 +D)

min
W∈XY

Hmax(W )t2 = log(1 +
√
1− V2)

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 ! 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 ! 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
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particle duality in [? ] focused on the predictability of
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ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
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predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
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Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives
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Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
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probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
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D := 2pguess(Z|E)t2 − 1

Hmin(Z|E)t2 = 1− log(1 +D)
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Hmax(W )t2 ! 1

Hmin(Z|E)t2 + min
W∈XY
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Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
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inequivalent to a family of EURs involving Rényi en-
tropies, hence one gets the impression that entropic un-
certainty is different from wave-particle duality, although
Ref. [35] did not consider the EUR (2) involving the
min- and max-entropies. For an arbitrary probability
distribution P = {pj}, the unconditional min- and max-
entropies are given by H

min

(P ) = � logmaxj pj and
H

max

(P ) = 2 log
P

j

p
pj [45]. We find that Eq. (4) is

equivalent to

H
min

(Z) + min
W2XY

H
max

(W ) > 1, (5)

where the entropy terms are evaluated for the state at
any time while the photon is inside the interferometer.
It is straightforward to see that H

min

(Z) = � log 1+P
2

and in the Methods we prove that

min
W2XY

H
max

(W ) = log(1 +
p
1� V2). (6)

Plugging these relations into (5) gives (4).
D-V relation.—Let us move on to a more general and

more interesting scenario where, in addition to prior
which-path knowledge, one may obtain further which-
path knowledge during the experiment due to the inter-
action of the photon with some environment E, which
may act as a which-way detector. Most generally the
interaction is given by a completely positive trace pre-
serving (CPTP) map E , with the input system being S
at time t

1

and output systems being S and E at time
t
2

, see Fig. 1. The final state is ⇢(2)SE = E(⇢(1)S ), where
we use the superscripts (1) and (2) to indicate the states
at times t

1

and t
2

. We do not require E to have any
special form in order to derive our WPDR, so our treat-
ment is slightly more general than [2], which derived (1)
assuming the interaction is a path-preserving controlled
unitary.

The path distinguishability is defined by D :=
2p

guess

(Z|E) � 1, where p
guess

(Z|E) is the probability
for correctly guessing the photon’s path Z at time t

2

given that the experimenter performs the optimally help-
ful measurement on E. We find that (1) is equivalent to

H
min

(Z|E) + min
W2XY

H
max

(W ) > 1, (7)

where the entropy terms are evaluated for the state
⇢(2)SE . First, it is obvious from the operational mean-
ing of the conditional min-entropy [27] that we have
H

min

(Z|E) = � log p
guess

(Z|E) = � log 1+D
2

, and second
we use our result (6) to rewrite (7) as (1). We remark
that (1) and its entropic form (7) do not require BS

1

to
be symmetric. This fact was emphasized in [2], hence we
think of D as accounting for both the prior Z knowledge
associated with the asymmetry of BS

1

as well as the Z
information gained from E. Also, the power of our ap-
proach should be clear from the fact that, unlike some
previous approaches, we did not have to explicitly state
the form of E to derive the WPDR.
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FIG. 2: Output versus input distinguishability. (A) Output
distinguishability D is measured by removing BS2 and consid-
ering the probability of guessing correctly (given E) which de-
tector will click. (B) Input distinguishability Di is measured
by inserting a blocker into one of the interferometer arms and
considering the probability of guessing correctly (given E and
also C) which arm was blocked.

We now wish to make an important remark. The above
analysis shows that Eqs. (1) and (4) correspond to apply-
ing the preparation uncertainty relation at time t

2

(just
before the photon reaches BS

2

). Preparation uncertainty
restricts one’s ability to predict the outcomes of future

measurements of complementary observables. Thus, to
experimentally measure the quantity P or more gener-
ally D, the experimenter removes BS

2

and sees how well
he/she can guess which detector clicks, see Fig. 2A. (BS

2

can either be physically removed or effectively removed
by exploiting another degree of freedom [28].) Of course,
to then measure V, the experimenter reinserts BS

2

in or-
der to close the interferometer. (The fact that the appa-
ratus must be modified to measure V versus D is one way
of stating Bohr’s complementarity principle.) Our point
of emphasis is that this procedure falls into the general
framework of preparation uncertainty.

Measurement uncertainty

On the other hand, uncertainty relations can be ap-
plied in a conceptually different way. Instead of two
complementary output measurements and a fixed input
state, consider a fixed output measurement and two com-
plementary sets of input states. Namely consider the in-
put ensembles Zi = {|0i, |1i} and Wi = {|w±i}, where
i stands for “input" and |w±i = (|0i ± ei�|1i)/p2 (see
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FIG. 2: Output, input, and register distinguishability. (A)
Output distinguishability D is measured by removing BS2

and considering the probability of guessing correctly (given
E) which detector clicks. (B) Input distinguishability Di is
measured by inserting a blocker into one of the interferome-
ter arms and considering the probability of guessing correctly
(given E and also C) which arm was unblocked. (C) Register
distinguishability DR is measured by copying the path infor-
mation at time t1 to a register R, via a controlled-not gate,
and then considering the probability of guessing correctly the
measurement outcome on R.

goal is to guess what Bob did. The relevant parameter
then is pguess(Zi|EC), which can be rewritten either as
Hmin(Zi|EC) = − log pguess(Zi|EC) or as:

Di := 2pguess(Zi|EC)− 1,

where the subscript i on Zi is used simply to emphasise
the physical scenario (i.e., that Alice is trying to guess
Bob’s input). Even though D and Di are relevant to
different physical scenarios, they become mathematically
equivalent Di = D in the special case when C provides no
which-path information (e.g., when BS2 is symmetric)
and E is path preserving (i.e., mapping the input path
observable Zi to the output path observable Z).

This random blocking procedure can be viewed as
Bob’s attempt to calibrate how good Alice’s measure-
ment device is at measuring the Z observable at time t1,
and thus, this is related to measurement uncertainty. We
emphasise that in this scenario, Alice uses her measure-
ment results to guess what Bob did in the past.

4. Register distinguishability

Finally we discuss a third notion of distinguishability
that is closely related to input distinguishability. In an
abstract sense, it is actually a generalisation of input dis-
tinguishability, but in a concrete sense it represents a
different physical procedure.

