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Uncertainty Relation: Limitation due to complementarity of 
observables

Always: X (𝕏 ) and Z (ℤ) complementary observables ( 𝑋, 𝑍 ≠ 0)

X ↔ {𝕏𝑥}𝑥∈𝑋 and   Z ↔ {ℤ𝑧}𝑧∈𝑍 POVM’s

Preparation Uncertainty 
There exists no preparation in which X and Z are both predetermined. 

Measurement Uncertainty 
Joint Measurability: There exists no observable which jointly measures X and Z.

Measurement-Disturbance: An attempt to measure X generally disturbs Z.

Different Uncertainty Trade-Offs
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Heisenberg ‘27
Kennard ‘27

Robertson ‘27



Preparation Uncertainty 
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Robertson: Δ𝕏Δℤ ≥
1

2
| < 𝜓, 𝕏, ℤ 𝜓 > |

Massen & Uffink ‘88: 𝐻 𝑋 𝜌 + 𝐻 𝑍 𝜌 ≥ −log max
𝑥,𝑧

‖𝕏𝑥
1/2

ℤ𝑧
1/2

‖

 Variances depends on eigenvalues of X and Z
 Constant vanishes for certain states

 how does quantum information affect 
uncertainty 

Berta et al. 2010: 𝐻 𝑋|𝐵 𝜌 + 𝐻 𝑍|𝐵 𝜌 ≥ −log max
𝑥,𝑧

‖𝕏𝑥
1/2

ℤ𝑧
1/2

‖ + 𝐻(𝐴|𝐵)

Application in Quantum Information Science
Entropies have statistical meaning! 



 Constructions of joint position and momentum operators (e.g., von 
Neumann, Holevo, Werner, Busch,…): Positive Formulation!   

 Noise operator approach to determine inaccuracy (e.g., Arthur & 
Kelly, Appleby, Ozawa,…)

 Inspired by classical measurement theory (not always operational!)

Previous formulation suffer often from drawbacks: 

 operationally not entirely clear

 Depend also on the eigenvalues, not only on POVM’s 

 maturity as in preparation uncertainty relations not yet achieved

Measurement Uncertainty (incomplete!) 
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A measurement-disturbance relation that

 has a clear and operationally motivated setup which is state-
dependent (-> applications) 

 uses faithful and operational error measures (they vanish if no 
deviation 

 uses entropic measures which have statistical interpretation in 
information theory (-> applications)

Goal
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1) Introduction to Measurement Uncertainty

2) Our New Measurement-Disturbance Relation

3) Extension to Quantum Memories

4) Applications (Qubits and Position-Momentum)

Outlook
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1) Joint Measurability 
There exists no joint observable 

of X and Z with marginals being X and Z:

 Measurement Errors of X’ w.r.t. X and 

Z’ w.r.t Z are in trade-off

Measurement Uncertainty
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There exists no joint observable 

of X and Z with marginals being X and Z:

 Measurement Errors of X’ w.r.t. X and 

Z’ w.r.t Z are in trade-off

2) Measurement-Disturbance 
An attempt to measure X will 

disturb a subsequent Z measurement:

 The error about X is in trade-off with 

the disturbance in Z

Measurement Uncertainty
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A subsequent measurement is a joint measurement:

→ A trade-off for joint measurability implies one for error-
disturbance 

But only if we are interested in the potential of the channel to 
perform an accurate X measurement! 

Connection between joint measurability and 
measurement-disturbance
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1) Bush, Lathi, Werner, PRL 111, 160405 (2013): 

 Position-Momentum Observables for worst-case calibration errors 
(testing Q’ with infinitely localized position states)

 Generalization to qubits

2) Buscemi, Hall, Ozawa, Wilde, PRL 112, 050401 (2014) 

 Entropic error measures motivated via an information theoretic task 

3) Renes & Scholz, arXiv:1402.6711 (2014)

 CP-Norm between channels

Interpretation as measurement-disturbance relations:

Any channel that extracts information about X-eigenstates must disturb 
the Z-eigenstates! 

