

Entropic Formulation of Heisenberg's Measurement-Disturbance Relation

arXiv:1311.7637

QPL 2014, Kyoto, 6. June 2014

Fabian Furrer

Joint work with: Patrick Coles @

Different Uncertainty Trade-Offs

Uncertainty Relation: Limitation due to complementarity of observables

Always: X (X) and Z (Z) complementary observables ([X, Z] \neq

 $X \leftrightarrow \{X_{\chi}\}_{\chi \in X}$ and $Z \leftrightarrow \{Z_{Z}\}_{Z \in Z}$ POVM's

Preparation Uncertainty

Kennard '27 Robertson '27 Heisenberg '27

There exists no preparation in which X and Z are both predetermined.

Measurement Uncertainty

Joint Measurability: There exists no observable which jointly measures X and Z. *Measurement-Disturbance:* An attempt to measure X generally disturbs Z.

Entropies have statistical meaning!

Measurement Uncertainty (incomplete!)

- Constructions of joint position and momentum operators (e.g., von Neumann, Holevo, Werner, Busch,...): Positive Formulation!
- Noise operator approach to determine inaccuracy (e.g., Arthur & Kelly, Appleby, Ozawa,...) $\epsilon(Z, A, \psi) := \langle U(\psi \otimes \Psi) | (Z - A)^2 U(\psi \otimes \Psi) \rangle^{1/2}$
 - Inspired by classical measurement theory (not always operational!)

Previous formulation suffer often from drawbacks:

- operationally not entirely clear
- Depend also on the eigenvalues, not only on POVM's
- maturity as in preparation uncertainty relations not yet achieved

Goal

A measurement-disturbance relation that

- has a clear and operationally motivated setup which is statedependent (-> applications)
- uses faithful and operational error measures (they vanish if no deviation
- uses entropic measures which have statistical interpretation in information theory (-> applications)

Outlook

- 1) Introduction to Measurement Uncertainty
- 2) Our New Measurement-Disturbance Relation
- 3) Extension to Quantum Memories
- 4) Applications (Qubits and Position-Momentum)

Measurement Uncertainty

1) Joint Measurability

There exists **no** joint observable of X and Z with marginals being X and Z:

Measurement Errors of X' w.r.t. X and Z' w.r.t Z are in trade-off

Measurement Uncertainty

1) Joint Measurability

There exists **no** joint observable of X and Z with marginals being X and Z:

Measurement Errors of X' w.r.t. X and
 Z' w.r.t Z are in trade-off

2) Measurement-Disturbance

An attempt to measure X will disturb a subsequent Z measurement:

 The error about X is in trade-off with the disturbance in Z

Measurement Uncertainty

1) Joint Measurability

There exists **no** joint observable of X and Z with marginals being X and Z:

- Measurement Errors of X' w.r.t. X and
 - Z' w.r.t Z are in trade-off

POVM $E_{x,z}$: $X_x = \sum_{z} E_{x,z}$ Zz= ZExit

2) Measurement-Disturbance

An attempt to measure X will disturb a subsequent Z measurement:

 The error about X is in trade-off with the disturbance in Z

Connection between joint measurability and measurement-disturbance

A subsequent measurement is a joint measurement:

 \rightarrow A trade-off for joint measurability implies one for errordisturbance

But only if we are interested in the potential of the channel to perform an accurate X measurement!

Recent Advances in State-independent Joint Measurement Relations

1) Bush, Lathi, Werner, PRL 111, 160405 (2013):

- Position-Momentum Observables for worst-case calibration errors (testing Q' with infinitely localized position states)
- Generalization to qubits

2) Buscemi, Hall, Ozawa, Wilde, PRL 112, 050401 (2014)

- Entropic error measures motivated via an information theoretic task
- 3) Renes & Scholz, arXiv:1402.6711 (2014)
- CP-Norm between channels

Interpretation as measurement-disturbance relations:

Any channel that extracts information about X-eigenstates must disturb the Z-eigenstates!

