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Abstract—Automated and autonomous driving systems (ADS)
are a transformational technology in the mobility sector. Current
practice for testing ADS uses virtual tests in computer simula-
tions; search-based approaches are used to find particularly dan-
gerous situations, possibly collisions. However, when a collision is
found, it is not always easy to automatically assess whether the
ADS should have been able to avoid it, without relying on offline
analyses by domain experts. In this paper, we propose a definition
of avoidable collision that does not rely on any domain knowledge,
but only on the fact that it is possible to reconfigure the ADS (in
our case, the path planner component provided by our industry
partner) in a way that the collision is avoided. Based on this
definition, we propose two search-based approaches for finding
avoidable collisions. The first one (named sequential approach),
based on current industrial practice, first searches for a collision,
and then searches for an alternative configuration of the ADS
which avoids it. The second one (named combined approach),
instead, searches at the same time for the collision and for the
alternative configuration which avoids it. Experiments show that
the combined approach finds more avoidable collisions, even when
the sequential approach doesn’t find any; indeed, the sequential
approach, in the first search, may find too severe collisions for
which there is no alternative configuration that can avoid them.

Index Terms—autonomous driving, path planner, avoidable
collision, search-based testing

I. INTRODUCTION

Automated and autonomous driving is an intensive area
of research and development that promises to transform the
current way of transport. Autonomous and near-autonomous
vehicles are estimated to bring significant economic growth
(200 billion to 1.9 trillion USD by 2025) in the future as
determined by McKinsey [24]. On the societal side, this
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technology aims to reduce the number of accidents, saving
thousands of lives per year. However, to achieve such impacts,
it is vital to ensure that autonomous cars are safe, which
is challenging due to the complex implementation of the
algorithms making autonomous decisions and dealing with a
potentially infinite number of environmental situations [22].

An autonomous driving system (ADS) consists of a set of
components that, given a final destination, sense the surround-
ing environment, plan a path, and implement this path into
concrete driving actions. Testing an ADS only using real test
drives is infeasible [19], [20], [33], and so different efforts have
been put in computer simulations using virtual tests [36], [37].

Different works have been proposed for testing Ad-
vanced Driver-Assistance Systems (ADAS) [8]–[11], [32] and
ADS [1], [5], [17], [21] with search-based techniques for
finding safety-critical scenarios. Some of them specifically
focus on finding collisions [6], [7]. Search-based approaches
are natural solutions for this kind of problem, since it is
impossible to perform exhaustive search due to the large
number of potential environmental conditions.

As a result of trying to find the “most dangerous” situations,
severe collisions can be found, but some of them are not
necessarily caused by the ADS. For instance, an occluded
pedestrian could run on the road just before the ego car arrives.
Clearly, even the best driving system or the best human could
not brake in time. From its standpoint, they are effectively
unavoidable collisions.

The main problem is that we do not know in advance
whether a collision is avoidable or not, since there is not
a suitable reference specification. Some models have been
proposed for defining which should be the correct behaviour
of the ADS, such that no accident is its responsibility: see,
e.g., the “Responsibility Sensitive Safety” (RSS) [30], the
“Safety Force Field” (SFF) [27], or formal models based on
theorem proving [28]. However, these models do not specify
what should be the behaviour of the ADS when a collision is
not its responsibility.

In other words, the oracle problem [4] is a big challenge.



Therefore, when we find a collision scenario, we must show
it to domain experts and ask them to judge if that collision
should have been avoided by the ADS. They should consult the
existing guidelines [27], [28], [30] to certify that the ADS was
not the cause of the collision, but also that it implemented all
the possible actions to avoid it. Checking this latter condition
is not only tedious for the engineers, but in some cases it
is also impossible, as the engineers themselves cannot give a
definitive answer. Moreover, it could also be not scalable due
to the huge number of collision scenarios.

One way to assess that the collision should have been
avoided is to show that the ADS can be optimized (by
changing its configuration) such that it actually avoids it. The
process is particularly difficult because the search space for the
optimization can be huge, and engineers do not know which
parameters should be changed (and by how much) to avoid
the collision. Therefore, this optimized system configuration
should also be searched for automatically.

