A Study of Entanglement in a Categorical Framework of Natural Language

Dimitri Kartsaklis¹ Mehrnoosh Sadrzadeh²

¹Department of Computer Science University of Oxford

²School of Electronic Engineering and Computer Science
Queen Mary University of London

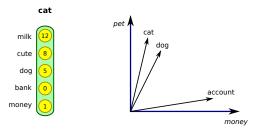
QPL 2014, June 4-6

The necessity of compositionality

Distributional hypothesis

The meaning of a word is determined by its context (Harris, 1954)

• A word is a *vector* of co-occurrence statistics with every other word in the vocabulary:



• Not enough data to do the same for phrases or sentences, (e.g. 'coursework meets deadline', 'script lack information' appear 1 time in a corpus of 100m sentences).

A solution

Use the grammar rules to *compose* the vectors of the words in a sentence into a sentence vector.

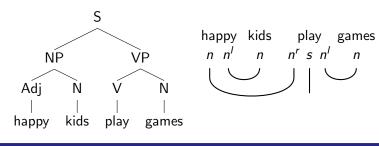
- Both a pregroup grammar and the category of finite-dimensional vector spaces and linear maps over a field share a compact closed structure
- \bullet We can then define a strongly monoidal functor ${\cal F}$ such that:

$$\mathcal{F}: \mathbf{Preg}_F \to \mathbf{FVect}_W \tag{1}$$

 The meaning of a sentence w₁w₂...w_n with type reduction α is given as:

$$\mathcal{F}(\alpha)(\overrightarrow{w_1} \otimes \overrightarrow{w_2} \otimes \ldots \otimes \overrightarrow{w_n}) \tag{2}$$

An example

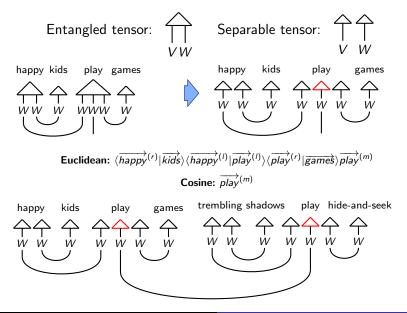


Type reduction:

$$(\epsilon_n^r \otimes 1_s) \circ (1_n \otimes \epsilon_n^l \otimes 1_{n^r \cdot s} \otimes \epsilon_n^l)$$

$$\mathcal{F}\left[\left(\epsilon_{n}^{\prime}\otimes1_{s}\right)\circ\left(1_{n}\otimes\epsilon_{n}^{\prime}\otimes1_{n^{\prime}\cdot s}\otimes\epsilon_{n}^{\prime}\right)\right]\left(\overrightarrow{happy}\otimes\overrightarrow{kids}\otimes\overrightarrow{play}\otimes\overrightarrow{games}\right)=\\\left(\epsilon_{W}\otimes1_{W}\right)\circ\left(1_{W}\otimes\epsilon_{W}\otimes1_{W\otimes W}\otimes\epsilon_{W}\right)\left(\overrightarrow{happy}\otimes\overrightarrow{kids}\otimes\overrightarrow{play}\otimes\overrightarrow{games}\right)=\\\left(\overrightarrow{happy}\times\overrightarrow{kids}\right)^{\mathsf{T}}\times\overrightarrow{play}\times\overrightarrow{games}$$

Entanglement in linguistics



Concrete models for verb tensors (1/2)

 A transitive verb should live in W^{⊗3}, but tensors of order higher than 2 are difficult to create and manipulate

A workaround:

Start with a matrix, then inflate this to tensors of higher order using Frobenius algebras

$$\overrightarrow{verb} = \sum_{i} (\overrightarrow{subject_i} \otimes \overrightarrow{object_i})$$
(3)

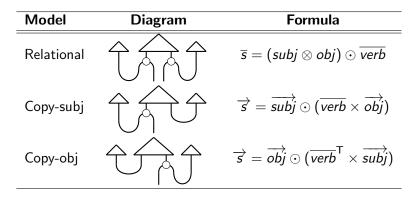
• Compare with the following separable version:

$$\overline{verb} = \left(\sum_{i} \overrightarrow{subject_i}\right) \otimes \left(\sum_{i} \overrightarrow{object_i}\right)$$
(4)

• ... and the rank-1 approximation of verb:

$$\overline{verb}_{R1} = \mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^{\mathsf{T}} \quad \text{for } \overline{verb} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$$
(5)

Concrete models for verb tensors (2/2)



We further combine Copy-subj and Copy-obj as follows:

- Frobenius additive: CopySubj + CopyObj
- Frobenius multiplicative: CopySubj ··· CopyObj
- Frobenius tensored: CopySubj \otimes CopyObj

The task

Compare the similarity of transitive sentences by composing vectors and measuring the cosine distance between them. Evaluate the results against human judgements.