State-dependent Error Measures for Joint-Measurability Problem

Insight: Initial uncertainty is crucial!

State-dependent Error Measures for Joint-Measurability Problem

Operational Error and Disturbance:

Error/Disturbance has to be detectable on the level of the outcome distributions (i.e. the probabilities)

Faithful Error and Disturbance:

- Error: E(X,X';p) = 0 iff probabibility distribution of X is same as for X'
- Disturbance: D(Z,Z'; ρ) = 0 iff probabibility
 distribution of Z is same as for Z'

Problem for state-dependent trade-off relation (Korzekwa, Jennings and Rudolph, Phys. Rev. A 89, 052108 (2014)):

If error and disturbance are faithful no trade-off can hold!

Operational Disturbance:

statistical distance between Z and $Z^{\ensuremath{\mathcal{E}}}$

2 Possible Measurement Errors:

- can one infer X from M? (retrodictive error*)
- can one infer X^E from M?
 (predictive error*)

> 17 -> 2 < 2 = 22
Carl Channel 2 -> XE Channel 2 -> XE
$M = \frac{4^2}{4^2}$
> X -> X

Operational Disturbance:	$[\overline{x}, \overline{x}] \rightarrow \overline{z} \in \overline{z}^{2}$
statistical distance between Z and $Z^{\mathcal{E}}$	> 2 = 2 = -> 2 = = 2 = = = = = = = = = = = = = = =
2 Possible Measurement Errors:	()~> [channel 2] -> [XA] -> X2
 can one infer X from M? (retrodictive error*) 	$H = \frac{H^2}{H^2} \times \frac{1}{2}$
2) can one infer $X^{\mathcal{E}}$ from M? (predictive error*)	> X <-> X

Operational Disturbance:	$\overline{170} \rightarrow \overline{272}$
statistical distance between Z and $Z^{\mathcal{E}}$	35 ~- 1 × = 2 × 1 × -> 2 × = 2 ×
2 Possible N	(~> I channel 2 -> [XA] -> XE
1) can one (retrodic	$H = H^{2}$ $H = H^{2}$
2) can one infer $X^{\mathcal{E}}$ from M? — (predictive error*)	X -> X

Outlook

1) Introduction to Measurement Uncertainty

2) Our New Measurement-Disturbance Relation

3) Extension to Quantum Memories

4) Applications (Qubits and Positoin-Momentum)

2) Setup for our Measurement-Disturbance Relation

Setup

Operational Quantities:

- $\bullet P_Z(z) = \operatorname{tr}(\rho \mathbb{Z}_z)$
- $P_Z^{\mathcal{E}}(z) = \operatorname{tr}\left(\mathcal{E}(\rho)\mathbb{Z}_z\right)$
- $Q_{XM}^{\mathcal{E}} = \operatorname{tr} \left(\mathcal{E}(\rho) \mathbb{M}_m \otimes \mathbb{X}_x \right)$ (joint probability of M and $X^{\mathcal{E}}$)

Faithful Disturbance Measure

Distance between $P_Z^{\mathcal{E}}(z)$ and $P_Z(z)$ quantified with **relative entropy**

$$\mathsf{D}(\rho_S, \mathbb{Z}, \mathcal{E}) := D(P_Z || P_Z^{\mathcal{E}}).$$

- $D(P_Z || P_Z^{\mathcal{E}}) = \sum P_Z(z) \log(P_Z(z) / P_Z^{\mathcal{E}}(z))$
- Operational statistical meaning in hypothesis testing
- faithful

Side Remark: our result holds for arbitrary Renyi relative entropy

E.g.,
$$D_{\frac{1}{2}}(P_Z||P_Z^{\mathcal{E}}) = \log F(P_Z, P_Z^{\mathcal{E}})$$
 (F=Fidelity)

