Tensors, !-graphs, and non-commutative quantum structures

Aleks Kissinger David Quick

QPL June 2014

Table of Contents

Introduction

Tensor notation

Definitions

Induction

Summary

Quanto

Could we define:
$$b := b$$

Given the graph:

Could we define: b := b

Could we define:
$$\downarrow_c^a \stackrel{b}{\longrightarrow} := \downarrow_c^b$$

$$c$$
 a b a

Could we define:
$$\downarrow_c$$
 := \downarrow_c

Could we define:
$$\sum_{c}^{a} b := \sum_{c}^{b} b$$

Could we define:
$$\downarrow_c^a \downarrow_b^b := \downarrow_c^b$$

Could we define:
$$\downarrow_c^a \stackrel{b}{\longrightarrow} := \downarrow_c^b$$

Given the graph:

Could we define: \downarrow_c \downarrow_b := \downarrow_b

$$\begin{array}{c}
c \\
b \\
c
\end{array}$$

$$\begin{array}{c}
c \\
c
\end{array}$$

Given
$$\Sigma = \left\{ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Given
$$\Sigma = \left\{ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

We may want to define nodes of the form:

$$\begin{array}{c}
\downarrow^{0} \\
\downarrow^{0} \\
\downarrow^{1}
\end{array} := \begin{array}{c}
\downarrow^{0} \\
\downarrow^{0}
\end{array}$$

0 inputs: $\dot{\uparrow} := \dot{\uparrow}$

0 inputs:
$$\dot{\uparrow} := \dot{\uparrow}$$

0 inputs: $\dot{\downarrow} := \dot{\uparrow}$ Given k inputs:

0 inputs:
$$\dot{\uparrow} := \dot{\uparrow}$$

Given k inputs:

define k+1 inputs:

0 inputs:
$$\dot{\uparrow} := \dot{\uparrow}$$

Given k inputs:

define k+1 inputs:

Recursive definitions suggest proof by induction. To do this we need to be more formal with variable arity nodes.

Use !-boxes for multiple copies of a section from a graph.

Use !-boxes for multiple copies of a section from a graph.

Use !-boxes for multiple copies of a section from a graph.

Use !-boxes for multiple copies of a section from a graph.

Use !-boxes for multiple copies of a section from a graph.

Use !-boxes for multiple copies of a section from a graph.

!-Box Equations

!-Boxes can be used in equations:

!-Box Equations

!-Boxes can be used in equations:

!-Box Equations

!-Boxes can be used in equations:

is replaced by
$$\begin{bmatrix} B \\ C \end{bmatrix} = \begin{bmatrix} B \\ C \end{bmatrix}$$

Which represents concrete equations like:

Table of Contents

Introduction

Tensor notation

Definitions

Induction

Summary

$$\psi$$
 = ψ a

$$\psi_{ extit{fab}} \; = \; egin{pmatrix} \dot{f f} \ \psi \ \dot{f b} \end{pmatrix} \, f \hat{f A} \, f \hat{f a}$$

$$\psi_{ ilde{f} reve{a} reve{b}} \; = \; egin{pmatrix} \dot{f}^{
m f} \ \psi \ \dot{f}^{
m a} \dot{b} \end{pmatrix}$$

$$\psi_{\hat{f}\check{a}\check{b}} = \psi_{\hat{a}}$$
 $\psi_{\hat{f}\check{a}\check{b}} = \psi_{\hat{a}}$
 $\psi_{\hat{a}\check{b}\check{c}\check{d}\check{c}} = \psi_{\hat{a}}$

$$\psi_{[\hat{a})^B}\phi_{(\check{a})^B}$$
 = \mathbf{B}_{\bullet}

$$\psi_{[\hat{\mathbf{a}})^B}\phi_{(\check{\mathbf{a}}]^B}[1]^B = \mathbf{B}_{\psi}$$

Twisted Example

$$\psi_{[\hat{\mathbf{a}})^B}\phi_{[\check{\mathbf{a}})^B}[1]^B = \mathbf{B}$$

Twisted Example

Nesting Example (Inner)

Nesting Example (Inner)

Nesting Example (Inner)

Nesting Example (Outer)

Nesting Example (Outer)

Nesting Example (Outer)

Table of Contents

Introduction

Tensor notation

Definitions

Induction

Summary

Edgeterms

Definition

Fix disjoint, infinite sets $\mathcal E$ and $\mathcal B$ of edge names and !-box names, respectively. The set of *edgeterms* $\mathcal T_e$ is defined recursively as follows:

- \bullet $\epsilon \in \mathcal{T}_e$
- ullet $\check{a},\hat{a}\in\mathcal{T}_e$
- ullet $[e\rangle^A,\langle e]^A\in\mathcal{T}_e$
- $\bullet \ \textit{ef} \in \mathcal{T}_e$

(i.e empty)