Our intuition is that, if the original ADS leads to a collision
in a scenario S, but a different ADS (i.e., a different con-
figuration of the original one) does not, then the collision is
avoidable. Given this definition, we consider two search-based
approaches that look for avoidable collisions. The sequential
approach reproduces the current practice in industry in which
first the testing team generates some test cases, and then the
design and development team improves the ADS using the
test results; the approach consists of the serial application
of Search-based Testing and System Parameter Optimization
techniques: first, it searches for a collision scenario S∗, and
then it searches for a new configuration of the ADS which
avoids the collision in S∗. The second approach is called the
combined approach and is one of the contributions of this
work. It searches, at the same time, for a collision scenario
S∗ and the weights w∗ necessary to avoid it.

In order to evaluate the approaches, we consider a path
planner of an ADS, provided by our industry partner. At
every time step, the path planner computes the short-term
path that the car should follow in the next few seconds and
the related control commands (e.g., longitudinal and lateral
acceleration). It generates a list of short-term paths, ranks
them using a ranking function that considers different aspects,
such as safety, vehicle limitation, regulation compliance, and
comfort, and selects the first one as next short-term path. The
path planner can be configured through some weights that are
involved in the decision process of generating and selecting
paths. Each value assignment for the weights can be seen as
a new path planner instance. Therefore, we have access to a
“family of path planners” (each one having different weight
values) that may take different decisions, leading to different
trajectories followed by the ego car.

Experiments on the path planner show that often the sequen-
tial approach is not successful in finding avoidable collisions,
as the first search finds collisions that are so severe that
they cannot be avoided by any alternative path planner. The
combined approach, instead, is more effective as it directly
aims at finding avoidable collisions.

To summarize, the main contributions of this paper are:
1) a definition of avoidable collision that does not rely on

any domain knowledge: if a collision occurs while using
the default ADS configuration, but does not occur when
using an alternative one, then it is said to be avoidable;

2) a search-based approach that searches for such avoidable
collisions;

3) an empirical evaluation to compare the sequential and the
combined approaches using an industrial path planner;

4) practical implications of our approach.
The paper is structured as follows. Sec. II introduces the

industrial context in which this work has been developed.
Sec. III defines path planner and related terms, and Sec. IV
presents our definition of avoidable collision and two search-
based approaches for finding them. Then, Sec. V describes the
experiments we performed to evaluate the approach. Sec. VI
discusses practical implications of the approach, and Sec. VII
some threats that may affect its validity. Finally, Sec. VIII
reviews some related work, and Sec. IX concludes the paper.

II. INDUSTRIAL CONTEXT

This work is driven by the collaboration with a company in
Japan developing autonomous cars, for testing autonomous car
components, in particular for finding realistic paths that can
cause collisions. Naturally, this can be done when working
with a simulation in which the complete system — including
decision making — is present and is to be tested. In other
words, the approaches that will be presented can be used for
system testing. In the case of our industry partner, however,
only the path planner component is available at this time, so
it was the only possible target of our current work.

The path planner of our industry partner is configurable with
weights for the cost function that considers various aspects
(e.g., safety and comfort) to generate paths. One issue is
that the interval in which these weights can be considered
has not been provided, so it’s not clear which values are
acceptable. In any case, the selection of these weights may
potentially prevent avoidable collisions. Hence, by finding
different weights that could potentially prevent them, we can
better understand the behaviour of path planners under various
situations and consequently improve the safety of the cars.

Such an approach would be helpful for testing engineers,
who could immediately understand if an observed collision
constitutes a failure or not, depending on whether it is avoid-
able. Moreover, it would bring new and useful insights to
system designers: it would present them with witnesses of
alternative configurations, which would help debugging the
system as well as give suggestions about how it could be (re-
)configured in order to improve the behaviour of the system.

Testing automated and autonomous driving systems and
drawing accurate conclusions from obtained results is difficult:
test engineers typically have limited knowledge about the
detailed design of the system, including its configuration
parameters. Similarly, it is difficult for system designers and
developers to understand how the system configuration might
be changed to avoid collisions identified during testing. To this



end, we aim to develop a search-based approach that can help
test engineers in finding useful test cases as well as the system
design and development team in improving the system with
the help of the test results in relation to avoidable collisions.
Such automated approaches are aimed at ensuring the safe
operation of the autonomous cars.

III. DEFINITIONS

In the following, we provide some definitions related to our
simulation environment.

A. Path and Scenario

Definition 1 (State of a car). The state of a car c at time t
is denoted as sct = 〈p,~v,~a〉, where: p = (x, y) is the position
of car’s geometric center, ~v is its (vectorial) velocity, with
magnitude |~v| and direction θ, and ~a is its acceleration. We
use the dot notation to access tuple fields (e.g., sct .p).

