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2-categories and their graphical language

O-cells Regions Classical information s

I-cells Lines Quantum systems O,

2-cells Vertices Quantum dynamics &

Horizontal composition C () C2 C

Vertical composition (Hy  Hy) (ﬁ?)
—_—

(H1 ® H3 @ Hp ® Hg)

The standard example is 2Hilb:

> (O-cells given by natural numbers
> I-cells given by matrices of finite-dimensional Hilbert spaces

» 2-cells given by matrices of linear maps
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Quantum systems interacting with their environment

Let (A, 5, 0) and (B, ) be classical structures in C.
A dagger C-D-bimodule is a morphism M satisfying:

M A
A B
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Quantum systems interacting with their environment

Let (A, 5, 0) and (B, ) be classical structures in C.
A dagger C-D-bimodule is a morphism M satisfying:

N

M

% -

A bimodule homomorphism is a morphism f € C, such that

M’ M’
™|
M M
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Quantum systems interacting with their environment

Let (A, ,0) and (B, ,®) be classical structures in C.
A dagger C-D-bimodule is a morphism M satisfying:
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» O-cells: classical structures in C
» 1-cells: bimodules of classical structures in C
» 2-cells: module homomorphisms in C

In representation theory: The orbifold completion of a monoidal category

Some properties of 2(—) are:

2(C) is a 2-category.

2(—) preserves the dagger.

If C is compact, so is 2(C): 1-cells have ambidextrous duals.
If C has dagger biproducts, so do all hom-categories of 2(C).
The subcategory of scalars of 2(C) corresponds to C.
2(FHilb) is isomorphic to the category 2Hilb.

For proofs see LW (2013), Masters's thesis, 'Categorical Models for Quantum
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Computing'.
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Horizontal composition in 2(—)
Horizontal composition is defined by the following coequaliser in C:
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Horizontal composition in 2(—)
Horizontal composition is defined by the following coequaliser in C:

Mg ® idy T
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a
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Horizontal composition in 2(—)
Horizontal composition is defined by the following coequaliser in C:
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Can we find this module explicitly? Yes!
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Horizontal composition in terms of dagger splittings
Any such f factorizes through MoN:

1 Cf ]
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Horizontal composition in terms of dagger splittings
Any such f factorizes through MoN:

f f | f
L f ] L f ]
= M = = M N

'\IA\ M ] |

A
A B ({M I;B J)‘
M N M N M N M B
Theorem

Finding the dagger coequaliser is equivalent to finding a dagger
splitting of the following morphism:

15



2(CP*(-))

We would like to understand the 2-category '?’'

CP*(-)
FHilb ——— CP*(FHilb)
2(-) 2(-)
2(FHilb) - === - - - >7

10/15



2(CP*(-))
We would like to understand the 2-category '?’'
CP*(—)
FHilb —— CP*(FHilb)

2(-) 2(-)

This is not obvious!

10/15



2(CP*(-))

We would like to understand the 2-category '?’'

CP*(—)
FHilb —— CP*(FHilb)

2(-) 2(-)

This is not obvious!

» This required a classification of classical structures in
CP*(FHilb).

10/15



2(CP*(-))
We would like to understand the 2-category '?’'

CP*(—)
FHilb —— CP*(FHilb)

2(-) 2(-)

This is not obvious!
» This required a classification of classical structures in
CP*(FHilb).
» There is a correspondence between special dagger Frobenius
algebras on classical structures in FHilb and finite groupoids.

10/15



2(CP*(-))

We would like to understand the 2-category '?’'
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( )3 0

This is not obvious!
» This required a classification of classical structures in
CP*(FHilb).
» There is a correspondence between special dagger Frobenius
algebras on classical structures in FHilb and finite groupoids.
» CP*(FHilb) does not have all coequalisers.
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The following subcategory of 2(CP*(FHilb)) is a sufficient model
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Modelling POVM's
The following subcategory of 2(CP*(FHilb)) is a sufficient model
for modelling communication protocols:
> O-cells: natural numbers
> 1-cells: matrices of dagger Frobenius algebras

» 2-cells: matrices of completely positive maps

Measurements are defined as counit-preserving 2-cells of type:

Theorem
Measurements on algebras C" are exactly stochastic maps.
Measurements on algebras B(H) are exactly POVMs.
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Modelling POVM's
Proof.

The counit preserving condition gives us
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Modelling POVM's
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The counit preserving condition gives us
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So we have the following equalities of positive elements:
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» On C" this corresponds to a stochastic map
» On B(C") this corresponds to a POVM
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Quantum teleportation and classical encryption are solutions to the
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Quantum teleportation and classical encryption are solutions to the
following equation with 1 a measurement and v unitary 2-cell:
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C (CZ
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C
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This equation corresponds to:
» quantum teleportation, if the input is a matrix algebra

» classical encryption, if the input is a classical structure
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A unified security proof
When the output is destroyed, all information is lost:

%98

> We apply the trace map on both sides of the equation

» On the left-hand-side: v is a family invertible completely
positive maps, which are trace preserving.

So this give a unified security proof
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> A categorical generalisation of 2Hilb, based on modules:
The construction 2(—), which preserves daggers, compactness,
biproducts, such that the scalars of 2(C) correspond to C.

» Horizontal composition in 2(C) is given by dagger splittings.
» First steps in understanding 2(CP*(FHilb)).

» 2(FHilb) contains a subcategory of classical structures,
matrices of special dagger Frobenius algebras, and matrices of
completely positive morphisms.

» Unified description of teleportation and classical encryption.

» Security proof of teleportation and classical encryption.

Thank you!
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