A Kochen-Specker system has at least 21 vertices

Sander Uijlen
suijlen@cs.ru.nl

Bas Westerbaan
bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen

June 23, 2014
A Kochen-Specker system S is a finite set of points on the (open) northern hemisphere, such that there is no 010-coloring; that is: there is no $\{0, 1\}$-valued coloring with

1. three pairwise orthogonal points are assigned $(1, 0, 0)$, $(0, 1, 0)$ or $(0, 0, 1)$ and
2. two orthogonal points are not assigned $(1, 1)$.

point \sim direction of magnetic field in measurement of SPIN-1 coloring \sim non-contextual deterministic theory
A Kochen-Specker system S is a finite set of points on the (open) northern hemisphere, such that there is no 010-coloring; that is: there is no $\{0, 1\}$-valued coloring with

1. three pairwise orthogonal points are assigned $(1, 0, 0), (0, 1, 0)$ or $(0, 0, 1)$ and
2. two orthogonal points are not assigned $(1, 1)$.

point \sim direction of magnetic field in measurement of SPIN-1 coloring \sim non-contextual deterministic theory

Theorem (Kochen-Specker)

There is a Kochen-Specker system. Thus: there is no non-contextual deterministic theory predicting the measurement of a SPIN-1 particle.
The smallest Kochen-Specker system?

Kochen-Specker 1975 \(\leq 117\)
Penrose, Peres (indep.) 1991
Conway \(\sim 1995\)

Arends, Wampler, Ouakanine 2009
The smallest Kochen-Specker system?

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>≤ 117</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>≤ 33</td>
</tr>
<tr>
<td>Conway</td>
<td>~1995</td>
<td></td>
</tr>
</tbody>
</table>

Arends, Wampler, Ouaknine | 2009 |
The smallest Kochen-Specker system?

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>≤ 117</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>≤ 33</td>
</tr>
<tr>
<td>Conway</td>
<td>∼ 1995</td>
<td>≤ 31</td>
</tr>
</tbody>
</table>

Arends, Wampler, Ouaknine 2009
The smallest Kochen-Specker system?

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>(\leq 117)</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>(\leq 33)</td>
</tr>
<tr>
<td>Conway</td>
<td>(\sim) 1995</td>
<td>(\leq 31)</td>
</tr>
<tr>
<td>Arends, Wampler, Ouaknine</td>
<td>2009</td>
<td>(\geq 18)</td>
</tr>
<tr>
<td>System</td>
<td>Year</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>≤ 117</td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>≤ 33</td>
</tr>
<tr>
<td>Conway</td>
<td>~ 1995</td>
<td>≤ 31</td>
</tr>
<tr>
<td>U&W</td>
<td>may</td>
<td>≥ 21</td>
</tr>
<tr>
<td>Arends, Wampler, Ouaknine</td>
<td>2009</td>
<td>≥ 18</td>
</tr>
</tbody>
</table>
The smallest Kochen-Specker system?

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochen-Specker</td>
<td>1975</td>
<td>≤ 117</td>
<td></td>
</tr>
<tr>
<td>Penrose, Peres (indep.)</td>
<td>1991</td>
<td>≤ 33</td>
<td></td>
</tr>
<tr>
<td>Conway</td>
<td>~1995</td>
<td>≤ 31</td>
<td></td>
</tr>
<tr>
<td>U&W</td>
<td>july?</td>
<td>≥ 22 or = 21</td>
<td></td>
</tr>
<tr>
<td>U&W</td>
<td>may</td>
<td>≥ 21</td>
<td></td>
</tr>
<tr>
<td>Arends, Wampler, Ouaknine</td>
<td>2009</td>
<td>≥ 18</td>
<td></td>
</tr>
</tbody>
</table>
Conway’s record
Given a finite set of points S on the projective plane, its orthogonality graph $G(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.
Given a finite set of points S on the projective plane, its **orthogonality graph** $\mathcal{G}(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.

A graph G is **embeddable** if there is a S such that $G \leq \mathcal{G}(S)$.
Given a finite set of points S on the projective plane, its orthogonality graph $G(S)$ has as vertices the points and two points are adjacent if and only if they are orthogonal.

A graph G is embeddable if there is a S such that $G \leq G(S)$.

A 010-coloring of a graph, is a $\{0, 1\}$-vertex coloring, such that

1. every triangle is colored $(1, 0, 0)$, $(0, 1, 0)$ or $(0, 0, 1)$ and
2. no adjacent vertices are colored both 1.
It is a problem about graphs

There is a Kochen-Specker system with \(n \) points if and only if there is a embeddable and non-010-colorable graph on \(n \) vertices.
Restrict the search

(The orthogonality graph of) a minimal Kochen-Specker system is connected; $\sim 10^{26.4}$
(The orthogonality graph of) a minimal Kochen-Specker system is connected; squarefree and

\[\sim 10^{26.4} \]

\[\sim 10^{10.2} \]
(The orthogonality graph of) a minimal Kochen-Specker system is connected; \(\sim 10^{26.4} \)
squarefree and \(\sim 10^{10.2} \)
has minimal vertex degree 3; \(\sim 10^{7.5} \)
The candidates

Our computation found the following number of non 010-colorable squarefree graphs with minimal vertex degree 3

<table>
<thead>
<tr>
<th>𝑉</th>
<th># candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>441</td>
</tr>
</tbody>
</table>
The candidates

Our computation found the following number of non-010-colorable squarefree graphs with minimal vertex degree 3

<table>
<thead>
<tr>
<th># V</th>
<th># candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>441</td>
</tr>
<tr>
<td>21</td>
<td>≥ 7616</td>
</tr>
</tbody>
</table>
All these candidates contain as a subgraph one of these unembeddable graphs.
Pen and paper proof of unembeddability

Suppose this graph is embeddable.