The procedure involves first copying the path informa-
tion, at time t1, to a quantum register R. This is done
by preparing R in the |0〉 state and then performing a
controlled-not gate between S and R, which is schemati-
cally depicted in Fig. 2C. Finally one measures R in the
standard basis, and one considers the probability of cor-
rectly guessing this measurement’s outcome, given access
to E and C. We call this register distinguishability, de-
fined by

DR = 2pguess(ZR|EC)− 1,

where ZR is the standard basis observable on R.
The connection to input distinguishability is as follows.

Obtaining a particular outcome j for ZR corresponds to
sending the path eigenstate |j〉 through the interferom-
eter; however, note that in general the probability dis-
tribution for j is non-uniform. Input distinguishability
refers to the special case where this probability distribu-
tion is uniform, so DR is a generalisation. The nature of
this generalisation is quite interesting because, in some
sense, it attempts to bridge the gap between preparation
and measurement uncertainty. The fact that the distri-
bution may be non-uniform means we may have prior
knowledge of Z that helps us to guess a future measure-
ment outcome - this is the preparation uncertainty pic-
ture. On the other hand, we still have the view that
Bob is using the Z input states to calibrate Alice’s mea-
surement device - this is the measurement uncertainty
picture. Thus, register distinguishability can be viewed
as an attempt to unify the two pictures. Indeed if E is
path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

blocker

E
φ

(B) Input
distinguishability

Which was
blocked?

Guessing	
  game	
  
The	
  Zi	
  states	
  are	
  generated	
  by	
  Bob	
  flipping	
  a	
  coin	
  and	
  blocking	
  either	
  
the	
  top	
  or	
  boIom	
  arm	
  depending	
  on	
  flip	
  outcome.	
  Alice	
  tries	
  to	
  guess	
  
Bob’s	
  coin	
  flip,	
  given	
  E	
  and	
  given	
  which	
  detector	
  clicks,	
  denoted	
  by	
  C.	
  



Prepara2on	
  vs.	
  Measurement	
  
Uncertainty	
  

removed

E
φ

(A) Output
distinguishability

Which will
click?

4

path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

D := 2pguess(Z|E)t2 − 1

Hmin(Z|E)t2 = 1− log(1 +D)

min
W∈XY

Hmax(W )t2 = log(1 +
√
1− V2)

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 ! 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 ! 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
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Previously we showed that wave-particle duality is a special case of entropic uncertainty, and we
noted that the latter provides a powerful framework from which to derive novel wave-particle duality
relations (WPDRs). Here we give a more detailed treatment, further laying out the foundations of
our entropic framework for WPDRs. We treat several interesting examples, such as asymmetric and
quantum beam splitters, quantum which-way detectors, and polarisation-enhanced visibility.
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III. INTERFEROMETER MODELS

A. Mach-Zehnder

To illustrate this, we consider the celebrated Mach-
Zehnder interferometer, shown schematically in Fig. ??.
In the simplest case one sends in a single photon towards
a 50/50 (i.e., symmetric) beam splitter, BS1, which re-
sults in the state |+〉 = (|0〉 + |1〉)/

√
2, where Z =

{|0〉, |1〉} is the which-path basis, then a phase φ is ap-
plied to the lower arm giving the state (|0〉+ eiφ|1〉)/

√
2.

Finally the two paths are recombined on a second 50/50
beam splitter BS2 and the output modes are detected by
detectors D0 and D1. Visibility is then defined as

V =
p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.

BS1

BS2

|0〉

|1〉

D0

D1

E

t1 t2

φ

FIG. 1: Mach-Zehnder interferometer for single photons.
Identifying Z = {|0〉, |1〉} as the which-path basis, a super-
position of these states is created at time t1. An environment
E may then obtain some which-path information. Finally at
time t2 a phase shift φ is applied to the lower arm and the
two beams are recombined on a second beam splitter.

B. Quantum beam splitters

C. Quantum which-way detectors

IV. MEASURES OF WAVE AND PARTICLE
BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.
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FIG. 2: Output, input, and register distinguishability. (A)
Output distinguishability D is measured by removing BS2

and considering the probability of guessing correctly (given
E) which detector clicks. (B) Input distinguishability Di is
measured by inserting a blocker into one of the interferome-
ter arms and considering the probability of guessing correctly
(given E and also C) which arm was unblocked. (C) Register
distinguishability DR is measured by copying the path infor-
mation at time t1 to a register R, via a controlled-not gate,
and then considering the probability of guessing correctly the
measurement outcome on R.

goal is to guess what Bob did. The relevant parameter
then is pguess(Zi|EC), which can be rewritten either as
Hmin(Zi|EC) = − log pguess(Zi|EC) or as:

Di := 2pguess(Zi|EC)− 1,

where the subscript i on Zi is used simply to emphasise
the physical scenario (i.e., that Alice is trying to guess
Bob’s input). Even though D and Di are relevant to
different physical scenarios, they become mathematically
equivalent Di = D in the special case when C provides no
which-path information (e.g., when BS2 is symmetric)
and E is path preserving (i.e., mapping the input path
observable Zi to the output path observable Z).

This random blocking procedure can be viewed as
Bob’s attempt to calibrate how good Alice’s measure-
ment device is at measuring the Z observable at time t1,
and thus, this is related to measurement uncertainty. We
emphasise that in this scenario, Alice uses her measure-
ment results to guess what Bob did in the past.

4. Register distinguishability

Finally we discuss a third notion of distinguishability
that is closely related to input distinguishability. In an
abstract sense, it is actually a generalisation of input dis-
tinguishability, but in a concrete sense it represents a
different physical procedure.

The procedure involves first copying the path informa-
tion, at time t1, to a quantum register R. This is done
by preparing R in the |0〉 state and then performing a
controlled-not gate between S and R, which is schemati-
cally depicted in Fig. 2C. Finally one measures R in the
standard basis, and one considers the probability of cor-
rectly guessing this measurement’s outcome, given access
to E and C. We call this register distinguishability, de-
fined by

DR = 2pguess(ZR|EC)− 1,

where ZR is the standard basis observable on R.
The connection to input distinguishability is as follows.

