Tensors, |-graphs, and non-commutative quantum
structures

Aleks Kissinger David Quick

QPL
June 2014

Table of Contents

Introduction

Quanto

8600 QuantoDerive

File Edit Derive Window

I Teserive rotate ihs.agnph | sampleagrash » | testagraph | threegates.agnph x
& axioms
o3 derations
¢ Coraphs == L
1 rotate_Ihs.qgraph
) kample.qgraph|
) test.qgraph
) threegates.qgraph

& simprocs
o theorams

Vertex Type: ‘ ‘ Edge Type: ‘

Core status: OK

Defining Nodes

Given the graph:

Defining Nodes

Given the graph:

. a

Could we define: ;}b :

¢ C

Defining Nodes

Given the graph: =

Could we define: ;}b = }Fl.)

Defining Nodes

Given the graph: m i:j

Could we define: ;} }F
e

Defining Nodes

Given the graph: m i:j

Could we define: ;} }F
é}% - }J 2))J
‘b b AN

Defining Nodes

Given the graph: m i:j

Could we define: ;} }F
é}% - }J 2))J - ?}
AN % % AN

Defining Nodes

Given the graph: m i:j

Could we define: %} }F
é}% - }J 2))J - ?}
EaN % % ‘b

Defining Nodes

Given the graph: m i:j

Could we define: %} }F
é}% - }J 2))J %}
EaN % % ‘b

Defining Nodes

Given the graph: m = i:j = i:i

Could we define: %}b = }Fl.)
é}% - }J 2))J %}
‘b ‘b b b

Recursively Defining Nodes

GivenZ:{ /5\ , J) , \%{ , ? }satisfying:

Recursively Defining Nodes

GivenZ:{ /5\ , J) , \%{ , ? }satisfying:

PR, A YA

We may want to define nodes of the form:

20 20
%?\ a 'ﬁ
14+ % n 14d.--% n

n-1 n-1

Recursively Defining Nodes

0 inputs: {'g:é

Recursively Defining Nodes

0 inputs: {'g:g

Given k inputs: ;5\

1eeeeok

Recursively Defining Nodes

0 inputs: {%7@

Given k inputs: ;5\

1eeeeok

define k+1 inputs: /é%\

141 " k+1
k

Recursively Defining Nodes

0 inputs: {'g:é

Given k inputs: ;%\

*k

14
define k+1 inputs: /{1%\ fi&
1

----- o k+1 LTee--o ok41
k k

Recursive definitions suggest proof by induction. To do this we
need to be more formal with variable arity nodes.

|-Boxes

Use !-boxes for multiple copies of a section from a graph.

5 replaces d

|-Boxes
Use !-boxes for multiple copies of a section from a graph.

5 replaces d

Then we have operations allowing deletion of !-boxes and creation
of a new instance of the contents:

.

|-Boxes
Use !-boxes for multiple copies of a section from a graph.

5 replaces d

Then we have operations allowing deletion of !-boxes and creation
of a new instance of the contents:

.

¥

|-Boxes

Use !-boxes for multiple copies of a section from a graph.

5 replaces d

Then we have operations allowing deletion of !-boxes and creation
of a new instance of the contents:

PR
0 ks

|-Boxes
Use !-boxes for multiple copies of a section from a graph.

5 replaces d

Then we have operations allowing deletion of !-boxes and creation
of a new instance of the contents:

|-Boxes

Use !-boxes for multiple copies of a section from a graph.

5 replaces d

Then we have operations allowing deletion of !-boxes and creation
of a new instance of the contents:

i,
% Exp

Tty

I-Box Equations

I-Boxes can be used in equations:

I-Box Equations

I-Boxes can be used in equations:

seie s B B
‘\’/‘= \{ is replaced by =

I-Box Equations

I-Boxes can be used in equations:

seie s B B
‘\’/‘= \{ is replaced by =

Which represents concrete equations like:

SRS N A -

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

I-Box Expansion

This I-box (labelled A) has many different possible expansions:

Table of Contents

Tensor notation

Building a Tensor

Building a Tensor

Building a Tensor

1pfab - ‘%

Building a Tensor

Building a Tensor

Building a Tensor

Building a Tensor

Building a Tensor

Building a Tensor

w?éE(béBéﬁé

OGO

Building a Tensor

Building a Tensor

Building a Tensor

[7/’?55} B¢§Béﬁé

Building a Tensor

[1/)1?55} B¢§Béﬁé

Building a Tensor

B
[¥231] b gpbede —

Building a Tensor

B
(V) D qpbeds

Building a Tensor

B
[wféE] ¢(5]B[I3>Bé

Q,
(3

Building a Tensor

B
[s8] P (aB(byBeds

An Example

Ged

An Example

Yraye P58

Ged

An Example

Yaedee [1]° =

Ged

An Example

® &

S

Cwad

Diays beape [1]

Ged

CE=

Twisted Example

Viayedre [1]°

Ged)

Twisted Example

®
S

®

Yoo [1]° =

A=
D

Ged)

Nesting Example (Inner)

Nesting Example (Inner)

KifV

@

Nesting Example (Inner)

6] [[555]855/5/¢5/<5]B}A

Nesting Example (Outer)

Nesting Example (Outer)

Nesting Example (Outer)

