The ZX-calculus is incomplete for quantum mechanics

Christian Schröder de Witt ¹ Vladimir Zamdzhiev ²

¹ Scherenbergstr. 22, 10439 Berlin

² Department of Computer Science,
 University of Oxford

June 5, 2014
ZX-calculus

- Introduced by Coecke and Duncan in 2008
ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing

The ZX-calculus is incomplete for quantum mechanics
ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing
- Can be used as an alternative to traditional Hilbert space formalism

The ZX-calculus is incomplete for quantum mechanics
ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing
- Can be used as an alternative to traditional Hilbert space formalism
- Has been used to study:
 - Quantum algorithms
 - Quantum security protocols
 - Quantum error-correcting codes
 - and other problems involving quantum information
Atomic Diagrams (1)

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
= (1 0 0 0) = I
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
= \sigma
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
= \sigma
\]

\[
= \langle 00 | + \langle 11 |
\]

\[
= |00\rangle + |11\rangle
\]

\[
= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = H
\]
The ZX-calculus is incomplete for quantum mechanics.

Atomic Diagrams (2)

\[
\begin{align*}
|0^m\rangle &\mapsto |0^n\rangle \\
|1^m\rangle &\mapsto e^{i\alpha} |1^n\rangle \\
\text{rest} &\mapsto 0
\end{align*}
\]

where \(\alpha \in [0, 2\pi)\)

\[
\begin{align*}
|+^m\rangle &\mapsto |+^n\rangle \\
|−^m\rangle &\mapsto e^{i\alpha} |−^n\rangle \\
\text{rest} &\mapsto 0
\end{align*}
\]
Compound Diagrams

\[
\begin{array}{c}
\psi_1 \\
\hline
\psi_2
\end{array} = D_1 \quad \text{and} \quad
\begin{array}{c}
\psi_1 \\
\hline
\psi_2
\end{array} = D_2
\]

then

\[
\begin{array}{c}
\psi_1 \\
\hline
\psi_2
\end{array} = D_1 \otimes D_2
\]

and

\[
\begin{array}{c}
\psi_1 \\
\hline
\psi_2
\end{array} = D_1 \circ D_2
\]
The ZX-calculus is incomplete for quantum mechanics.
The ZX-calculus is incomplete for quantum mechanics.

"Only the topology matters"
The ZX-calculus is incomplete for quantum mechanics.
The ZX-calculus is incomplete for quantum mechanics.
The ZX-calculus is incomplete for quantum mechanics.
Axioms (5)

Christian Schröder de Witt, Vladimir Zamdzhiev

The ZX-calculus is incomplete for quantum mechanics
Axioms (6)

The ZX-calculus is incomplete for quantum mechanics.

Christian Schröder de Witt, Vladimir Zamdzhiev
The ZX-calculus is incomplete for quantum mechanics.
Soundness, Completeness and Universality results

- The ZX-calculus is sound
Soundness, Completeness and Universality results

- The ZX-calculus is sound
 - $\vdash D_1 = D_2 \implies \mathcal{J}[D_1] = e^{i\phi}\mathcal{J}[D_2]$
Soundness, Completeness and Universality results

- The ZX-calculus is sound
 - $\forall U: \mathbb{Q}^n \rightarrow \mathbb{Q}^m, \exists D. \ J_D K = U$

- The ZX-calculus is universal

The ZX-calculus is incomplete for quantum mechanics
Soundness, Completeness and Universality results

- The ZX-calculus is sound
 \[ZX \vdash D_1 = D_2 \implies [D_1] = e^{i\phi}[D_2] \]
- The ZX-calculus is universal
 \[\forall U : Q^n \to Q^m, \exists D. [D] = U \]
Soundness, Completeness and Universality results

- The ZX-calculus is sound
 \[ZX \vdash D_1 = D_2 \implies [D_1] = e^{i\phi}[D_2] \]
- The ZX-calculus is universal
 \[\forall U : Q^n \rightarrow Q^m, \exists D. [D] = U \]
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.
Soundness, Completeness and Universality results

- The ZX-calculus is sound
 \[\text{ZX} \vdash D_1 = D_2 \implies \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket \]

- The ZX-calculus is universal
 \[\forall U : Q^n \to Q^m, \exists D. \llbracket D \rrbracket = U \]

- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.
 \[\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket \implies \text{ZX} \vdash D_1 = D_2 \]
Soundness, Completeness and Universality results

- The ZX-calculus is sound
 - \(ZX \vdash D_1 = D_2 \implies \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket \)

- The ZX-calculus is universal
 - \(\forall U : Q^n \rightarrow Q^m, \exists D. \llbracket D \rrbracket = U \)

- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.
 - \(\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket \implies ZX \vdash D_1 = D_2 \)

