The ZX-calculus is incomplete for quantum mechanics

Christian Schröder de Witt¹ Vladimir Zamdzhiev²

¹Scherenbergstr. 22, 10439 Berlin

²Department of Computer Science, University of Oxford

June 5, 2014

Syntax and Semantic Axioms Properties

• Introduced by Coecke and Duncan in 2008

Syntax and Semantics Axioms Properties

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing

Syntax and Semantics Axioms Properties

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing
- Can be used as an alternative to traditional Hilbert space formalism

Syntax and Semantics Axioms Properties

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing
- Can be used as an alternative to traditional Hilbert space formalism
- Has been used to study:
 - Quantum algorithms
 - Quantum security protocols
 - Quantum error-correcting codes
 - and other problems involving quantum information

Syntax and Semantics Axioms Properties

Atomic Diagrams (1)

$$\begin{bmatrix} & | & \\ & | & \\ & = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \qquad \begin{bmatrix} & & \\ & &$$

Christian Schröder de Witt , Vladimir Zamdzhiev

The ZX-calculus is incomplete for quantum mechanics

Syntax and Semantics Axioms Properties

Atomic Diagrams (2)

where $\alpha \in [0, 2\pi)$

Syntax and Semantics Axioms Properties

Compound Diagrams

Christian Schröder de Witt, Vladimir Zamdzhiev The ZX-calculus is incomplete for quantum mechanics

Syntax and Semantics Axioms Properties

Examples

Syntax and Semantics Axioms Properties

"Only the topology matters"

Christian Schröder de Witt, Vladimir Zamdzhiev The ZX-calculus is incomplete for quantum mechanics

Syntax and Semantics Axioms Properties

Syntax and Semantics Axioms Properties

Syntax and Semantics Axioms Properties

Christian Schröder de Witt , Vladimir Zamdzhiev The ZX-calculus is incomplete for quantum mechanics

Syntax and Semantics Axioms Properties

Syntax and Semantics Axioms Properties

Axioms(6)

Syntax and Semantics Axioms Properties

Example derivation

Syntax and Semant Axioms Properties

Soundness, Completeness and Universality results

• The ZX-calculus is sound

ZX-calculus Syntax and Sema Incompleteness Axioms Future Work Properties

Soundness, Completeness and Universality results

• The ZX-calculus is sound

•
$$ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$$

ZX-calculus Syntax and Sem Incompleteness Axioms Future Work Properties

Soundness, Completeness and Universality results

• The ZX-calculus is sound

•
$$ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$$

The ZX-calculus is universal

ZX-calculus Syntax and Se Incompleteness Axioms Future Work Properties

Soundness, Completeness and Universality results

• The ZX-calculus is sound

•
$$ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$$

The ZX-calculus is universal

•
$$\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$$

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.

•
$$\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket \Longrightarrow ZX \vdash D_1 = D_2$$

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.

•
$$\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket \Longrightarrow ZX \vdash D_1 = D_2$$

• The ZX-calculus is complete for stabilizer quantum mechanics

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.

•
$$\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket \Longrightarrow ZX \vdash D_1 = D_2$$

- The ZX-calculus is complete for stabilizer quantum mechanics
 - If D_1 and D_2 are ZX-SQM diagrams and $[\![D_1]\!] = [\![D_2]\!]$ then $ZX \vdash D_1 = D_2$

Euler Decomposition Alternative Models Counter-example

Euler Decomposition

Recall that for single-qubit unitary maps:

where $\alpha_i, \beta_i, \gamma_i, \phi_i \in [0, 2\pi)$

Euler Decomposition Alternative Models Counter-example

Alternative Models

Consider the following models:

These models are sound when k = 4p + 1 for $p \in \mathbb{Z}$.

Euler Decomposition Alternative Models Counter-example

Counter-example diagrams

Euler Decomposition Alternative Models Counter-example

Counter-example diagrams (cont.)

where

$$\begin{aligned} \alpha &:= -\arccos\left(\frac{5}{2\sqrt{13}}\right) \approx 0.2561\pi\\ \beta &:= -2\arcsin\left(\frac{\sqrt{3}}{4}\right) \approx -0.2851\pi\\ \phi &:= \arcsin\left(\frac{\sqrt{3}}{4}\right) - \alpha \approx 0.3987\pi \end{aligned}$$

ZX-calculus Euler Do Incompleteness Alternat Future Work Counter

Alternative Models Counter-example

Incomplete

We have:

$$\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$$

but for any $\lambda \in \mathbb{C}$:

$$\llbracket D_1 \rrbracket_{-3} \neq \lambda \llbracket D_2 \rrbracket_{-3}$$

However, $\llbracket \cdot \rrbracket_{-3}$ is a sound model of ZX, so

$$ZX \not\vdash D1 = D2$$

and therefore the ZX-calculus is incomplete for quantum mechanics.

Full completeness Approximate completeness

ZX is incomplete, what next?

• Nothing special about counter-example, others easily doable using the same approach

ZX is incomplete, what next?

- Nothing special about counter-example, others easily doable using the same approach
- Color-swap rule might be needed for completeness

Full completeness Approximate completeness

ZX is incomplete, what next?

- Nothing special about counter-example, others easily doable using the same approach
- Color-swap rule might be needed for completeness

where

Christian Schröder de Witt , Vladimir Zamdzhiev

The ZX-calculus is incomplete for quantum mechanics

Full completeness Approximate completeness

Even then, more challenges

Full completeness Approximate completeness

Approximate completeness instead?

 Restrict generators, drop universality and work towards approximate completeness

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):
 - calculus is approximately universal

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):
 - calculus is approximately universal
 - calculus is complete for line-graphs (next talk)

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):
 - calculus is approximately universal
 - calculus is complete for line-graphs (next talk)
 - completeness is unknown