Table of Contents

Definitions

Edgeterms

Definition
Fix disjoint, infinite sets £ and BB of edge names and !-box names,
respectively. The set of edgeterms T, is defined recursively as

follows:
eccT, (i.e empty)
ejacT, aeé&
e[(] e T ecT., AcB

eef €7, e,f €7e

Edgeterms

Definition
Fix disjoint, infinite sets £ and BB of edge names and !-box names,
respectively. The set of edgeterms T, is defined recursively as

follows:
eccT, (i.e empty)
ejacT, aeé&
e[(] e T ecT., AcB
eef €7, e,f €7e

Two edgeterms are equivalent if one can be transformed into the
other by:

ce=e=ec e(fg) = (ef)g [e)A =€ = (*

|-Tensors

Definition
The set of all I-tensor expressions Ty for a signature X is defined
recursively as:

elc Ty (empty tensor)
el cTs a,beé

* ¢ €Tx ecTe,peX
.[G}AGTZ GeTy, AcB
o GH e T G HeTs

Satisfying conditions F1-2, C1-3

Conditions: F1-F2

F1: No directed edge name can appear more than once as these

can not be plugged together: ¢s¢; = @

Conditions: F1-F2

F1: No directed edge name can appear more than once as these

O
can not be plugged together: ¢zv5 = %

/O

Conditions: F1-F2

F1: No directed edge name can appear more than once as these
s = <C

F2: No box can appear more than once to prevent overlap (which

we do not allow in this formalism): [[.. _]A]B[,) _]A EA@ A@

can not be plugged together:

Conditions: F1-F2

F1: No directed edge name can appear more than once as these
s = <C

F2: No box can appear more than once to prevent overlap (which

B
we do not allow in this formalism): [[.. _]A]B[,) _]A :@@

can not be plugged together:

Conditions: C1-C3

C1: An edge entering a !-box can't be on a node already in that

1-Box: [grzs]° = ’

Conditions: C1-C3

C1: An edge entering a !-box can't be on a node already in that

NG
I-Box: [¢[§>B]B = @"‘a

Conditions: C1-C3

C1: An edge entering a !-box can't be on a node already in that
I-Box: [¢[§>B]B = @"‘a

C2: Nested |-Boxes around an edge must be nested in the same way

B A
in the rest of the tensor: ¢yz4ys [’[l}]A = AE I@

Conditions: C1-C3

C1: An edge entering a !-box can't be on a node already in that
I-Box: [¢[§>B]B = @"‘a

C2: Nested |-Boxes around an edge must be nested in the same way

B.
in the rest of the tensor: ¢yz4ys [1/}]A = @4@

Conditions: C1-C3

C1: An edge entering a !-box can't be on a node already in that
I-Box: [¢[§>B]B = @"‘a
C2: Nested |-Boxes around an edge must be nested in the same way

B.
in the rest of the tensor: ¢yz4ys [1/}]A = @4@

C3: Bound edges must be in compatible |-boxes:

dwevs = D | i)

Conditions: C1-C3

C1: An edge entering a !-box can't be on a node already in that

Box: [grs]° = ‘

C2: Nested |-Boxes around an edge must be nested in the same way
Bl
in the rest of the tensor: gya5 [1/}]A = AED @

C3: Bound edges must be in compatible I-boxes:

Payevs = @

&

Operations

The operation Kill removes a !-box and all nodes and edges in it:

Operations

The operation Kill removes a !-box and all nodes and edges in it:
Killg := [[G]® — 1,[e)B s €, (]® — €]

Operations

The operation Kill removes a !-box and all nodes and edges in it:
Killg := [[G]® — 1,[e)B s €, (]® — €]

Expanding a !-box creates a new copy of its contents with new
names for all new edges/boxes. Write fr(G) for G with all names
replaced by new ones (choosen by predetermined function fr).

Operations

The operation Kill removes a !-box and all nodes and edges in it:
Killg := [[G]® — 1,[e)B s €, (]® — €]

Expanding a !-box creates a new copy of its contents with new
names for all new edges/boxes. Write fr(G) for G with all names
replaced by new ones (choosen by predetermined function fr).
Expg = [[G]® > [G]® r(G), [€)B — [e)B fr(e), (e]® >
fr(e)(e]®]

Table of Contents

Induction

Spider Node

Definition

oA

Spider Node

Definition

Theorem

Spider Node

Definition

oA
3 %

We would like to do induction on !-box B splitting into a base case
(after Killg) and an inductive step (proving Expg from original).

Theorem

Induction

Killg(G = H) (G =H) = Expg(G = H)
G=H

(Induction)

Induction

Kills(G = H) Fixg(G = H) = Expg(G = H)

C—H (Induction)

Spider Theorem (Killg)

Theorem

Agg@ =A§ (base)

Spider Theorem (Killg)

Theorem

ot
Fof

Proof.

(base)

Spider Theorem (Killg)

Theorem

Proof.

(base)

Spider Theorem (Fixs =—> Expg)

Theorem

A df - R

Spider Theorem (Fixs =—> Expg)

Theorem

A df - R
Proof.

Spider Theorem (Fixs =—> Expg)

Theorem

A df - R
Proof.

Spider Theorem (Fixs =—> Expg)

Theorem

oy o
Proof.

Spider Theorem (Fixs =—> Expg)

Theorem

oy o
Proof.

S ddd

Spider Theorem (Fixs =—> Expg)

Theorem

N T
@@@@@

Spider Theorem (Fixs =—> Expg)

Theorem

by - e o
@@@@@@

Anti-Homomorphism

i

Anti-Homomorphism

AR

Table of Contents

Summary

Summary

Summary

e Diagrammatic language:

Summary

e Diagrammatic language:

e Tensor notation:

Summary

e Diagrammatic language:

e Tensor notation: [7/1,?55] B¢<5]B[B>Béaé

e Recursive definitions: {%zzé lga =

Summary

e Diagrammatic language: A
{5) <
Y

e Tensor notation: [7/1,?55] B¢<5]B[B>Béaé

e Recursive definitions: {'g::é lga :=§\

e |-Box Induction:
Killg(G = H) Fixg(G = H) = Expg(G = H)
G=H

(Induction)

	Introduction
	Tensor notation
	Definitions
	Induction
	Summary