Model	ho with cos	ho with Eucl.
Verbs only	0.329	0.138
Additive	0.234	0.142
Multiplicative	0.095	0.024
Relational	0.400	0.149
Rank-1 approx. of relational	0.402	0.149
Separable	0.401	0.090
Copy-subject	0.379	0.115
Copy-object	0.381	0.094
Frobenius additive	0.405	0.125
Frobenius multiplicative	0.338	0.034
Frobenius tensored	0.415	0.010
Human agreement	0.60	

Dataset 1: Same subjects/objects, semantically related verbs

Detecting sentence similarity (2/2)

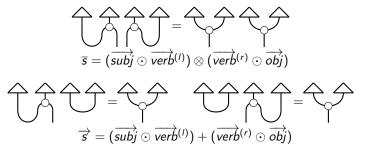
Model	ho with cos	ho with Eucl.
Verbs only	0.449	0.392
Additive	0.581	0.542
Multiplicative	0.287	0.109
Relational	0.334	0.173
Rank-1 approx. of relational	0.333	0.175
Separable	0.332	0.105
Copy-subject	0.427	0.096
Copy-object	0.198	0.144
Frobenius additive	0.428	0.117
Frobenius multiplicative	0.302	0.041
Frobenius tensored	0.332	0.042
Human agreement	0.66	

Dataset 2: Different subjects, objects and verbs

Conclusions from experimental work

- Overb matrices created as ∑_i(subj_i ⊗ obj_i) are essentially separable¹(too much linear dependence between vectors?)
- The only level of entanglement in the inflated verb tensors is provided by the Frobenius operators

This introduces a number of simplifications in the models:



¹Average cos similarity of verbs with their rank-1 approximations: 0.99 Dimitri Kartsaklis, Mehrnoosh Sadrzadeh Entanglement in a Categorical Framework of Language

Using linear regression

- For a given verb, collect all $\langle \overrightarrow{obj_i}, \overrightarrow{play \ obj_i} \rangle$ pairs (e.g. the vector of 'flute' paired with the holistic vector of 'play flute', and so on)
- Learn a matrix for the verb by minimizing the quantity:

$$\frac{1}{2m} \left(\sum_{i} \overrightarrow{verb} \times \overrightarrow{object}_{i} - \overrightarrow{verb} \ \overrightarrow{object}_{i} \right)^{2}$$
(6)

- Cosine similarity between the verb matrices and their rank-1 approximations: **0.48**
- Same concept can be applied to Frobenius additive model:

$$\frac{1}{2m} \left(\sum_{i} (\overrightarrow{verb} \times \overrightarrow{obj}_{i} \odot \overrightarrow{subj}_{i} + \overrightarrow{verb}^{\mathsf{T}} \times \overrightarrow{subj}_{i} \odot \overrightarrow{obj}_{i}) - \overrightarrow{subj} \overrightarrow{verb} \overrightarrow{obj}_{i} \right)^{2}$$

$$(7)$$
Work in progress...

Conclusion

- A preliminary study on entanglement aspects of tensor-based compositional models
- A number of concrete implementations of the Coecke-Sadrzadeh-Clark categorical framework have been proved problematic from an entanglement perspective
- However, in all cases the involvement of Frobenius algebras in the creation of verb tensors equips the fragmented compositional structure with flow
- The separability problem is not present for verb tensors constructed by gradient optimization techniques
- Corpus-based methods, such as the "Frobenius additive" model, are still viable and "easy" alternatives for creating verb tensors

Conclusion

- A preliminary study on entanglement aspects of tensor-based compositional models
- A number of concrete implementations of the Coecke-Sadrzadeh-Clark categorical framework have been proved problematic from an entanglement perspective
- However, in all cases the involvement of Frobenius algebras in the creation of verb tensors equips the fragmented compositional structure with flow
- The separability problem is not present for verb tensors constructed by gradient optimization techniques
- Corpus-based methods, such as the "Frobenius additive" model, are still viable and "easy" alternatives for creating verb tensors

Thank you!