Recent Advances in State-independent Joint 
Measurement Relations 
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Ozawa’s Relation, Physics Letters A 320, 367 (2004):

Insight: Initial uncertainty is crucial! 

State-dependent Error Measures for Joint-
Measurability Problem 
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For any fixed state ρ

Error Disturbance

Initial Uncertainties



Operational Error and Disturbance:

Error/Disturbance has to be detectable on the level of the outcome 
distributions (i.e. the probabilities) 

Faithful Error and Disturbance: 

 Error: E(X,X’;ρ) = 0 iff probabibility distribution 

of X is same as for X’

 Disturbance: D(Z,Z’; ρ) = 0 iff probabibility

distribution of Z is same as for Z’

Problem for state-dependent trade-off relation (Korzekwa, Jennings and 

Rudolph, Phys. Rev. A 89, 052108 (2014)): 

If error and disturbance are faithful no trade-off can hold! 

State-dependent Error Measures for Joint-
Measurability Problem 
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State-dependent Measurement-Disturbance 
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Operational Disturbance:

statistical distance between Z 
and 𝑍ℰ

2 Possible Measurement Errors: 

1) can one infer X from M? 
(retrodictive error*)

2) can one infer 𝑋ℰ from M? 
(predictive error*)

*Appleby, International Journal of Theoretical Physics, 37, 5, 1491 (1998)
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State-dependent Measurement-Disturbance 
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Operational Disturbance:

statistical distance between Z 
and 𝑍ℰ

2 Possible Mperational Errors: 

1) can one infer X from M? 
(retrodictive error*)

2) can one infer 𝑋ℰ from M? 
(predictive error*)

*Appleby, International Journal of Theoretical Physics, 37, 5, 1491 (1998)



State-dependent Measurement-Disturbance 
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Operational Disturbance:

statistical distance between Z 
and 𝑍ℰ

2 Possible Merational Errors: 

1) can one infer X from M? 
(retrodictive error*)

2) can one infer 𝑋ℰ from M? 
(predictive error*/residual

*Appleby, International Journal of Theoretical Physics, 37, 5, 1491 (1998)



1) Introduction to Measurement Uncertainty

2) Our New Measurement-Disturbance Relation

3) Extension to Quantum Memories

4) Applications (Qubits and Positoin-
Momentum)

Outlook
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Setup

Operational Quantities: 

𝑃𝑍 𝑧 = tr(𝜌ℤ𝑧)

𝑃𝑍
ℰ 𝑧 = tr (ℰ(𝜌)ℤ𝑧)

𝑄𝑋𝑀
ℰ = tr ℰ 𝜌 𝕄𝑚 ⊗𝕏𝑥 ( joint probability of M and 𝑋ℰ )

2) Setup for our Measurement-Disturbance 
Relation
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Distance between 𝑃𝑍
ℰ 𝑧 and 𝑃𝑍 𝑧 quantified with relative entropy

 𝐷(𝑃𝑍| 𝑃𝑍
ℰ = ∑𝑃𝑍 𝑧 log(𝑃𝑍(𝑧)/𝑃𝑍

ℰ(𝑧))

 Operational statistical meaning in hypothesis testing

 faithful

Side Remark: our result holds for arbitrary Renyi relative entropy 

E.g., 𝐷1

2

(𝑃𝑍| 𝑃𝑍
ℰ = log 𝐹(𝑃𝑍, 𝑃𝑍

ℰ)      (F=Fidelity)

Faithful Disturbance Measure
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Entropy of X given M: 

 𝑄𝑋𝑀
ℰ = joint probability distr. of M and 𝑋ℰ

 𝐻max 𝑋 𝑀 𝑄ℰ : conditional max-entropy of 𝑋ℰ given M (1/2-Renyi 
entropy)

 𝐻max 𝑋 𝑀 𝑄ℰ = log∑𝑚𝑄𝑀
ℰ 𝑚 exp(𝐻1/2 (𝑄𝑋|𝑀

ℰ )

 Faithful 

 One-shot entropy related to the amount of data which one has to be 
supplied in order to reconstruct X from M

Faithful Predictive Error
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Result: For any channel ℰ :

