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Recursively Defining Nodes

0 inputs: {'g:é

Given k inputs: ;%\
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Recursive definitions suggest proof by induction. To do this we
need to be more formal with variable arity nodes.
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Use !-boxes for multiple copies of a section from a graph.

5 replaces d

Then we have operations allowing deletion of !-boxes and creation
of a new instance of the contents:
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I-Boxes can be used in equations:

seie s B B
‘\’/‘= \{ is replaced by =

Which represents concrete equations like:
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Edgeterms

Definition
Fix disjoint, infinite sets £ and BB of edge names and !-box names,
respectively. The set of edgeterms T, is defined recursively as

follows:
eccT, (i.e empty)
ejacT, aeé&
e[ (] e T ecT., AcB
eef €7, e,f €7e

Two edgeterms are equivalent if one can be transformed into the
other by:

ce=e=ec e(fg) = (ef)g [e)A =€ = (*



|-Tensors

Definition
The set of all I-tensor expressions Ty for a signature X is defined
recursively as:

elc Ty (empty tensor)
el cTs a,beé

* ¢ €Tx ecTe,peX
.[G}AGTZ GeTy, AcB
o GH e T G HeTs

Satisfying conditions F1-2, C1-3
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C1: An edge entering a !-box can't be on a node already in that
I-Box: [¢[§>B]B = @"‘a
C2: Nested |-Boxes around an edge must be nested in the same way

B.
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C1: An edge entering a !-box can't be on a node already in that

Box: [grs]° = ‘

C2: Nested |-Boxes around an edge must be nested in the same way
Bl
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Operations

The operation Kill removes a !-box and all nodes and edges in it:
Killg := [[G]® — 1,[e)B s €, (]® — €]

Expanding a !-box creates a new copy of its contents with new
names for all new edges/boxes. Write fr(G) for G with all names
replaced by new ones (choosen by predetermined function fr).
Expg = [[G]® > [G]® r(G), [€)B — [e)B fr(e), (e]® >
fr(e)(e]®]
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Definition
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We would like to do induction on !-box B splitting into a base case
(after Killg) and an inductive step (proving Expg from original).

Theorem



Induction

Killg(G = H) (G =H) = Expg(G = H)
G=H

(Induction)
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Kills(G = H)  Fixg(G = H) = Expg(G = H)

C—H (Induction)
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Summary

e Diagrammatic language: A
{5) <
Y

e Tensor notation: [7/1,?55] B¢<5]B[B>Béaé

e Recursive definitions: {'g::é lga :=§\

e |-Box Induction:
Killg(G = H) Fixg(G = H) = Expg(G = H)
G=H

(Induction)
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