Obtaining a particular outcome j for ZR corresponds to
sending the path eigenstate |j〉 through the interferom-
eter; however, note that in general the probability dis-
tribution for j is non-uniform. Input distinguishability
refers to the special case where this probability distribu-
tion is uniform, so DR is a generalisation. The nature of
this generalisation is quite interesting because, in some
sense, it attempts to bridge the gap between preparation
and measurement uncertainty. The fact that the distri-
bution may be non-uniform means we may have prior
knowledge of Z that helps us to guess a future measure-
ment outcome - this is the preparation uncertainty pic-
ture. On the other hand, we still have the view that
Bob is using the Z input states to calibrate Alice’s mea-
surement device - this is the measurement uncertainty
picture. Thus, register distinguishability can be viewed
as an attempt to unify the two pictures. Indeed if E is
path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

Input	
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Vi := max
W∈XY

(
pw+|D0

− pw−|D0

)

Vi = max
W∈XY

[Pr(W = w+ |C = 0)−Pr(W = w− |C = 0)]

Z = {|0〉, |1〉}

H∞(P ) +H1/2(V ) ! 1

H∞(P ) = 1− log(1 + P)

H1/2(V ) = log
(
1 +

√
1− V2

)

H∞(P ) → Hmin(Z)

H1/2(V ) → Hmax(W )

To illustrate this, we consider the celebrated Mach-
Zehnder interferometer, shown schematically in Fig. 1. In
the simplest case one sends in a single photon towards a
50/50 (i.e., symmetric) beam splitter, BS1, which results
in the state |+〉 = (|0〉 + |1〉)/

√
2, where Z = {|0〉, |1〉}

is the which-path basis, then a phase φ is applied to the
lower arm giving the state (|0〉+ eiφ|1〉)/

√
2. Finally the

two paths are recombined on a second 50/50 beam split-
ter BS2 and the output modes are detected by detectors
D0 and D1. Visibility is then defined as

V =
p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.

B. Quantum beam splitters

C. Quantum which-way detectors

IV. MEASURES OF WAVE AND PARTICLE
BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and

wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.

B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,
refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.
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FIG. 2: Output, input, and register distinguishability. (A)
Output distinguishability D is measured by removing BS2

and considering the probability of guessing correctly (given
E) which detector clicks. (B) Input distinguishability Di is
measured by inserting a blocker into one of the interferome-
ter arms and considering the probability of guessing correctly
(given E and also C) which arm was unblocked. (C) Register
distinguishability DR is measured by copying the path infor-
mation at time t1 to a register R, via a controlled-not gate,
and then considering the probability of guessing correctly the
measurement outcome on R.

goal is to guess what Bob did. The relevant parameter
then is pguess(Zi|EC), which can be rewritten either as
Hmin(Zi|EC) = − log pguess(Zi|EC) or as:

Di := 2pguess(Zi|EC)− 1,

where the subscript i on Zi is used simply to emphasise
the physical scenario (i.e., that Alice is trying to guess
Bob’s input). Even though D and Di are relevant to
different physical scenarios, they become mathematically
equivalent Di = D in the special case when C provides no
which-path information (e.g., when BS2 is symmetric)
and E is path preserving (i.e., mapping the input path
observable Zi to the output path observable Z).

This random blocking procedure can be viewed as
Bob’s attempt to calibrate how good Alice’s measure-
ment device is at measuring the Z observable at time t1,
and thus, this is related to measurement uncertainty. We
emphasise that in this scenario, Alice uses her measure-
ment results to guess what Bob did in the past.

4. Register distinguishability

Finally we discuss a third notion of distinguishability
that is closely related to input distinguishability. In an
abstract sense, it is actually a generalisation of input dis-
tinguishability, but in a concrete sense it represents a
different physical procedure.

The procedure involves first copying the path informa-
tion, at time t1, to a quantum register R. This is done
by preparing R in the |0〉 state and then performing a
controlled-not gate between S and R, which is schemati-
cally depicted in Fig. 2C. Finally one measures R in the
standard basis, and one considers the probability of cor-
rectly guessing this measurement’s outcome, given access
to E and C. We call this register distinguishability, de-
fined by

DR = 2pguess(ZR|EC)− 1,

where ZR is the standard basis observable on R.
The connection to input distinguishability is as follows.

Obtaining a particular outcome j for ZR corresponds to
sending the path eigenstate |j〉 through the interferom-
eter; however, note that in general the probability dis-
tribution for j is non-uniform. Input distinguishability
refers to the special case where this probability distribu-
tion is uniform, so DR is a generalisation. The nature of
this generalisation is quite interesting because, in some
sense, it attempts to bridge the gap between preparation
and measurement uncertainty. The fact that the distri-
bution may be non-uniform means we may have prior
knowledge of Z that helps us to guess a future measure-
ment outcome - this is the preparation uncertainty pic-
ture. On the other hand, we still have the view that
Bob is using the Z input states to calibrate Alice’s mea-
surement device - this is the measurement uncertainty
picture. Thus, register distinguishability can be viewed
as an attempt to unify the two pictures. Indeed if E is
path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

D := 2pguess(Z|E)t2 − 1

Hmin(Z|E)t2 = 1− log(1 +D)

min
W∈XY

Hmax(W )t2 = log(1 +
√
1− V2)

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 ! 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 ! 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
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III. INTERFEROMETER MODELS

A. Mach-Zehnder

To illustrate this, we consider the celebrated Mach-
Zehnder interferometer, shown schematically in Fig. ??.
In the simplest case one sends in a single photon towards
a 50/50 (i.e., symmetric) beam splitter, BS1, which re-
sults in the state |+〉 = (|0〉 + |1〉)/

√
2, where Z =

{|0〉, |1〉} is the which-path basis, then a phase φ is ap-
plied to the lower arm giving the state (|0〉+ eiφ|1〉)/

√
2.

Finally the two paths are recombined on a second 50/50
beam splitter BS2 and the output modes are detected by
detectors D0 and D1. Visibility is then defined as

V =
p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.
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FIG. 1: Mach-Zehnder interferometer for single photons.
Identifying Z = {|0〉, |1〉} as the which-path basis, a super-
position of these states is created at time t1. An environment
E may then obtain some which-path information. Finally at
time t2 a phase shift φ is applied to the lower arm and the
two beams are recombined on a second beam splitter.

B. Quantum beam splitters

C. Quantum which-way detectors

IV. MEASURES OF WAVE AND PARTICLE
BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and
wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.
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C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is

predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 " 1, (9)

which is a well-known WPDR, originally implied by the
work of Wooters and Zurek. An important point that
the form in (8) reveals is that the WPDR is valid for any
state ρ(2)S and hence it does not matter how the system
got to point t2, i.e., the WPDR holds regardless of the
prior dynamics. In this sense it is a general result.