Note that v and a are distinct points orthogonal to p_1. Thus p_1 is fixed. Observe: p_1 is collinear to $v \times a$.
Suppose this graph is embeddable.

Note that v and a are distinct points orthogonal to p_1. Thus p_1 is fixed. Observe: p_1 is collinear to $v \times a$.

Similarly: p_2 is collinear to $v \times (v \times a)$. And so on. We see a is collinear to $x \times (x \times (w \times (w \times (v \times (v \times a)))))$.
Pen and paper proof of unembeddability

We may assume $z = (0, 0, 1)$, $x = (1, 0, 0)$, $v = (v_1, v_2, 0)$, $w = (w_1, w_2, 0)$ and $a = (0, a_2, a_3)$. We have:

$$
\begin{pmatrix}
0 \\
a_2 \\
a_3
\end{pmatrix}
\text{ is collinear to }
\begin{pmatrix}
0 \\
-a_2 v_1 w_2 (v_1 w_1 + v_2 w_2) \\
-a_3 (v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2)
\end{pmatrix}
$$

That is:

$$
v_1 w_2 \langle v, w \rangle = v_1 w_2 (v_1 w_1 + v_2 w_2) = v_2 (v_1 w_1^2 + v_1 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2) = w_2 (v_1 + v_2) w_1 + (v_1 + v_2) w_2 = 1.
$$

Since v and w are not collinear, we have by Cauchy-Schwarz $|\langle v, w \rangle| < 1$. Note $|v_1|, |w_2| \leq 1$. Thus:

$$
|v_1 w_2 \langle v, w \rangle| < 1.
$$

Contradiction.
Pen and paper proof of unembeddability

We may assume $z = (0, 0, 1)$, $x = (1, 0, 0)$, $v = (v_1, v_2, 0)$, $w = (w_1, w_2, 0)$ and $a = (0, a_2, a_3)$. We have:

\[
\begin{pmatrix} 0 \\ a_2 \\ a_3 \end{pmatrix} \text{ is collinear to } \begin{pmatrix} 0 \\ -a_2 v_1 w_2 (v_1 w_1 + v_2 w_2) \\ -a_3 (v_1^2 w_1^2 + v_2^2 w_2^2 + v_1^2 w_1^2 + v_2^2 w_2^2) \end{pmatrix}
\]

That is:

\[
v_1 w_2 \langle v, w \rangle = v_1 w_2 (v_1 w_1 + v_2 w_2)
\]

\[
= v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2
\]

\[
= (v_1^2 + v_2^2) w_1^2 + (v_1^2 + v_2^2) w_2^2
\]

\[
= w_1^2 + w_2^2 = 1.
\]
Pen and paper proof of unembeddability

We may assume $z = (0, 0, 1)$, $x = (1, 0, 0)$, $v = (v_1, v_2, 0)$, $w = (w_1, w_2, 0)$ and $a = (0, a_2, a_3)$. We have:

\[
\begin{pmatrix} 0 \\ a_2 \\ a_3 \end{pmatrix} \text{ is collinear to } \begin{pmatrix} 0 \\ -a_2 v_1 w_2 (v_1 w_1 + v_2 w_2) \\ -a_3 (v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2) \end{pmatrix}
\]

That is:

\[
v_1 w_2 \langle v, w \rangle = v_1 w_2 (v_1 w_1 + v_2 w_2) \\
= v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2 \\
= (v_1^2 + v_2^2) w_1^2 + (v_1^2 + v_2^2) w_2^2 \\
= w_1^2 + w_2^2 = 1.
\]

Since v and w are not collinear, we have by Cauchy-Schwarz $|\langle v, w \rangle| < 1$. Note $|v_1|, |w_2| \leq 1$. Thus: $|v_1 w_2 \langle v, w \rangle| < 1$. Contradiction.
Example of automized cross product chasing

load_package redlog;
lrset R;
procedure d(x,y);
 (first x) * (first y) +
 (second x) * (second y) +
 (third x) * (third y);
procedure k(x,y);
 {{(second x)*(third y) - (third x)*(second y),
 (third x)*(first y) - (first x)*(third y),
 (first x)*(second y) - (second x)*(first y)};

v0c1 := 1; v0c2 := 0; v0c3 := 0;
v1c1 := 0; v1c2 := 1; v1c3 := 0;
v0 := {v0c1, v0c2, v0c3};
v1 := {v1c1, v1c2, v1c3};
v2 := {v2c1, v2c2, v2c3};
v3 := {v3c1, v3c2, v3c3};
v2c1 := 0;
neq0 := k(v0,k(v3,v1));

neq29 := k(k(k(k(v3,v1),v1),v2),k(k(v3,v0),v3));
phi :=
 (first neq0 neq 0 or
 second neq0 neq 0 or
 third neq0 neq 0) and

 (first neq29 neq 0 or
 second neq29 neq 0 or
 third neq29 neq 0) and
d(v2,v0) = 0 and
d(k(k(v3,v0),v3),k(k(k(v3,v1),v1),v2),v2)) = 0 and
true;
rlqe ex(v3c3,
ex(v3c2,
ex(v3c1,
ex(v2c3,
ex(v2c2,phi)))));
Source code, paper and experimental results can be found at kochen-specker.info
Source code, paper and experimental results can be found at

\url{kochen-specker.info}

Some open problems:

- If G is embeddable, is there a S such that $G = G(S)$.
- Is every embeddable graph, grid embeddable? That is: using points of the form $\left(\frac{x}{\sqrt{n}}, \frac{y}{\sqrt{n}}, \frac{z}{\sqrt{n}}\right)$ for $x, y, z, n \in \mathbb{Z}$.