 (state independent)

 𝐻 𝑍 𝑃 = −∑𝑃𝑍 𝑧 log𝑃𝑍(𝑧) , the von Neumann 

entropy of the initial Z distribution

Measurement-Disturbance Trade-off
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Example: Q-bit system with Pauli X and Z observables

and ℰ a perfect X instrument

Lower Bound Must Depend on Initial 
Uncertainty
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𝐻 𝑍 =0

No predictive Error

Large
 D

istu
rb

an
ce



Example: Q-bit system with Pauli X and Z observables

and ℰ a perfect X instrument

Lower Bound Must Depend on Initial 
Uncertainty
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𝐻 𝑍 =0 𝐻 𝑍 =
log1/c

No predictive Error

Large
 D

istu
rb

an
ce No predictive Error

N
o

 D
istu

rb
an

ce



Ingredient 1: 

Preparation Uncertainty applied to 𝜌𝑆𝑀
ℰ *:

Ingredient 2: 

Bound of min entropy of 𝑃ℰ by the distance betw. P and 𝑃ℰ: 

Proof of the Relation (without QM memory)
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*M. Tomamichel and R. Renner, PRL 106,110506 (2011)
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3) Extension to Quantum Memories

4) Applications (Qubits and Positoin-
Momentum)

Outlook
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System initially correlated to a quantum system R:

Then: 

 = distance between 𝜌𝑍𝑅 and 𝜌𝑍𝑅
ℰ

 H(Z|R) = H(ZR) – H(R) , the conditional von Neumann entropy

3) Extension to Quantum Memory
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Quantum Memory

→ Interaction also 
disturbs the correlation 
to R! 



𝜌𝑆𝑅 =
1

2
(|00 > +|11 >)

Then…

 𝜌𝑆 is maximally mixed 

 no trade-off if R is not taken into account (H(Z) = log1/c )

 If you can check correlation between Z and R -> disturbance (H(Z|R) 
= 0 )

 Non-trivial relation

Extension to Quantum Memory (example)
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Weak Pauli X measurement (Phys. Rev. Lett. 109, 100404, 2012): 

 θ = 0: perfect X Measurement

 θ = π/2: identity channel

 Perfect tight for pure input 

state and all measurement

strength 

Qubit Example and Tightness
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0



Weak Pauli X measurement (Phys. Rev. Lett. 109, 100404, 2012): 

Including Quantum Memory (if 𝜌𝑆 is not pure):

If 𝜌𝑆𝑅 is purification of  𝜌𝑆 : 

Perfectly tight for all r and 𝜃

(Even classical memory is enough)

Qubit Example and Tightness
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Original setup considered by Heisenberg 

Observables ℙ and ℚ with ℚ,ℙ = −𝑖

Same measurement disturbance holds if entropies are 
changed to differential entropies: 

 𝑒 𝜌𝑆, ℚ, ℰ ≔ ℎmax 𝑄 𝑀 𝜌ℰ (differential quantum conditional max-
entropy*)

 ℎ(𝑃|𝑅) = the differential quantum conditional von Neumann entropy*

Extension to Position-Momentum 
Measurements
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* Berta, Christandle,FF, Scholz,Tomamichel, arXiv:1308.4527



What is the momentum disturbance if a coarse grained 
position measurement with a binning δq has been 
performed? 

Applying our relation we obtain:

𝛅𝐪 𝐝𝐏≥ ℏ/𝟐

 dP =
2h P ρ

4π
2D ρS,ℙ,ℰ

→ dP depends on the initial P distribution 

→ if initial momentum is approximately sharp, then disturbance is larger

→ interplay between measurement and preparation uncertainty

Application to Coarse-Grained Position 
Measurement
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 Presented a trade-off between disturbance and predictability of two 
complementary observables 

 Operational disturbance and error measures with interpretation in 
information theory

 Tight for recent experiments 

 Applies to position and momentum operators

 Application to quantum information theory (e.g., cryptography)? 

 State-independent predictive error?

Conclusion and Outlook
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Thank you for your attention!

arXiv:1311.7637
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