The ego car will be denoted by e, and its states by set .
The simulator permits to instantiate other cars with predefined
behaviour, called scenario cars. They will be denoted by
indexes i = 1, . . . ,m and their states by s1t , . . . , s

m
t .

Definition 2 (Path). Given a car c, its path p is a sequence of
car states [sct0 , . . . , s

c
tn ] such that the time difference between

two consecutive states is fixed, i.e., ti+1−ti = ∆tsim (for i =
0, . . . , n− 1), where ∆tsim is a parameter of the simulator1.

Definition 3 (Scenario). A scenario S describes the environ-
ment in which the ego car is operating. It is constituted of:
• a map describing the road structure;
• se0: initial state of the ego car;
• a target destination for the ego car;
• the initial states of m scenario cars ({s10, . . . , sm0 }) and

their dimensions (width and length);
• a timeout tmax until which the simulation is run.

We will use the dot notation (e.g., S.tmax ) to access a
particular field of a scenario.

There is no particular driver model for the scenario cars:
given only an initial position, velocity, and acceleration, a
scenario car always follows exactly the same path. As future
work, in order to test the system under more realistic situa-
tions, driver models could be included in the simulator: the
better the driver models of other cars and the more realistic
the physical model of the simulation are, the more likely the
scenario instances are to be real.

The path of the ego car, instead, is governed by an ADS
equipped with a path planner, as described in the next section.

B. Path planner

In an automated or autonomous [29] driving system, the
path planner is an internal component that is repeatedly
executed in order to determine the trajectory to be followed
by the ego car. A generic path planner component works as
follows. At each time step, the position of the surrounding
elements (within a given horizon) is analyzed, and a large

1In our experiments, ∆tsim = 0.1s.

number of short-term paths are calculated. The best one is
chosen, and followed by the ego car only for ∆tsim

2 seconds,
after which the process restarts. Therefore, the final path p
followed by the ego car is obtained by the concatenation of
the first element of all the chosen short-term paths.

Different path planner systems implement different ways of
selecting appropriate paths in order to identify a safe trajectory.
Usually, a number of aspects are considered:
• Safety: no collision with moving or static objects must

happen and safety distances must be respected;
• Vehicle Dynamics Limitation: actions that cannot be

achieved by the car must be avoided (e.g., the planned
path must not require impossible steering angles);

• Compliance: the car should respect road regulations;
• Comfort: the path should be as comfortable as possible

for the passenger (e.g., not too much lateral acceleration).
The path planner provided by our industry partner (also

considered in [23]) uses a weighted cost function to rank
short-term paths and selects the least costly one. The following
weights are used to address some of the above aspects:
• w1: a factor that is multiplied with the maximum lateral

acceleration of the short-term path;
• w2: a constant that is added to the total cost if the

maximum lateral acceleration is over a given threshold;
• w3: a constant that is added to the total cost if the speed

is over a given speed limit;
• w4: a constant that is added to total cost if the maximum

acceleration is over a certain threshold;
• w5: a constant that is added to the total cost if the

maximum deceleration is over a given threshold;
• w6: a constant that is added to the total cost if the

curvature of the short-term path is over a given threshold;
• w7: a constant that is added to the total cost if the path

is considered extremely dangerous.
• w8: a constant that is added to the total cost if the path is

considered very dangerous, but not extremely dangerous.
The cost function itself is simply the sum of all the described

velocity and acceleration values, weighted by their respective
weights. It cannot be reported here due to IP protection.

Definition 4 (Automated/Autonomous Driving System). We
identify with ADSw the automated or autonomous driving
system (ADS) equipped with a path planner configured with
given weight values w = [w1, . . . , w8]. It can be seen as a
function that, given a scenario S, produces a path p for the ego
car up to simulation time S.tmax . Formally, ADSw(S) = p.

From here on, we identify with ADSw′ the same system
ADS whose path planner component has been configured with
different weight values w′.

IV. PROPOSED APPROACH

In this work, we consider the approach of utilizing testing
and optimization techniques in order to address safety con-
cerns. In particular, we are interested in checking if dangerous

2Note that the time difference ∆tplanner between path planner executions
could be different from ∆tsim ; however, in our case, they are the same.



collisions can occur, and particularly on whether they can be
somehow avoided. As discussed in Sect. II, we only have
a path planner component available at this point, but our
approach is applicable to a complete ADS.