 $a\in\mathcal{E}$

 $e\in\mathcal{T}_e,\ A\in\mathcal{B}$

 $e, f \in \mathcal{T}_e$

Edgeterms

Definition

Fix disjoint, infinite sets \mathcal{E} and \mathcal{B} of edge names and !-box names, respectively. The set of *edgeterms* \mathcal{T}_e is defined recursively as follows:

$ullet$ $\epsilon \in \mathcal{T}_{e}$	(i.e empty)
$ullet$ $\check{a},\hat{a}\in\mathcal{T}_{e}$	${\sf a}\in \mathcal{E}$
$ullet$ $[e angle^A,\langle e]^A\in\mathcal{T}_{e}$	$e\in\mathcal{T}_e,\;A\in\mathcal{B}$
$ullet$ ef $\in \mathcal{T}_e$	$e,f\in\mathcal{T}_{e}$

Two edgeterms are equivalent if one can be transformed into the other by:

$$\epsilon e \equiv e \equiv e \epsilon$$
 $e(fg) \equiv (ef)g$ $[\epsilon\rangle^A \equiv \epsilon \equiv \langle \epsilon]^A$

!-Tensors

Definition

The set of all !-tensor expressions \mathcal{T}_Σ for a signature Σ is defined recursively as:

$ullet$ $1\in\mathcal{T}_{oldsymbol{\Sigma}}$	(empty tensor)
$ullet \ 1_{\hat{a}oldsymbol{b}}\in\mathcal{T}_{oldsymbol{\Sigma}}$	$a,b\in\mathcal{E}$
$ullet$ $\phi_{e} \in \mathcal{T}_{\Sigma}$	$e\in\mathcal{T}_e,\phi\in\Sigma$
$ullet \left[G ight]^A \in \mathcal{T}_{\Sigma}$	$G\in\mathcal{T}_{\Sigma},\;A\in\mathcal{B}$
$ullet$ $GH \in \mathcal{T}_{\Sigma}$	$G,H\in\mathcal{T}_{\Sigma}$

Satisfying conditions F1-2, C1-3

Conditions: F1-F2

F1: No directed edge name can appear more than once as these can not be plugged together: $\phi_{\hat{a}}\psi_{\hat{a}}=\frac{\phi_{\hat{a}}}{\phi_{\hat{a}}}$

Conditions: F1-F2

F1: No directed edge name can appear more than once as these can not be plugged together: $\phi_{\hat{s}}\psi_{\hat{s}}=\phi_{\hat{t}}\psi_{\hat{t}}$

Conditions: F1-F2

F1: No directed edge name can appear more than once as these can not be plugged together: $\phi_{\hat{s}}\psi_{\hat{s}}=$

F2: No box can appear more than once to prevent overlap (which we do not allow in this formalism): $[[\ldots]^A]^B[\ldots]^A \stackrel{\text{B}}{=} [\ldots]^A$

Conditions: F1-F2

F1: No directed edge name can appear more than once as these can not be plugged together: $\phi_{\hat{s}}\psi_{\hat{s}}=$

F2: No box can appear more than once to prevent overlap (which we do not allow in this formalism): $[[\ldots]^A]^B[\ldots]^A = \begin{bmatrix} B & B \\ B & B \end{bmatrix}$

C1: An edge entering a !-box can't be on a node already in that

$$\text{!-Box:} \quad \left[\phi_{\left[\hat{a}\right)^B}\right]^B \quad = \quad \begin{array}{c} \\ \\ \\ \end{array}$$

C1: An edge entering a !-box can't be on a node already in that

!-Box:
$$\left[\phi_{\left[\hat{a}\right\rangle^{B}}\right]^{B}=\emptyset$$

C1: An edge entering a !-box can't be on a node already in that

$$\text{!-Box:} \quad \left[\phi_{[\hat{\mathbf{a}})^B}\right]^B \quad = \quad \stackrel{\text{B}}{\longrightarrow} \quad \begin{array}{c} \\ \\ \end{array}$$

C2: Nested !-Boxes around an edge must be nested in the same way

in the rest of the tensor: $\phi_{[[\hat{a}\rangle^A\rangle^B}[\psi]^A = \phi$

$$\phi_{[[\hat{a}\rangle^A\rangle^B}[\psi]^A =$$

C1: An edge entering a !-box can't be on a node already in that

!-Box:
$$\left[\phi_{[\hat{\mathbf{a}})^B}\right]^B = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{a} \end{bmatrix}$$

C2: Nested !-Boxes around an edge must be nested in the same way

in the rest of the tensor: $\phi_{[[\hat{\mathfrak{g}}\rangle^A\rangle^B}[\psi]^A = \phi$

C1: An edge entering a !-box can't be on a node already in that

!-Box:
$$\left[\phi_{\left[\hat{\mathbf{a}}\right)^B}\right]^B = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{a} & \mathbf{a} \end{bmatrix}$$