The fact that this relation can be strengthened is im-
mediately obvious from the entropic form (8): we can
condition either or both of the entropy terms on addi-
tional information (i.e., other quantum systems) and the
uncertainty relation still holds. For example, prior to t2,
the system S may have interacted with an external envi-
ronment E and/or with the polarisation P - we can use
these systems to help us predict the path measurement.
Conditioning the min-entropy term on E and P gives

Hmin(Z|EP )ρ(2) + min
W∈XY

Hmax(W )ρ(2) ! 1. (10)

Equation (10) is essentially the distinguishability-
visibility relation derived by Englert and Jaeger et al.:

D2 + V2 " 1, (11)

provided we associate D = 2pguess(Z|EP )−1. One of the
striking facts is how little work we did in deriving (11):
we made no assumptions about the dynamics prior to t2,
we just applied the preparation uncertainty relation at

“Prepara2on”	
  WPDR	
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

D2
i + V2

i ! 1

D := 2pguess(Z|E)t2 − 1

Hmin(Z|E)t2 = 1− log(1 +D)

min
W∈XY

Hmax(W )t2 = log(1 +
√
1− V2)

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 " 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 " 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) " 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 ! 1, (9)
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Vi := max
W∈XY

(
pw+|D0

− pw−|D0

)

Vi = max
W∈XY

[Pr(W = w+ |C = 0)−Pr(W = w− |C = 0)]

Z = {|0〉, |1〉}

H∞(P ) +H1/2(V ) ! 1

H∞(P ) = 1− log(1 + P)

H1/2(V ) = log
(
1 +

√
1− V2

)

H∞(P ) → Hmin(Z)

H1/2(V ) → Hmax(W )

To illustrate this, we consider the celebrated Mach-
Zehnder interferometer, shown schematically in Fig. 1. In
the simplest case one sends in a single photon towards a
50/50 (i.e., symmetric) beam splitter, BS1, which results
in the state |+〉 = (|0〉 + |1〉)/

√
2, where Z = {|0〉, |1〉}

is the which-path basis, then a phase φ is applied to the
lower arm giving the state (|0〉+ eiφ|1〉)/

√
2. Finally the

two paths are recombined on a second 50/50 beam split-
ter BS2 and the output modes are detected by detectors
D0 and D1. Visibility is then defined as

V =
p0max − p0min

p0max + p0min

(1)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}. In this trivial exam-
ple one has V = 1, however we now proceed to consider
various complications that make the analysis more inter-
esting.

B. Quantum beam splitters

C. Quantum which-way detectors

IV. MEASURES OF WAVE AND PARTICLE
BEHAVIOUR

A. Detector-specific measures

In what follows we will introduce measures of parti-
cle behaviour - predictability and distinguishability - and

wave behaviour - fringe visibility. In some simple inter-
ferometer models, it turns out that we can define unique
notions of these measures in the sense that the measures
are the same regardless of which detector clicks. How-
ever, in more general interferometer models, it is possi-
ble that the measures are dependent on which detector
clicks. Thus, to give the general treatment we will need
detector-specific measures. We will use a superscript on
the measure to indicate which detector the measure refers
to, e.g., V0 (V1) will be the visibility associated with de-
tector D0 (D1) clicking. In the cases where the measure
is unique, our notation will reflect this by dropping the
superscript, e.g., we will use the symbol V whenever we
have V = V0 = V1.

B. Particle behaviour measures

1. Predictability

Predictability P is defined as the prior knowledge,
given the experimental setup, about which path the pho-
ton will take inside the interferometer. More precisely,

P := 2pguess(Z)− 1

where pguess(Z) is the probability of correctly guessing
Z. Non-trivial predictability can be obtained by choosing
BS1 to be asymmetric or more generally to be a quan-
tum beam splitter. Predictability, as the name suggests,
refers to how well the experimenter can predict the out-
come of a future Z measurement on the photon. It is
therefore inherently only relevant to the context of prepa-
ration uncertainty. Thus, we do not have a measurement
uncertainty version of predictability.

2. Output distinguishability

We will now discuss various notions of distinguisha-
bility. In our framework, the distinction between pre-
dictability and distinguishability is less important than
the distinction between the different notions of distin-
guishability. In fact, we actually view predictability as a
special case of what we call output distinguishability.

For output distinguishability we are still interested in
the question of how well we can predict a future Z mea-
surement on the photon. But now, in addition to prior
Z knowledge, one may obtain further Z knowledge dur-
ing the experiment due to the interaction of the photon
with some environment E, which may act as a which-
way detector. Most generally the interaction is given by
a completely positive trace preserving (CPTP) map E ,
with the input system being S at time t1 and output
systems being S and E at time t2. The final state is
ρ(2)SE = E(ρ(1)S ), where we use the superscripts (1) and (2)
to indicate the states at times t1 and t2.
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

D2
i + V2

i ! 1

D := 2pguess(Z|E)t2 − 1

V =
[
1−

(
min

W∈XY
2Hmax(W )t2 − 1

)2]1/2

Vi = V

Hmin(Z|E)t2 = 1− log(1 +D)

min
W∈XY

Hmax(W )t2 = log(1 +
√
1− V2)

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 " 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 " 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

D2
i + V2

i ! 1

D := 2pguess(Z|E)t2 − 1

Hmin(Z|E)t2 = 1− log(1 +D)

min
W∈XY

Hmax(W )t2 = log(1 +
√
1− V2)

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 " 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 " 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
and to be sure that we capture all of the wave behaviour
we allow φ to vary, which varies W over the XY plane.
Minimizing over the plane finds the W with the minimum
uncertainty and hence reveals the most wave behaviour;
we use the precise measure minW∈XY Hmax(W )ρ(2) .

The sum of these two uncertainties is lower-bounded
by 1 bit:

Hmin(Z)ρ(2) + min
W∈XY

Hmax(W )ρ(2) " 1. (8)

Substituting in the formulas given previously for path
predictability P and visibility V shows that (8) is equiv-
alent to:

P2 + V2 ! 1, (9)
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Fig. 1 for definition of |0i and |1i). The two Zi inputs are
generated by blocking the opposite arm of the interfer-
ometer, as in Fig. 2B, while the Wi states are generated
by applying a phase (either 0 or ⇡) to the lower arm. One
can imagine this as a game, where Bob controls the in-
put and Alice has control over both E and the detectors,
Bob flips a coin to determine which path he will block in
the case of Zi (or which phase he will apply in the case
of Wi) and Alice’s goal is to guess the outcome of Bob’s
coin flip.