In the following, we define in Sec. IV-A a measure of
danger assessing how close the ego car is to a collision, and, in
case the collision happens, how severe it is. Then, in Sec. IV-B,
we introduce a notion of collision avoidability, and finally, in
Sec. IV-C, we introduce two approaches for finding avoidable
collisions: the first one is based on the current practice in
industry, while the second one is one of the contributions of
this paper that tries to overcome the limitations of the first
approach.

A. Danger

Definition 5 (Danger). Given the states seti and sjti of the ego
car and scenario car j at time ti, we define the danger of their
interaction as:

danger(se
ti
, s j

ti
) =

~v
ti
e|j +K if collision(se

ti
, s j

ti
),

~v
ti
e|j

‖seti .p,s
j
ti
.p‖2

otherwise.

where ~v ti
e|j is the relative speed between the ego car and the

scenario car j, ‖ · ‖ the Euclidean distance, and collision(·, ·)
a predicate telling if there is a collision between the two cars3.

In the event of a collision, the danger increases with the
collision speed; if there is no collision, the relative speed is
still an indication of danger, but its effect diminishes with
increasing distances. Note that the definition guarantees that
the danger measure is always higher when there is a collision
than when there is none; the value of K is the boundary
between collision and not collision and must be determined
on the base of the simulation settings.4

We can therefore identify the most unsafe situation in a
scenario as that having the maximum danger.

Definition 6 (Scenario danger). The danger of the execution
of a scenario S (containing m scenario cars) with a system
ADSw is defined as:

danger(S ,ADSw ) = max
i∈{1,...n},
j∈{1,...m}

danger(se
ti
, s j

ti
)

where ADSw(S) = [set1 , . . . , s
e
tn ] is the path followed by the

ego car, and [sjt1 , . . . , s
j
tn ] is the path of the scenario car j.

Note that tn = S.tmax .

In the following, we use the predicate collision(S ,ADSw )
to identify if there is a collision when running scenario
S with ADSw. Following Def. 5, collision(S ,ADSw ) =
danger(S ,ADSw ) ≥ K.

3Note that the detection of collision is based on the overlapping of the cars.
4In our setting, the minimum distance in which there is no collision is 1.8

m, and the maximum relative speed that can be obtained is 320 km/h. Given
these values, setting K to 100 guarantees the desired order of danger values
between collision and non-collision scenarios.

B. Avoidable collision

The danger measure can be used to drive a search algorithm
to find scenarios in which the ego car collides. However, these
are not necessarily evidence that the path planner component is
faulty: indeed, in some scenarios the ego car cannot avoid the
collision. If we run the search algorithm trying to maximize
the danger, it is likely that it finds such unavoidable collisions.
The main problem is that it is difficult to decide upfront
whether a collision is unavoidable or not. As explained in
Sec. II, the context in which these kinds of systems are
developed makes it difficult for testing engineers to understand
system specifications. Additionally, as external researchers, we
have not been given any information on how the system was
developed, nor a detailed specification document describing
which behaviours are expected. In other words, the complete
system, knowledge-wise, is to us a black box.

The only information we have is that the path planner
can be reconfigured: by changing the weights, it will behave
differently in some situations. Therefore, we can consider
that each weight configuration characterizes a different path
planner. This allows us to compare the behaviour of the current
path planner with that of alternative versions which could
behave better in some cases. Exploiting this, we give the
definition of avoidable collision.

Definition 7 (Avoidable collision). Let ADSw be an au-
tonomous driving system and S a scenario for which
collision(S ,ADSw ) holds. We say that the collision is avoid-
able if there exist some different weights w′ such that
¬collision(S ,ADSw ′) holds, i.e., the system configured with
different weights w′ for the path planner component can avoid
the collision. We identify the avoidable collision as 〈S,w′〉.

Note that, although ADSw′ avoids a collision in a certain
scenario, it is not necessarily better than the original ADSw.
There could exist other scenarios where ADSw′ decreases the
safety of the run, or even introduces collision situations not
present under ADSw. In that sense, ADSw′ is only a witness
that the current path planner component can be improved as
this particular collision could be avoided.

C. Approaches for finding avoidable collisions

In order to find avoidable collisions, we identify two possi-
ble approaches.