C2: Nested !-Boxes around an edge must be nested in the same way

in the rest of the tensor:
$$\phi_{[[\hat{a}\rangle^A\rangle^B}[\psi]^A = \phi$$

C3: Bound edges must be in compatible !-boxes:

$$\phi_{[\hat{a})^B}\psi_{\check{a}} = \phi_{\widehat{a}} \stackrel{B}{\longrightarrow} \hat{a} \stackrel{\bullet}{\longrightarrow} \hat{\psi}$$

C1: An edge entering a !-box can't be on a node already in that

!-Box:
$$\left[\phi_{\left[\hat{\mathbf{a}}\right)^B}\right]^B = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{a} & \mathbf{b} \end{bmatrix}$$

C2: Nested !-Boxes around an edge must be nested in the same way

in the rest of the tensor: $\phi_{[[\hat{a}\rangle^A\rangle^B}[\psi]^A = \phi$

C3: Bound edges must be in compatible !-boxes:

$$\phi_{[\hat{a}\rangle^B}\psi_{\check{a}} = \phi_{[\hat{a}]}^B$$

The operation Kill removes a !-box and all nodes and edges in it:

The operation Kill removes a !-box and all nodes and edges in it:

$$\mathit{Kill}_B := [[G]^B \mapsto 1, [e\rangle^B \mapsto \epsilon, \langle e]^B \mapsto \epsilon]$$

The operation Kill removes a !-box and all nodes and edges in it: $\mathit{Kill}_B := [[G]^B \mapsto 1, [e\rangle^B \mapsto \epsilon, \langle e]^B \mapsto \epsilon]$

Expanding a !-box creates a new copy of its contents with new names for all new edges/boxes. Write fr(G) for G with all names replaced by new ones (choosen by predetermined function fr).

The operation Kill removes a !-box and all nodes and edges in it:

$$\mathit{Kill}_B := [[G]^B \mapsto 1, [e\rangle^B \mapsto \epsilon, \langle e]^B \mapsto \epsilon]$$

Expanding a !-box creates a new copy of its contents with new names for all new edges/boxes. Write fr(G) for G with all names replaced by new ones (choosen by predetermined function fr).

$$Exp_B := [[G]^B \mapsto [G]^B \operatorname{fr}(G), [e\rangle^B \mapsto [e\rangle^B \operatorname{fr}(e), \langle e]^B \mapsto \operatorname{fr}(e)\langle e]^B]$$

Table of Contents

Introduction

Tensor notation

Definitions

Induction

Summary

Spider Node

Definition

Spider Node

Definition

Theorem

Spider Node

Definition

Theorem

We would like to do induction on !-box B splitting into a base case (after $Kill_B$) and an inductive step (proving Exp_B from original).

Induction

$$\frac{\textit{Kill}_B(G=H)}{G=H} \xrightarrow{\text{$(G=H)$}} \text{(Induction)}$$

Induction

$$\frac{\mathit{Kill}_B(G=H)}{\mathit{G}=H} \xrightarrow{\mathit{Fix}_B(G=H)} \underbrace{\mathit{Exp}_B(G=H)}_{\mathit{G}=H} \text{ (Induction)}$$

Spider Theorem (Kill_B)

Theorem

Spider Theorem (Kill_B)

Theorem

Spider Theorem (Kill_B)

Theorem

Theorem

$$\Rightarrow \qquad \Rightarrow \qquad (\text{step})$$

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Anti-Homomorphism

Anti-Homomorphism

Anti-Homomorphism

Table of Contents

Introduction

Tensor notation

Definitions

Induction

Summary

• Diagrammatic language:

• Diagrammatic language:

B of the state of

• Tensor notation:

$$\left[\psi_{\hat{f}\check{a}\check{b}}\right]^B\!\phi_{\langle\hat{a}]^B[\hat{b}\rangle^B\check{c}\hat{d}\check{e}}$$

• Diagrammatic language:

• Tensor notation:

$$\left[\psi_{\hat{t}\check{\mathsf{a}}\check{\mathsf{b}}}\right]^{B}\phi_{\langle\hat{\mathsf{a}}]^{B}\left[\hat{b}\rangle^{B}\check{\mathsf{c}}\hat{d}\check{\mathsf{e}}}$$

• Recursive definitions:

• Diagrammatic language:

Tensor notation:

$$\left[\psi_{\hat{f}\check{\mathsf{a}}\check{\mathsf{b}}}\right]^{\mathsf{B}}\phi_{\langle\hat{\mathsf{a}}]^{\mathsf{B}}[\hat{b}\rangle^{\mathsf{B}}\check{\mathsf{c}}\hat{d}\check{\mathsf{e}}}$$

• Recursive definitions: \(\frac{1}{2} := \frac{1}{2}

$$\dot{\uparrow} := \dot{\uparrow}$$

• !-Box Induction:

$$\frac{\textit{Kill}_B(G=H)}{\textit{G}=H} \xrightarrow{\textit{Fix}_B(G=H)} \frac{\textit{Exp}_B(G=H)}{\textit{G}=H} \text{ (Induction)}$$