It may not be common knowledge that this scenario
leads to a different class of WPDRs, therefore we illus-
trate the difference in Fig. 2. Furthermore, we refer to D
introduced above as output distinguishability, whereas in
the present scenario we use the symbol Di and call this
quantity input distinguishability, defined by

Di := 2p
guess

(Zi|EC)� 1,

where p
guess

(Zi|EC) = 2�H
min

(Zi|EC) is Alice’s probabil-
ity to correctly guess Bob’s Zi state given that she has
access to E and she knows which output detector clicks,
stored in the random variable C [46]. Likewise we define
the notion of input visibility Vi via:

Vi :=
⇥
1� �

min
W2XY

2Hmax

(Wi|C) � 1
�
2

⇤
1/2 (8)

which quantifies how well Alice can determine Wi using
C.

Now the uncertainty principle says that there is a
tradeoff: if Alice can guess the Zi states well then she
cannot guess the Wi states well, and vice-versa. In other
words, Alice’s measurement apparatus, the apparatus to
the right of the dashed line labeled t

1

in Fig. 1, can-
not jointly measure Bob’s Z and W observables. EURs
involving von Neumann entropy have previously been ap-
plied to the joint measurement scenario [22, 36], we do
the same for the min- and max-entropies to obtain

H
min

(Zi|EC) + min
W2XY

H
max

(Wi|C) > 1. (9)

This can be rewritten as an explicit WPDR:

D2

i + V2

i 6 1, (10)

which can now be applied to a variety of situations.
Quantum BS

2

.—As an interesting application of (9),
we consider the scenario proposed in [28] and imple-
mented in [29–31], where the photon’s polarisation P acts
as a control system to determine whether or not BS

2

ap-
pears in the photon’s path and hence whether the inter-
ferometer is open or closed, see Fig. 3. Since P can be
prepared in an arbitrary input state ⇢(2)P , such as a super-
position, this effectively means that BS

2

is a “quantum
beam splitter", i.e., it can be in a quantum superposition
of being absent or present. The interaction coupling P
to S is modelled as a controlled unitary as in Fig. 3. In

P

|0iS

|1iS
BS

E QBS

PBS

PBS

D
0,P+

D
0,P�

D
1,P�

D
1,P+

QBS =
⇢(2)P

⇢(2)S

UPS

U(R)

FIG. 3: In the quantum beam splitter (QBS) scenario, BS2

can be in a superposition of “absent" and “present", as deter-
mined by the polarisation state ⇢

(2)
P at time t2. The QBS can

be modelled as a controlled-unitary, UPS = |HihH|P ⌦ 11S +
|V ihV |P ⌦ U(R), where U(R) is the unitary on S associated
with an asymmetric beam splitter with reflection probability
R. Polarization-resolving detectors (PBS = polarizing beam
splitter) on the output modes help to reveal the “quantum-
ness" of the QBS.

this case we show (see Methods) that input and output
visibility are equivalent:

Vi = V = 2||
p
R(1�R)hV |⇢(2)P |V i (11)

where we assume the dynamics are path-preserving, i.e.,
ES(|0ih0|) = |0ih0| and ES(|1ih1|) = |1ih1|, where ES =
TrE � E is the reduced channel on S, which implies that
ES(|0ih1|) = |0ih1|, i.e., off-diagonal elements get scaled
by a complex number  with || 6 1. In (11), V is eval-
uated for any pure state input ⇢(1)S from the XY plane
of the Bloch sphere (e.g., |+i). Now we apply the joint
measurement relation (10) to this scenario and use (11)
to obtain:

D2

i + V2 6 1, (12)

which extends a recent result in Ref. [12] to the case
where E is non-trivial. This general treatment includes
the special case where ⇢(2)P = |V ihV |, corresponding to a
closed interferometer with an asymmetric BS

2

. Ref. [32]
experimentally tested this special case, under the as-
sumption that E is trivial (|| = 1), in which case our
visibility formula becomes Vi = V = 2

p
R(1�R). We

note that Ref. [32] did not remark that their experiment
actually tested a relation different from (1), namely they
tested a special case of (12).
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

ρ(2)P = |ψ(2)
P 〉〈ψ(2)

P |

|ψ(2)
P 〉 = cosα|H〉+ sinα|V 〉

(DP
i )

2 + V2 ! 1

DP
i := 2pguess(Z|ECP )− 1

D2
i + V2

i ! 1

D := 2pguess(Z|E)t2 − 1

V =
[
1−

(
min

W∈XY
2Hmax(W )t2 − 1

)2]1/2

Vi = V

Hmin(Z|E)t2 = 1− log(1 +D)

min
W∈XY

Hmax(W )t2 = log(1 +
√
1− V2)

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 " 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 " 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

4

path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√

1− (V0
i )

2. (6)

3. Register visibility

min
W∈XY

2Hmax(WR|C=0) = 1 +
√
1− (V0

R)
2. (7)

D. Polarization-enhanced measures

V. PREPARATION UNCERTAINTY WPDRS

ρ(2)P = |ψ(2)
P 〉〈ψ(2)

P |

|ψ(2)
P 〉 = cosα|H〉+ sinα|V 〉

(DP
i )

2 + V2 ! 1

DP
i := 2pguess(Z|ECP )− 1

D2
i + V2

i ! 1

D := 2pguess(Z|E)t2 − 1

V =
[
1−

(
min

W∈XY
2Hmax(W )t2 − 1

)2]1/2

Vi = V

Hmin(Z|E)t2 = 1− log(1 +D)

min
W∈XY

Hmax(W )t2 = log(1 +
√
1− V2)

Hmin(Z)t2 + min
W∈XY

Hmax(W )t2 " 1

Hmin(Z|E)t2 + min
W∈XY

Hmax(W )t2 " 1

Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

polarization state of the corroborative photon by
an angle a. From Eqs. 2 to 4, we now have

jY〉 ¼ 1ffiffiffi
2

p
"
c†H ðcos a½particle$

† −

sin a½wave$†
#

þ c†V
"
cos a½wave$† þ

sin a½particle$†Þ
#
jvac〉 ð5Þ

After passing PBS3, which is oriented on the
{H, V} axis, the corroborative photon is trans-
mitted (|H〉) or reflected (|V〉). This projects the
test photon into a state defined by the terms
in the parentheses of Eq. 5. Therefore, the fir-
ing of detector DH indicates that the test pho-
ton is in the state cosa[particle]† − sina[wave]†,
whereas the firing of DV shows that it is in the
state cosa[wave]† + sina[particle]†. By choosing
0 < a < 90°, we obtain a continuous morphing
between wave and particle behavior. The expected
intensity correlations, given by the coincidence
count probability between detectors DH (corrob-
orative) and [Db′ ⊕ Db′′] (test), where ⊕ denotes
an exclusive OR (XOR) gate, are