The first one follows the workflow commonly adopted
in industry (according to the companies our groups are in
contact with) in which first the testing team applies test case
generation, and then the design and development team uses the
test results to improve the system. We reproduce this common
practice by defining the sequential approach, which applies
search-based testing and system parameter optimization se-
quentially: it first executes a search to find a test scenario S∗

where ADSw leads to a collision, and then executes a second
one to find some alternative weights w∗ such that ADSw∗ does
not lead to a collision in S∗.

The main weakness of the sequential approach is that it may
only find unavoidable collisions. This prevents the design and



development teams from being able to improve the system.
Therefore, in this paper, we propose a novel approach (named
combined approach) that consists in running a search for
finding, at the same time, a scenario S∗ and weights w∗ such
that S∗ leads to a collision with ADSw, but not with ADSw∗ .

In this way, w∗ represents a witness of alternative system
weights which avoid the collision, and it can be handed to
the design and development team. This additional information
eases the process of making the system more safe overall.

In the following, all the problems are defined as minimiza-
tion problems and the fitness functions are defined accordingly.

1) Sequential approach (SA): This approach is constituted
of two consecutive searches, the collision search and the
weights search, described in the following.

a) Collision search (C ): In this search, individuals repre-
sent scenarios. Search variables are selected fields f describing
the initial states of scenario cars (e.g., initial position and
velocity of a given scenario car) of a baseline scenario S,
denoted in this context as Sf . Hence, Sf

′ will denote the

scenario Sf with modified values f
′

for the searched fields.
The collision search is a single objective search and the fitness
function is defined as:

fitnessC
danger (f

′
) = −danger(Sf

′ ,ADSw )

The result of the search are some values f
∗

for the searched
fields. They identify a scenario Sf

∗ in which the danger is
maximized (possibly describing a collision) for the original
system ADSw. If Sf

∗ is not a collision scenario (because there
is no collision in the search space or the search wasn’t given
enough time), the sequential approach ends, and the following
weights search is not performed.

b) Weights search (W ): In this search, we look for
alternative weights values w′ such that ADSw′ does not lead to
a collision when executed on the collision scenario Sf

∗ found
in the previous search. Therefore, each individual identifies
new weights values. This search has two objectives. The first
one, oppositely to the collision search, is to minimize the
danger obtained in Sf

∗ with alternative weights, i.e., avoid
the collision. The corresponding fitness function is:

fitnessW
danger (w′) = danger(Sf

∗ ,ADSw ′)

The second objective is not to deviate excessively from
the original weights w. There are different reasons for this
requirement. First of all, it has been empirically observed
that systems configured with weights very different than the
original ones sometimes behave strangely, for example causing
the ego car to stand still even when not in the presence of
other vehicles. Secondly, it cannot be claimed — nor can it be
easily determined — that a very different set of weights doesn’t
introduce dangerous situations in different scenarios, where
there were previously none. In other words, the weight values
provided by our industry partner are considered to be the
only ones extensively tested. The farther away the generated
weights are from these ‘original’ weights, the less confidence
we have that they won’t increase the danger in some other

unknown scenario. The intuition for this claim comes from
the (empirically observed) fact that difference in weights is
somehow proportional to difference in behaviour. Obviously
it needs to be formally verified, which will be left as future
work. The corresponding fitness function is:

fitnessW
∆w (w′) =

√√√√ 8∑
i=1

(
wi − w′i
dUi − dLi

)2

(1)

being [dLi , d
U
i ] the search interval of weight wi, i.e., the change

of a weight is normalized with respect to the size of the domain
from which the optimizer has to choose from.

2) Combined approach (CA): In this case, we directly
search for avoidable collisions. The way to achieve this is
to have a single search where the individual is constituted of
scenario fields as well as alternative weights, i.e., 〈f ′, w′〉. This
search is called collision-and-weights search (CW ). Similarly
to the weights search, this one is multi-objective. The objective
of minimizing the weights difference remains the same, so the
fitness function is the same as in Eq. 1:

fitnessCW
∆w (〈f ′, w′〉) = fitnessW

∆w (w′)

The second objective, instead, is to maximize the difference
in danger between the original ADSw and the modified ADSw′ ;
the fitness function is defined as follows:

fitnessCW
danger(〈f ′, w′〉) = (Dw′ −Dw) + penalty(〈f ′, w′〉)

where Dw = danger(Sf
′ ,ADSw ) is the maximum danger ob-

tained by the original ADSw, and Dw′ = danger(Sf
′ ,ADSw ′)

is the one obtained by the modified ADSw′ . The first operand
of the sum specifies that we prefer cases in which the modified
system is better in terms of danger (recall that we are mini-
mizing); however, it is not sufficient to guarantee the desired
ranking of solutions according to the avoidance or introduction
of collisions. Therefore, the term penalty(〈f ′, w′〉) is used to
express this desired order. The term is defined as follows:

penalty(〈f ′, w′〉) =


0 if Cw ∧ ¬Cw′ ,
1000 if Cw ∧ Cw′ ∨ ¬Cw ∧ ¬Cw′ ,
2000 if ¬Cw ∧ Cw′ .