- $Q_{XM}^{\mathcal{E}}$ = joint probability distr. of M and $X^{\mathcal{E}}$
- $H_{\max}(X|M)_Q^{\varepsilon}$: conditional max-entropy of X^{ε} given M (1/2-Renyi entropy)
- $-H_{\max}(X|M)_{Q^{\mathcal{E}}} = \log \sum_{m} Q_{M}^{\mathcal{E}}(m) \exp(H_{1/2} (Q_{X|M}^{\mathcal{E}}))$
- Faithful
- One-shot entropy related to the amount of data which one has to be supplied in order to reconstruct X from M

Measurement-Disturbance Trade-off

Result: For any channel \mathcal{E} :

$$\mathsf{D}(\rho_S, \mathbb{Z}, \mathcal{E}) + \mathsf{E}(\rho_S, \mathbb{X}, \mathcal{E}) \geqslant \log 1/c - H(Z)_P$$

- $c = \max_{x,z} \|\sqrt{\mathbb{X}_x}\sqrt{\mathbb{Z}_z}\|_{\infty}^2$ (state independent)
- $H(Z)_P = -\sum P_Z(z) \log P_Z(z)$, the von Neumann entropy of the initial Z distribution

Lower Bound Must Depend on Initial Uncertainty

 $\mathsf{D}(\rho_S, \mathbb{Z}, \mathcal{E}) + \mathsf{E}(\rho_S, \mathbb{X}, \mathcal{E}) \ge \log 1/c - H(Z)_P$

Example: Q-bit system with Pauli X and Z observables and \mathcal{E} a perfect X instrument

Lower Bound Must Depend on Initial Uncertainty

 $\mathsf{D}(\rho_S, \mathbb{Z}, \mathcal{E}) + \mathsf{E}(\rho_S, \mathbb{X}, \mathcal{E}) \ge \log 1/c - H(Z)_P$

Example: Q-bit system with Pauli X and Z observables and \mathcal{E} a perfect X instrument

Proof of the Relation (without QM memory)

$$\mathsf{D}(\rho_S, \mathbb{Z}, \mathcal{E}) + \mathsf{E}(\rho_S, \mathbb{X}, \mathcal{E}) \ge \log 1/c - H(Z)_P$$

 $\mathsf{D}(\rho_S, \mathbb{Z}, \mathcal{E}) := D(P_Z || P_Z^{\mathcal{E}}).$

$$\mathsf{E}(\rho_S, \mathbb{X}, \mathcal{E}) := H_{\max}(X|M)_Q \varepsilon$$

Ps -

3

Ingredient 1:

Preparation Uncertainty applied to $\rho_{SM}^{\mathcal{E}}^*$:

 $H_{\min}(Z)_{P^{\mathcal{E}}} + H_{\max}(X|M)_{Q^{\mathcal{E}}} \ge \log 1/c$

 $H_{\min}(Z)_{P^{\mathcal{E}}} = -\log \max_{z} P_{Z}^{\mathcal{E}}(z)$

Ingredient 2:

Bound of min entropy of $P^{\mathcal{E}}$ by the distance betw. P and $P^{\mathcal{E}}$:

$$D(P_Z || P_Z^{\mathcal{E}}) + H(Z)_P = -\sum_z P_Z(z) \log P_Z^{\mathcal{E}}(z)$$

$$\geqslant -\sum_z P_Z(z) \log \max_z P_Z^{\mathcal{E}}(z)$$
,110506 (2011)

*M. Tomamichel and R. Renner, PRL 106,110506 (2011

Outlook

1) Introduction to Measurement Uncertainty

2) Our New Measurement-Disturbance Relation

3) Extension to Quantum Memories

4) Applications (Qubits and Positoin-Momentum)

3) Extension to Quantum Memory

System initially correlated to a quantum system R:

→ Interaction also disturbs the correlation to R!