IH,bðq,aÞ ¼ cos2
q
2
sin2aþ 1

2
cos2a ð6Þ

Note that the correlations between detectors
DV and [Da′ ⊕ Da′′] follow the same function. On
the contrary, the complementary intensity corre-
lations (that is, correlations between detectors DH

and [Da′ ⊕ Da′′] or between DV and [Db′ ⊕ Db′′])
are given by 1 − IH,b(q,a). The use of XOR
gates permits counting the photons from both
outputs of each quantum eraser (PBS1 or PBS2),
and reaching an average coincidence rate of
70 s–1 for each of them. Note that Eq. 6 does not
depend on the relative detection times of the two
photons. In the experiment reported here, the
detection of the corroborative photon is delayed
until after the detection of the test photon. This is
ensured by inserting an extra 5-m length of opti-
cal fiber in the path of the corroborative photon
(c). In this case, for each of the four correlation
functions mentioned above, the configuration of
the interferometer remains undetermined, even after
the test photon has been detected. In other words,
there is no information available yet from the cor-
roborative photon that could influence the beha-
vior of the test photon. Furthermore, a space-time
analysis shows that no classical communication
can be established between the photon-detection
events, as they have spacelike separation (Fig. 3).

We now measure the correlations between de-
tectors DH and [Db′ ⊕ Db′′] via counting coinci-

dence events on the corresponding single-photon
detectors (InGaAs avalanche photodiodes). As
shown in Fig. 4A, the experimentally measured
results are in near-perfect agreement with the
theoretical predictions of Eq. 6. For the angle a =
0°, IH,b(q,0) is independent of the phase q, as
predicted for particle-like behavior. Setting a =
90° results in sinusoidal intensity oscillations as
a function of q, which corresponds to wavelike
behavior. For 0° < a < 90°, a continuous tran-
sition from wave to particle behavior is observed,
expressed by the continually reducing fringe visi-
bility. As outlined in (9, 10), a generalization of
Bohr’s complementarity principle implies the in-
terference fringe visibility V and the path distinguish-
ability D, also called the which-way information,
to be limited by the following inequality

V2 + D2 ≤ 1

The experimental measurement of these two
quantities is described in supplementary text S2
(11, 12). Figure 4B shows the obtained results
for V2, D2, and V2 + D2 as a function of the angle
a. With our experimental data, Eq. 7 is confirmed
for all angles of a.

To prove the existence of a coherent quantum
superposition of wave and particle behavior of the

Fig. 4. Experimental results
for the quantum delayed-
choice experiment. (A and
C) Plots of the intensity cor-
relations, IH,b(q,a), as de-
fined by Eq. 6, expressed
as the probability of a co-
incidence event between
detectors DH and [Db′ ⊕
Db′′] as a function of a and
q. Dots and associated ver-
tical lines represent exper-
imental data points and
their corresponding standard
deviations. Wave-particle
morphing is observed for
the natural {H, V} basis (A),
as well as for the comple-
mentary {D, A} basis (C).
The colored surfaces in these
graphs represent the best
fits to the experimental
data using Eq. 6. Note
that the result obtained
for the {D, A} basis is es-
sential because it repre-
sents the signature of the
entangled state, proving
the correct implementa-
tion of the desired quan-
tum beam-splitting effect.
We obtain average coinci-
dence rates of 350 events
per 5 s. The noise contribution, on the order of three events per 5 s, has not
been subtracted. (B and D) Plots and related sinusoidal fits (solid lines) of
the fringe visibility V (black) and path distinguishability D (red) as a func-
tion of the angle a. For all angles, we verify V2 + D2 ≤ 1, as predicted by Eq.

7; the blue solid line serves as a guide for the eyes. Note that the same
experimental results would be obtained if the timing order of the measurements
of the test and corroborative photons were inverted (26). Error bars indicate the
relative uncertainty obtained in the photon-counting measurements.
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After passing PBS3, which is oriented on the
{H, V} axis, the corroborative photon is trans-
mitted (|H〉) or reflected (|V〉). This projects the
test photon into a state defined by the terms
in the parentheses of Eq. 5. Therefore, the fir-
ing of detector DH indicates that the test pho-
ton is in the state cosa[particle]† − sina[wave]†,
whereas the firing of DV shows that it is in the
state cosa[wave]† + sina[particle]†. By choosing
0 < a < 90°, we obtain a continuous morphing
between wave and particle behavior. The expected
intensity correlations, given by the coincidence
count probability between detectors DH (corrob-
orative) and [Db′ ⊕ Db′′] (test), where ⊕ denotes
an exclusive OR (XOR) gate, are
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the contrary, the complementary intensity corre-
lations (that is, correlations between detectors DH
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are given by 1 − IH,b(q,a). The use of XOR
gates permits counting the photons from both
outputs of each quantum eraser (PBS1 or PBS2),
and reaching an average coincidence rate of
70 s–1 for each of them. Note that Eq. 6 does not
depend on the relative detection times of the two
photons. In the experiment reported here, the
detection of the corroborative photon is delayed
until after the detection of the test photon. This is
ensured by inserting an extra 5-m length of opti-
cal fiber in the path of the corroborative photon
(c). In this case, for each of the four correlation
functions mentioned above, the configuration of
the interferometer remains undetermined, even after
the test photon has been detected. In other words,
there is no information available yet from the cor-
roborative photon that could influence the beha-
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can be established between the photon-detection
events, as they have spacelike separation (Fig. 3).
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for the {D, A} basis is es-
sential because it repre-
sents the signature of the
entangled state, proving
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tion of the desired quan-
tum beam-splitting effect.
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per 5 s. The noise contribution, on the order of three events per 5 s, has not
been subtracted. (B and D) Plots and related sinusoidal fits (solid lines) of
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7; the blue solid line serves as a guide for the eyes. Note that the same
experimental results would be obtained if the timing order of the measurements
of the test and corroborative photons were inverted (26). Error bars indicate the
relative uncertainty obtained in the photon-counting measurements.
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Fig. 1 for definition of |0i and |1i). The two Zi inputs are
generated by blocking the opposite arm of the interfer-
ometer, as in Fig. 2B, while the Wi states are generated
by applying a phase (either 0 or ⇡) to the lower arm. One
can imagine this as a game, where Bob controls the in-
put and Alice has control over both E and the detectors,
Bob flips a coin to determine which path he will block in
the case of Zi (or which phase he will apply in the case
of Wi) and Alice’s goal is to guess the outcome of Bob’s
coin flip.