where Cw = collision(Sf
′ ,ADSw ) and Cw′ =

collision(Sf
′ ,ADSw ′). Among all the cases, we prefer

those in which the original system leads to a collision
and the modified one doesn’t, as this shows an avoidable
collision (penalty 0). After those, we prefer the ones in which
the original and modified systems have the same collision
behaviour (penalty 1000). The least preferred solutions are
those in which the modified system leads to a collision while
the original one didn’t (penalty 2000).

D. Selection of final results

Both the sequential and the combined approaches return,
as final result, a Pareto front of solutions. From this, we are
only interested in those that identify avoidable collisions. Let’s
recall from Def. 7 that an avoidable collision is defined as a



pair 〈S,w′〉. We here show how to extract all the avoidable
collisions from the Pareto fronts.

1) Sequential approach: Given the Pareto front PSA re-
turned in the sequential approach (i.e., by the weights search),
let P̃SA be the set of solutions identifying avoidable collisions:

P̃SA = {w′ ∈ PSA | ¬collision(Sf
∗ ,ADSw ′)}

where f
∗

is the solution found by the collision search and Sf
∗

the corresponding collision scenario. If P̃SA is empty, it means
that the sequential approach has no solutions. Otherwise, we
can build the set of avoidable collisions as follows:

ACSA = {〈Sf
∗ , w′〉 | w′ ∈ P̃SA}

2) Combined approach: Given the Pareto front PCA re-
turned in the combined approach (i.e., by the collision-and-
weights search), let P̃CA be the set of solutions identifying
avoidable collisions:

P̃CA =

{
〈f ′, w′〉 ∈ PCA |

collision(Sf
′ ,ADSw )∧

¬collision(Sf
′ ,ADSw ′)

}
We can map the solutions to avoidable collisions as follows:

ACCA = {〈Sf
′ , w′〉 | 〈f ′, w′〉 ∈ P̃CA}

V. EXPERIMENTS

A. Design

1) Search spaces: For the sequential approach, individuals
in the collision search are scenario fields values f

′
of a

baseline scenario Sf (see Sec. IV-C1a), and in the weights
search they are weight values w′ (see Sec. IV-C1b). For the
combined approach, individuals in the collision-and-weights
search are both scenario fields values and weight values
〈f ′, w′〉 (see Sec. IV-C2). In order to have a fair comparison
between the results of the two approaches, we set the same
search space for scenario fields in the collision search and in
the collision-and-weights search, and the same search space for
weights in the weights search and in the collision-and-weights
search. The search spaces have been defined as follows.

In order to evaluate the approaches under different condi-
tions, we identified seven search spaces for scenario fields f

′

as follows. We first designed the seven complete baseline sce-
narios shown in Table I, that cover different driving situations.
Then, we parametrized some fields f of each baseline scenario
(e.g., the speed, position, and acceleration of a scenario car).
In order to do this, we first identified one scenario car with
which the ego car could collide. For this car, we manually
identified the extremes of the intervals for which the ego car
exhibits a different behaviour w.r.t. the baseline scenario.

For example, given the baseline scenario S1, car #5 was
selected as it is the one crossing the intersection and therefore
the one which could possibly collide with the ego car, which
turns right at the intersection. An illustration can be seen in
Fig. 1. By setting its speed to 8 m/s, it crosses the intersection
after the ego car turns right (Fig. 1(a)). By increasing its
speed to 15 m/s, instead, the ego car turns after its passage

TABLE I
BASELINE SCENARIOS

ID Description

S1 The ego car must turn right at the intersection, and there is one
car crossing the intersection from the opposite direction. This car
is hidden by a queue of cars waiting at the stop (adapted from
Uber collision also considered in [14])

S2 The ego car must overtake a preceding slow car, but there is a car
approaching from behind on the passing lane

S3 The ego car is proceeding on its lane and another car is proceeding
in the opposite direction in the other lane

S4 The car is proceeding on its lane and two cars are crossing the
main road from left to right

S5 The car is proceeding on its lane and two cars are crossing the
main road, one from left, and one from right

S6 The ego car must overtake a parked car, but there is a car coming
from the opposite direction on the passing lane

S7 The ego car must turn right at the intersection, and there is one
car crossing the intersection from right, and another car crossing
from the opposite direction
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Fig. 1. Method for devising search spaces for fields S
f
′ in scenario S1, with

the two identified extremes and the expected collision inside this interval.