- The ZX-calculus is complete for stabilizer quantum mechanics

The ZX-calculus is incomplete for quantum mechanics
Soundness, Completeness and Universality results

- The ZX-calculus is sound
 \[\text{ZX} \vdash D_1 = D_2 \implies [D_1] = e^{i\phi}[D_2] \]

- The ZX-calculus is universal
 \[\forall U : Q^n \rightarrow Q^m, \exists D. [D] = U \]

- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.
 \[[D_1] = [D_2] \implies \text{ZX} \vdash D_1 = D_2 \]

- The ZX-calculus is complete for stabilizer quantum mechanics
 If \(D_1 \) and \(D_2 \) are ZX-SQM diagrams and \([D_1] = [D_2] \) then \(\text{ZX} \vdash D_1 = D_2 \)
Recall that for single-qubit unitary maps:

\[
\begin{bmatrix}
D
\end{bmatrix} = e^{i\phi_1} \begin{bmatrix}
\alpha_1 \\
\beta_1 \\
\gamma_1
\end{bmatrix} = e^{i\phi_2} \begin{bmatrix}
\alpha_2 \\
\beta_2 \\
\gamma_2
\end{bmatrix}
\]

where \(\alpha_i, \beta_i, \gamma_i, \phi_i \in [0, 2\pi)\)
Alternative Models

Consider the following models:

\[
\begin{align*}
\begin{bmatrix}
\cdots \\
\alpha \\
\cdots \\
\end{bmatrix}_k & :=
\begin{bmatrix}
\cdots \\
\kappa \alpha \\
\cdots \\
\end{bmatrix} \\
\begin{bmatrix}
\cdots \\
\alpha \\
\cdots \\
\end{bmatrix}_k & :=
\begin{bmatrix}
\cdots \\
\kappa \alpha \\
\cdots \\
\end{bmatrix}, \quad \text{otherwise}
\end{align*}
\]

These models are sound when \(k = 4p + 1 \) for \(p \in \mathbb{Z} \).
The ZX-calculus is incomplete for quantum mechanics.

Counter-example diagrams:

\[D_1 := \begin{align*} & \frac{\pi}{3} \\ & \frac{\pi}{3} \\ & \frac{2\pi}{3} \end{align*} \text{ and } D_2 := \begin{align*} & \pi \\ & \phi \\ & \beta \end{align*} \]
where

\[\alpha := - \arccos \left(\frac{5}{2\sqrt{13}} \right) \approx 0.2561 \pi \]

\[\beta := -2 \arcsin \left(\frac{\sqrt{3}}{4} \right) \approx -0.2851 \pi \]

\[\phi := \arcsin \left(\frac{\sqrt{3}}{4} \right) - \alpha \approx 0.3987 \pi \]
Incomplete

We have:

\[
[D_1] = [D_2]
\]

but for any \(\lambda \in \mathbb{C} \):

\[
[D_1]_3 \neq \lambda [D_2]_3
\]

However, \([\cdot]_3\) is a sound model of ZX, so

\[
ZX \not\vdash D_1 = D_2
\]

and therefore the ZX-calculus is incomplete for quantum mechanics.
ZX is incomplete, what next?

- Nothing special about counter-example, others easily doable using the same approach
ZX is incomplete, what next?

- Nothing special about counter-example, others easily doable using the same approach
- Color-swap rule might be needed for completeness
The ZX-calculus is incomplete for quantum mechanics

ZX is incomplete, what next?

- Nothing special about counter-example, others easily doable using the same approach
- Color-swap rule might be needed for completeness

\[
\begin{align*}
\alpha_2 &:= f_1(\alpha_1, \beta_1, \gamma_1) \\
\beta_2 &:= f_2(\alpha_1, \beta_1, \gamma_1) \\
\gamma_2 &:= f_3(\alpha_1, \beta_1, \gamma_1)
\end{align*}
\]

where

\[
\begin{align*}
f_1 &= ? \\
f_2 &= ? \\
f_3 &= ?
\end{align*}
\]
Even then, more challenges

\[\alpha_1 \alpha_2 \alpha_1 \alpha_2 \beta_1 \beta_2 \beta_1 \beta_2 \gamma_1 \gamma_2 \gamma_1 \gamma_2 = b_1 b_2 b_1 b_2 c_1 c_2 c_1 c_2 \]

The ZX-calculus is incomplete for quantum mechanics.
Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness.
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - Completeness holds.
 - Calculus is not even approximately universal.
Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+\mathbf{T}):
Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford $+ T$):
 - calculus is approximately universal
Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):
 - calculus is approximately universal
 - calculus is complete for line-graphs (next talk)
Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):
 - calculus is approximately universal
 - calculus is complete for line-graphs (next talk)
 - completeness is unknown