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Computational category theory with diagrams

diagram: equivalence class of monoidal words over a finite tensor
scheme, usually with certain additional properties X .

interpretation: an X -monoidal functor “assigning values”

Questions of a diagram interpreted in a particular category:

1 compute a (possibly partial) contraction,

2 solve the word problem (are two diagrams equivalent, i.e. do
they have the same interpretation) or compute a normal form for
a diagram,

3 solve the implementability problem (construct a word equivalent
to a target using a library of allowed morphisms), and

4 choose morphisms in a diagram to best approximate a more
general diagram (possibly allowing the approximating diagram
itself to vary).
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Computational category theory is hard

diagram: equivalence class of monoidal words over a finite tensor
scheme, usually with certain additional properties X .

interpretation: an X -monoidal functor “assigning values”

Questions of a diagram interpreted in a particular category:

1 compute a (possibly partial) contraction, (#P-hard)

2 solve the word problem (are two diagrams equivalent, i.e. do
they have the same interpretation) or compute a normal form for
a diagram, (undecidable)

3 solve the implementability problem (construct a word equivalent
to a target using a library of allowed morphisms) (undecidable)

4 choose morphisms in a diagram to best approximate a more
general diagram (possibly allowing the approximating diagram
itself to vary). (NP-hard)
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(Limited) practical algorithms anyway

Many practical questions are instances of one of these problems
I quantum programming and logic
I probabilistic graphical models,
I tensor network state approach to quantum condensed matter,
I computational complexity theory: circuits, CSP, #CSP
I even databases

So many tractable special cases, approximate algorithms, and
heuristics exist

Let’s turn these into categorical algorithms (see also
[MT13]). Formalize analogies among procedures.
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Example: belief propagation

A message-passing algorithm (Pearl 1982), for contraction,
marginalization, and optimization problems

Many extensions, analogs (survey propagation, turbo coding)

These should be the same abstract categorical algorithm, varying
the category (e.g. prob. graphical models vs. sets and relations).

To make this precise, first describe set-up
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Tensor schemes and monoidal languages

Definition ([JS91, Sel09])

A (finite) tensor scheme T (or monoidal signature) is

a finite set ObV (T ) of object variables (including a monoidal
identity object I ),

a finite set Mor(T ) of morphism variables, and

functions dom, cod : Mor(T )→ Ob(T ) = ⊗-words in obj vars.

May also add relations.

The monoidal language T ⊗,◦ comprises all
valid morphism words built from Mor(T ), and identity morphisms. It
generates the free monoidal category over T . Constructively:

1 For all A ∈ Ob(T ), idA is a word.
2 Each f ∈ Mor(T ) is a word.
3 Given words u, u′, u ⊗ u′ is a word with domain

dom(u)⊗ dom(u′) and codomain cod(u)⊗ cod(u′).
4 Given words w ,w ′ with dom(w ′) = cod(w), w ◦ w ′ is a word.
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Words in a monoidal language

Interpret a word to define a morphism is a particular category.
I Factors through free monoidal category, which imposes

equivalences such as idA ◦f = f and
(f ⊗ g) ◦ (f ′ ⊗ g ′) = (f ◦ f ′)⊗ (g ◦ g ′),

I Words equivalent if represent same morphism in the free (X-)
monoidal category.

Definition

An equivalence class of words in the free (X-) monoidal category over
a tensor scheme is called a diagram.

Further notions of equivalence arise with additional relations.

So far, no normal form for words
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I -valued points: the messages

Important word problem for Belief Propagation: equality of
morphisms of type Mor(I ,A) for objects A (I -valued points).

Why?
I Want to generalize algorithms (e.g. belief propagation in the

category of vector spaces and linear transformations)
I Can’t assume objects A are sets with points (such as probability

distributions in the classical belief propagation algorithm).

But, messages are still morphisms of type Mor(I ,A) for each
object A; equate these for belief propagation equations

I Deciding if two vectors are equal up to numerical tolerance
becomes deciding a word problem in Mor(I ,A).

I These messages must also be stored somehow.
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Word problems in monoidal languages

Coherent graphical languages for some types of monoidal
categories means those word problems can be reduced to e.g.
graph isomorphism [DK13], and produces normal forms by
word7→graph 7→word.

Hence the word problem for the free closed category and free
compact closed category over a finite tensor scheme are in
LOGSPACE and P [Luk82] respectively.

Adding adjectives (X-monoidal categories) and relations, or
fixing values by applying a functor F , so that the category is no
longer free may make it easier or harder.

Proposition

The word problem and implementability problem in a monoidal
category over a finite tensor scheme are undecidable.
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Word problems, term rewriting, normal forms

Preferable to have a confluent terminating rewriting system that
attached a direction to the equalities of the X-category.