(Fig. 1(b)). The intuition is that the boundary between these
two behaviours could exhibit a collision (Fig. 1(c)). In a similar
way, we identified intervals for all other scenario fields related
to car #5 which somehow change the behaviour of the ego car.
More than one scenario field was selected because collisions
are more likely to happen due to a combination of changes than
to a single one. We proceeded in a similar way for the design
of the search spaces of all collision searches which are also
used by the collision-and-weights searches. Table II reports,
as an example, the search space for the baseline scenario S1.

Deriving the search spaces for the weights is not easy,
since our industry partner did not disclose insights about the
system design. We have only been given the path planner
configured with some weights values w that they consider
satisfactory; apart from this, the path planner is black box. As
mentioned previously, we believe that any feasible alternative
path planner should have weights values w′ not too different
from w; as already observed in Sec. IV-C1b, changing the
weights too much could generate a system which leads to
extreme behaviours, e.g., the ego car not moving at all.
For this reason, we avoided constructing a too-big search
space for weights by restricting the search to values having
the same order of magnitude of the original ones; namely,



TABLE II
SEARCH SPACES FOR BASELINE SCENARIO S1

Approach Search space

CA SA Variable Interval
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s50.x: Initial x of 5 [5, 7]
s50.y: Initial y of 5 [220, 260]
s50.|~v|: Initial speed of 5 [8, 15]
s50.a: Initial acc. of 5 [0, 2]
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w1 [4, 6]
w2 [2000, 4000]
w3 [150, 350]
w4 [10, 30]
w5 [10, 30]
w6 [10, 30]
w7 [90000000, 110000000]
w8 [9000, 11000]

given each original value wi, the search interval was set to
[wi − 10blog10(wi)c, wi + 10blog10(wi)c].

For each baseline scenario, we also had to define the timeout
tmax . We approached this by first defining, for each scenario
car, a ‘critical’ section where it could possibly collide with
the ego car. By setting scenario fields for those cars so that
they are as slow as possible and as far away as possible from
their respective critical sections, we were able to compute the
maximum amount of time it took for all cars to exit them. We
took this value as tmax for its respective scenario.

2) Settings of the search algorithm: We used jMetal 5.7
as search framework [15], [26], namely NSGA-II [12]. As
setting for NSGA-II, we used the default settings of jMetal:
parents selection with Binary tournament, SBX crossover
operator, polynomial mutation operator, crossover rate of 0.9,
and mutation rate equal to the reciprocal of the number of
variables. We set a population size of 100 individuals.

As termination condition of all searches, we set 1200 as
the number of fitness evaluations. Therefore, in total, the
sequential approach can rely on 2400 fitness evaluations
(from the collision and weights searches), while the combined
approach (i.e., the collision-and-weights search) only relies
on 1200 fitness evaluations. This seems to be unfair for the
combined approach; however, since the collision-and-weights
search requires two simulations of the scenario for each fitness
evaluation, while the collision and the weights search require
only one, the total execution times required by the sequential
and combined approaches are comparable.

Experiments have been executed on Amazon Elastic Com-
pute Cloud, using instances with a 2.9 GHz Intel Xeon CPU
and 15GB RAM. To account for the randomness in search
algorithms, each experiment has been executed 30 times.

B. Comparison with Random Search (RS)

The use of a multi-objective search algorithm (i.e., NSGA-II
in our context) must be justified by comparing it with a simple
comparison baseline algorithm, i.e., Random Search (RS).
Given that NSGA-II produces a Pareto front comprising of a
set of solutions, it is recommended to use a quality indicator to