Then:

$$\mathsf{D}(\rho_{SR}, \mathbb{Z}, \mathcal{E}) + \mathsf{E}(\rho_S, \mathbb{X}, \mathcal{E}) \ge \log 1/c - H(Z|R)_{\rho}$$

- $D(\rho_{SR}, \mathbb{Z}, \mathcal{E}) = D(\rho_{ZR} || \rho_{ZR}^{\mathcal{E}})$ = distance between ρ_{ZR} and $\rho_{ZR}^{\mathcal{E}}$
- H(Z|R) = H(ZR) H(R), the conditional von Neumann entropy

Extension to Quantum Memory (example)

$$\rho_{SR} = \frac{1}{\sqrt{2}} \; (|00> \; +|11>)$$

Then...

- ρ_S is maximally mixed
- no trade-off if R is not taken into account (H(Z) = log1/c)
- If you can check correlation between Z and R -> disturbance (H(Z|R) = 0)
- Non-trivial relation

$$\mathsf{D}(\rho_{SR},\mathbb{Z},\mathcal{E}) + \mathsf{E}(\rho_{S},\mathbb{X},\mathcal{E}) \geqslant \log 1/c$$

Outlook

- 1) Introduction to Measurement Uncertainty
- 2) Our New Measurement-Disturbance Relation
- 3) Extension to Quantum Memories
- 4) Applications (Qubits and Position-Momentum)

Qubit Example and Tightness

Weak Pauli X measurement (Phys. Rev. Lett. 109, 100404, 2012):

strength

0.0

1.0

 θ

0.5

0.0 0

0

Qubit Example and Tightness

Weak Pauli X measurement (Phys. Rev. Lett. 109, 100404, 2012):

Including Quantum Memory (if ρ_S is not pure):

If ρ_{SR} is purification of ρ_S :

Perfectly tight for all r and θ

(Even classical memory is enough)

Extension to Position-Momentum Measurements

Original setup considered by Heisenberg

• Observables \mathbb{P} and \mathbb{Q} with $[\mathbb{Q}, \mathbb{P}] = -i$

Same measurement disturbance holds if entropies are changed to differential entropies:

$$\mathsf{D}(\rho_{SR}, \mathbb{P}, \mathcal{E}) + \mathsf{e}(\rho_S, \mathbb{Q}, \mathcal{E}) \ge \log 2\pi\hbar - h(P|R)_{\rho}$$

- $e(\rho_S, \mathbb{Q}, \mathcal{E}) \coloneqq h_{\max}(Q|M)_{\rho^{\mathcal{E}}}$ (differential quantum conditional maxentropy*)
- h(P|R) = the differential quantum conditional von Neumann entropy*

* Berta, Christandle, FF, Scholz, Tomamichel, arXiv:1308.4527

Application to Coarse-Grained Position Measurement

What is the momentum disturbance if a coarse grained position measurement with a binning δ_q has been performed?

Applying our relation we obtain:

$$\begin{split} & \boldsymbol{\delta_q} \ \boldsymbol{d_P} \geq \hbar/2 \\ \bullet \ \boldsymbol{d_P} = \left(\frac{2^{h(P)\rho}}{4\pi}\right) 2^{D(\rho_S,\mathbb{P},\mathcal{E})} \end{split}$$

 $\rightarrow d_P$ depends on the initial P distribution

 \rightarrow if initial momentum is approximately sharp, then disturbance is larger

 \rightarrow interplay between measurement and preparation uncertainty

Conclusion and Outlook

- Presented a trade-off between disturbance and predictability of two complementary observables
- Operational disturbance and error measures with interpretation in information theory
- Tight for recent experiments
- Applies to position and momentum operators
- Application to quantum information theory (e.g., cryptography)?
- State-independent predictive error?

Thank you for your attention!

arXiv:1311.7637

FF, ENTROPIC MEASUREMENT-DISTURBANCE RELATIONS

09/06/2014