It may not be common knowledge that this scenario
leads to a different class of WPDRs, therefore we illus-
trate the difference in Fig. 2. Furthermore, we refer to D
introduced above as output distinguishability, whereas in
the present scenario we use the symbol Di and call this
quantity input distinguishability, defined by

Di := 2p
guess

(Zi|EC)� 1,

where p
guess

(Zi|EC) = 2�H
min

(Zi|EC) is Alice’s probabil-
ity to correctly guess Bob’s Zi state given that she has
access to E and she knows which output detector clicks,
stored in the random variable C [46]. Likewise we define
the notion of input visibility Vi via:

Vi :=
⇥
1� �

min
W2XY

2Hmax

(Wi|C) � 1
�
2

⇤
1/2 (8)

which quantifies how well Alice can determine Wi using
C.

Now the uncertainty principle says that there is a
tradeoff: if Alice can guess the Zi states well then she
cannot guess the Wi states well, and vice-versa. In other
words, Alice’s measurement apparatus, the apparatus to
the right of the dashed line labeled t

1

in Fig. 1, can-
not jointly measure Bob’s Z and W observables. EURs
involving von Neumann entropy have previously been ap-
plied to the joint measurement scenario [22, 36], we do
the same for the min- and max-entropies to obtain

H
min

(Zi|EC) + min
W2XY

H
max

(Wi|C) > 1. (9)

This can be rewritten as an explicit WPDR:

D2

i + V2

i 6 1, (10)

which can now be applied to a variety of situations.
Quantum BS

2

.—As an interesting application of (9),
we consider the scenario proposed in [28] and imple-
mented in [29–31], where the photon’s polarisation P acts
as a control system to determine whether or not BS

2

ap-
pears in the photon’s path and hence whether the inter-
ferometer is open or closed, see Fig. 3. Since P can be
prepared in an arbitrary input state ⇢(2)P , such as a super-
position, this effectively means that BS

2

is a “quantum
beam splitter", i.e., it can be in a quantum superposition
of being absent or present. The interaction coupling P
to S is modelled as a controlled unitary as in Fig. 3. In

P

|0iS

|1iS
BS

E QBS

PBS

PBS

D
0,P+

D
0,P�

D
1,P�

D
1,P+

QBS =
⇢(2)P

⇢(2)S

UPS

U(R)

FIG. 3: In the quantum beam splitter (QBS) scenario, BS2

can be in a superposition of “absent" and “present", as deter-
mined by the polarisation state ⇢

(2)
P at time t2. The QBS can

be modelled as a controlled-unitary, UPS = |HihH|P ⌦ 11S +
|V ihV |P ⌦ U(R), where U(R) is the unitary on S associated
with an asymmetric beam splitter with reflection probability
R. Polarization-resolving detectors (PBS = polarizing beam
splitter) on the output modes help to reveal the “quantum-
ness" of the QBS.

this case we show (see Methods) that input and output
visibility are equivalent:

Vi = V = 2||
p
R(1�R)hV |⇢(2)P |V i (11)

where we assume the dynamics are path-preserving, i.e.,
ES(|0ih0|) = |0ih0| and ES(|1ih1|) = |1ih1|, where ES =
TrE � E is the reduced channel on S, which implies that
ES(|0ih1|) = |0ih1|, i.e., off-diagonal elements get scaled
by a complex number  with || 6 1. In (11), V is eval-
uated for any pure state input ⇢(1)S from the XY plane
of the Bloch sphere (e.g., |+i). Now we apply the joint
measurement relation (10) to this scenario and use (11)
to obtain:

D2

i + V2 6 1, (12)

which extends a recent result in Ref. [12] to the case
where E is non-trivial. This general treatment includes
the special case where ⇢(2)P = |V ihV |, corresponding to a
closed interferometer with an asymmetric BS

2

. Ref. [32]
experimentally tested this special case, under the as-
sumption that E is trivial (|| = 1), in which case our
visibility formula becomes Vi = V = 2

p
R(1�R). We

note that Ref. [32] did not remark that their experiment
actually tested a relation different from (1), namely they
tested a special case of (12).

Similarly, Ref. [29] tested (12) (again neglecting E)
rather than (1), but they allowed ⇢(2)P to be in a superpo-
sition. At first sight this seems to test the WPDR in the
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.

min
W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility

Alternatively, suppose Bob sends the Wi states |w0〉 =
(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
Alice tries to learn about Wi using C. We are interested
in how well Bob can send Alice the Wi information, given
that Bob can apply any phase shift φ to the lower arm,
which corresponds to allowing Bob to send any basis in
the XY plane of the Bloch sphere. A natural quantity
here is minW∈XY Hmax(Wi|C) and we define the notion
of input visibility Vi via:

min
W∈XY

Hmax(Wi|C) = log
(
1 +

√
1− (Vi)2

)
. (4)

min
W∈XY

2Hmax(Wi|C) = 1 +
√

1− (Vi)2. (5)

The detector-specific version of this is defined by:

min
W∈XY

2Hmax(Wi|C=0) = 1 +
√
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Preparation uncertainty relations capture the notion
that the outcomes of future complementary measure-
ments are unpredictable, e.g., if the Z measurement is
predictable then the W measurement must be unpre-
dictable and vice-versa. Englert’s discussion of wave-
particle duality in [? ] focused on the predictability of
future measurements. In the case of quantifying the par-
ticle behaviour, this corresponds to removing BS2 (either
physically or effectively by exploiting another degree of
freedom), and asking how well one can predict which de-
tector will click. This quantifies the uncertainty of the Z
observable at time t2 in Fig. 1; we use the precise measure
Hmin(Z)ρ(2) .

To quantify the wave behaviour, we reinsert BS2 to
close the interferometer and again ask how well we can
predict which detector will click. This quantifies the un-
certainty of an observable W from the XY plane of the
Bloch sphere at time t2. The identity of the W observable
depends on the phase φ that is applied to the lower arm,
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path-preserving then we can identify ZR with the Z ob-
servable on S at time t2, in which case DR becomes the
output distinguishability D.

A simple example of where DR becomes crucial is
whenever both BS1 and BS2 are asymmetric, as dis-
cussed below. Thus, we have both prior knowledge of
the path as well as knowledge obtained from performing
the experiment.