Term rewriting and computing normal forms in monoidal
categories is a field in its infancy [Kis12, Mim14]

Or, exploit completeness
I Finite dimensional vector spaces over a field of characteristic

zero are complete for traced symmetric monoidal categories
[HHP08] and finite dimensional Hilbert spaces are complete for
dagger compact closed categories [Sel11].
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I -valued points: the messages

Anyway for an efficient algorithm, need representation and word
problem for I -valued points to be efficient.

Classical belief propagation: have a monoid homomorphism,
size :Ob(T )⊗→N, from the free monoid generated by the
objects of our tensor scheme to the natural numbers.

Monoidal product 7→ multiplication of vector space dimensions

Then words in Mor(I ,A) can be stored and compared in
O(size(A)).

Now look at type of category BP will work in. Need something like
variables.
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Spiders: generalized variables

Definition
A spidered category is a strict symmetric monoidal category equipped
with a special commutative (†) Frobenius structure [CPV08]
(A,m, u, δ, ε, σF ) on each object A.

Note: morphisms of a spidered category not generally monoid or
comonoid homomorphisms.

Now add duals for objects to obtain a compact closed category
with additional structure.
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Dungeon category

Call a compact closed category spidered in a compatible way a

Definition
A dungeon category is a compact closed category (C, σC, i , e) s.t.

(i) Each object has a special commutative Frobenius structure
(A,m, u, δ, ε, σF ) with σF

A(∗),A(∗) = σC
A(∗),A(∗) , and

(ii) Any two morphisms which are
I Constructed from the identity idA, the symmetric braiding σA,A,

the Frobenius morphisms, and the dualizing cup and cap
morphisms iA, eA for A, and

I Have the same domain (tensor product of zero or more or
copies of A and A∗) and the same codomain (another such
tensor product)

I Are equal.
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Dungeon category

So a directed spider morphism depends only on

the number of inward and outward directed arrows,

which way they point,

and their order

Good setting for generalized belief propagation because we can

bend wires to choose inputs and outputs of any morphism and

have spiders that play the role of variables in the probabilistic
setting for belief propagation.
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Sum-product and belief propagation for contraction

The sum product algorithm [KFL01]: if a diagram is a tree, can
perform contraction according to the tree.

If not, use a tree decomposition [Hal76] to force it to be a tree,
then run sum-product.

I This is the junction tree algorithm [LS88], also extended to the
quantum case [MS08].

Can improve on the abstract sum-product algorithm by using an
optimized message-passing version, which among other benefits
permits parallelization.

this is belief propagation
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Belief propagation in factor graphs
The algorithm operates on a factor graph, a bipartite graph with

I one part discrete random variables v ∈ V and
I one part factors u ∈ U.

Each factor (potential) assigns a real number to each
combination of states of the variables it is connected to.

Multiplying factors and normalizing if needed gives a joint
probability distribution.

Belief propagation is a message passing algorithm.
I Each message is a probability distribution over the states one

variable v can take: a vector in the associated vector space Vv .

Each factor fU at node u is a tensor in ⊗v∈nbhd(u)Vv , defines
valence(u) reshaped linear maps

fu,v : ⊗i∈nbhd(u)\vVi → Vv ,

one for each v ∈ nbhd(u).
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Messages at variables.

Compute the pointwise (Hadamard) product of the incoming
messages, and output it as the outgoing message along e.

In a probabilistic category, Hadamard product rescales so the out
message is a probability distribution.

If there are no incoming messages, output the uniform message.

Messages at factors.

Compute the tensor product of the incoming messages,

apply reshaped fu,v : ⊗i∈nbhd(u)\vVi → Vv , and output the result
as the outgoing message along the edge to v .

Resulting algorithm.

BP equations describe fixed points of the update rules.

Initial messages can be uniform distributions.

Tree factor graph: done in two “passes,” leaves to root then
root to leaves, updating messages only as they change.

Belief propagation is exact on trees
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Messages at spiders.

Apply the reshaped spider to incoming messages, and output the
result as the outgoing message.

If there are no incoming messages, treat the spider as a
Frobenius unit.

Messages at “factor” morphisms.

Compute the monoidal product of the incoming messages,

apply the reshaped f ,

output the result as the outgoing message.

Resulting algorithm.

System of BP equations are equalities of I -valued points
describing the fixed points of the update rules.

Initial messages can be chosen to be units at the spiders.

Nice behavior on trees preserved

A spider is just a special kind of morphism. To get the general
bipartite version, replace the message procedure at spiders with
another copy of the factor message procedure.
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To solve a problem, just reduce to category theory

Goal: general tools that work for any category with suitable
properties

I specialize automatically by giving a monoidal category interface

Rapidly expanding universe of applied problems given categorical
interpretations

I a problem-solving abstraction with the potential to be as useful
as convex programming or numerical linear algebra.
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