C. Wave behaviour measures

1. Output visibility

The usual notion of visibility, what we call output vis-
ibility, is defined as

V0 =
p0max − p0min

p0max + p0min

(2)

where p0max = maxφ Pr(C = 0) and p0min = minφ Pr(C =
0), where C denotes the random variable revealing which
detector DC clicks, with C ∈ {0, 1}.
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W∈XY

Hmax(W ) = log
(
1 +

√
1− V2

)
(3)

2. Input visibility
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(|0〉+eiφ|1〉)/

√
2 and |w1〉 = (|0〉−eiφ|1〉)/

√
2 with equal

probability (note that Wi is complementary to Zi), and
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Fig. 1 for definition of |0i and |1i). The two Zi inputs are
generated by blocking the opposite arm of the interfer-
ometer, as in Fig. 2B, while the Wi states are generated
by applying a phase (either 0 or ⇡) to the lower arm. One
can imagine this as a game, where Bob controls the in-
put and Alice has control over both E and the detectors,
Bob flips a coin to determine which path he will block in
the case of Zi (or which phase he will apply in the case
of Wi) and Alice’s goal is to guess the outcome of Bob’s
coin flip.

It may not be common knowledge that this scenario
leads to a different class of WPDRs, therefore we illus-
trate the difference in Fig. 2. Furthermore, we refer to D
introduced above as output distinguishability, whereas in
the present scenario we use the symbol Di and call this
quantity input distinguishability, defined by

Di := 2p
guess

(Zi|EC)� 1,

where p
guess

(Zi|EC) = 2�H
min

(Zi|EC) is Alice’s probabil-
ity to correctly guess Bob’s Zi state given that she has
access to E and she knows which output detector clicks,
stored in the random variable C [46]. Likewise we define
the notion of input visibility Vi via:

Vi :=
⇥
1� �

min
W2XY

2Hmax

(Wi|C) � 1
�
2

⇤
1/2 (8)

which quantifies how well Alice can determine Wi using
C.

Now the uncertainty principle says that there is a
tradeoff: if Alice can guess the Zi states well then she
cannot guess the Wi states well, and vice-versa. In other
words, Alice’s measurement apparatus, the apparatus to
the right of the dashed line labeled t

1

in Fig. 1, can-
not jointly measure Bob’s Z and W observables. EURs
involving von Neumann entropy have previously been ap-
plied to the joint measurement scenario [22, 36], we do
the same for the min- and max-entropies to obtain

H
min

(Zi|EC) + min
W2XY

H
max

(Wi|C) > 1. (9)

This can be rewritten as an explicit WPDR:

D2

i + V2

i 6 1, (10)

which can now be applied to a variety of situations.
Quantum BS

2

.—As an interesting application of (9),
we consider the scenario proposed in [28] and imple-
mented in [29–31], where the photon’s polarisation P acts
as a control system to determine whether or not BS

2

ap-
pears in the photon’s path and hence whether the inter-
ferometer is open or closed, see Fig. 3. Since P can be
prepared in an arbitrary input state ⇢(2)P , such as a super-
position, this effectively means that BS

2

is a “quantum
beam splitter", i.e., it can be in a quantum superposition
of being absent or present. The interaction coupling P
to S is modelled as a controlled unitary as in Fig. 3. In

P

|0iS

|1iS
BS

E QBS

PBS

PBS

D
0,P+

D
0,P�

D
1,P�

D
1,P+

QBS =
⇢(2)P

⇢(2)S

UPS

U(R)

FIG. 3: In the quantum beam splitter (QBS) scenario, BS2

can be in a superposition of “absent" and “present", as deter-
mined by the polarisation state ⇢

(2)
P at time t2. The QBS can

be modelled as a controlled-unitary, UPS = |HihH|P ⌦ 11S +
|V ihV |P ⌦ U(R), where U(R) is the unitary on S associated
with an asymmetric beam splitter with reflection probability
R. Polarization-resolving detectors (PBS = polarizing beam
splitter) on the output modes help to reveal the “quantum-
ness" of the QBS.

this case we show (see Methods) that input and output
visibility are equivalent:

Vi = V = 2||
p
R(1�R)hV |⇢(2)P |V i (11)

where we assume the dynamics are path-preserving, i.e.,
ES(|0ih0|) = |0ih0| and ES(|1ih1|) = |1ih1|, where ES =
TrE � E is the reduced channel on S, which implies that
ES(|0ih1|) = |0ih1|, i.e., off-diagonal elements get scaled
by a complex number  with || 6 1. In (11), V is eval-
uated for any pure state input ⇢(1)S from the XY plane
of the Bloch sphere (e.g., |+i). Now we apply the joint
measurement relation (10) to this scenario and use (11)
to obtain:

D2

i + V2 6 1, (12)

which extends a recent result in Ref. [12] to the case
where E is non-trivial. This general treatment includes
the special case where ⇢(2)P = |V ihV |, corresponding to a
closed interferometer with an asymmetric BS

2

. Ref. [32]
experimentally tested this special case, under the as-
sumption that E is trivial (|| = 1), in which case our
visibility formula becomes Vi = V = 2

p
R(1�R). We

note that Ref. [32] did not remark that their experiment
actually tested a relation different from (1), namely they
tested a special case of (12).

Similarly, Ref. [29] tested (12) (again neglecting E)
rather than (1), but they allowed ⇢(2)P to be in a superpo-
sition. At first sight this seems to test the WPDR in the
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Final	
  Remarks	
  

-­‐	
  All	
  of	
  our	
  WPDRs	
  hold	
  if	
  you	
  replace	
  both	
  min	
  and	
  max	
  with	
  von	
  
Neumann.	
  

-­‐	
  Our	
  framework	
  makes	
  it	
  obvious	
  how	
  to	
  derive	
  novel	
  WPDRs.	
  (We	
  did	
  
this	
  for	
  the	
  QBS.)	
  

-­‐	
  Our	
  framework	
  can	
  be	
  applied	
  fairly	
  universally	
  to	
  single-­‐quanton	
  two-­‐
path	
  interferometers.	
  It	
  would	
  be	
  interes2ng	
  to	
  extend	
  this	
  to	
  mutli-­‐
photons	
  or	
  mul2-­‐paths.	
  

-­‐	
  We	
  have	
  shown	
  that	
  WPDRs	
  are	
  EURs	
  in	
  disguise,	
  namely,	
  the	
  
uncertainty	
  rela2on	
  for	
  the	
  min-­‐	
  and	
  max-­‐entropies	
  applied	
  to	
  qubit	
  
observables.	
  Are	
  WPDRs	
  useful	
  for	
  quantum	
  cryptography?	
  

-­‐	
  Our	
  framework	
  provides	
  two	
  classes	
  of	
  WPDRs	
  associated	
  with	
  
prepara2on	
  uncertainty	
  and	
  measurement	
  uncertainty.	
  