compare two algorithms. To this end, we selected hypervolume
(HV) to compare NSGA-II and RS in terms of the quality of
solutions produced by them. HV was selected based on a guide
that provides a step-wise process to select quality indicators
for a problem at hand [34]. Followed by this, statistical tests
shall be chosen to determine the statistical significance of the
results. To select the suitable statistical tests, we followed
another guideline [2]. We selected two tests: 1) Mann-Whitney
U test to determine the statistical significance of the results,
2) The A12 value statistics to determine the strength of the
significance. The results of the tests in our case are interpreted
as follows: If Mann-Whitney U produces a p-value < 0.05, it
means there exist significant differences between the quality
of solutions provided by NSGA-II and RS. The A12 statistical
test tells which algorithm has the highest chance to be better
and it is interpreted as follows: 1) If A12 is equals to 0.5, it
means that there is no difference between NSGA-II and RS,
2) if A12 is greater than 0.5, it means that NSGA-II has higher
chance to produce better quality solutions than RS, and vice
versa, if A12 is less than 0.5. Note that the results of Mann-
Whitney U and A12 must be studied together to determine the
significance of the results and to conclude which algorithm is
better in terms of quality solutions measured with HV.

For the collision search, there is no statistical difference
between NSGA-II and RS. For the weights search, instead,
NSGA-II is better for scenario S1, and there is no statisti-
cal difference for the other scenarios. For the collision-and-
weights search, NSGA-II is better in all the scenarios, except
for scenarios S1 and S2 for which there is no statistical
difference. These results allow to estimate the complexity
of the problems tackled by the three searches. The collision
search is a relatively easy problem, as RS can find solutions
of the same quality of NSGA-II; indeed, finding an aggressive
behaviour of a scenario car that leads to a collision is an
easy task. The weights search per se is not an easy problem;
however, as we will see in RQ1, the weights search will be
often asked to solve difficult collisions that are unavoidable:
for these “impossible” tasks, using NSGA-II or RS does not
make any difference. On the other hand, collision-and-weights
is a complex problem in which we don’t simply want to find
collisions, but these must be avoidable: for this, NSGA-II
demonstrates to be much better.

C. Results
We analyze the results using two research questions.

RQ1 Which approach is better in finding avoidable colli-
sions?

Here we compare the two approaches introduced in Sec. IV
in terms of their ability to find avoidable collisions: the
classical approach that performs test case generation and
system parameter optimization one after the other (sequential
approach), and the novel approach (combined approach) that
performs them together. Experimental results are shown in
Table III. For the sequential approach, the table shows the
number of runs in which a collision has been found by the
collision search, and then how many of these collisions have



TABLE III
EXPERIMENTAL RESULTS – AVOIDABLE COLLISIONS FOUND

ID Sequential approach Combined approach

Collision search Weights search Collision-and-weights search

S1 30/30 21/30 13/30
S2 30/30 3/30 10/30
S3 30/30 10/30 30/30
S4 30/30 0/30 30/30
S5 30/30 2/30 22/30
S6 30/30 7/30 29/30
S7 30/30 30/30 30/30

been proved to be avoidable by the weights search (i.e., the
search was able to find alternative weights w′ avoiding the
collision). For the combined approach, the table shows the
number of runs in which an avoidable collision has been found
(recall that this search directly targets avoidable collisions).

Regarding the sequential approach, we observe that finding
collisions with the collision search is relatively easy, as it is
always possible to find some aggressive behaviour of some
other scenario car that leads to a collision. However, we
observe that often these collisions cannot be proven to be
avoidable by the weights search: this means that the collisions
were so severe that there was no alternative path planner (at
least in the defined search space) able to avoid them. Only
for scenario S7 all the collisions found are avoidable; for five
scenarios, at most 10 out of 30 collisions are shown to be
avoidable by the weights search (no solution is found for S4).

Regarding the combined approach, we observe that it usu-
ally finds many more avoidable collisions than the sequential
approach (scenarios S2, S3, S4, S5, and S6): these are the
cases in which the collision search of the sequential approach
found too severe collisions that cannot be avoided, but there
are less severe collisions that can. For scenario S7, both
the sequential and the combined approaches always find an
avoidable collision; this could be due to the particular relative
position of the ego car and the scenario car: at the intersection,
the ego car can always stop or accelerate to avoid the collision.

Scenario S1 is still at the intersection, but it is more complex
than scenario S7 because some stopped scenario cars occlude
the sight of the ego car. For this scenario, the sequential
approach is slightly better than the combined approach. We
believe that, in this case, almost all the collisions that can be
found in the search space are avoidable; since in the sequential
approach the problem is decomposed in two simpler problems,
its complexity is lower than that of the combined approach in
which the two problems are solved at once. Therefore, the
sequential approach can be advantageous only if the search
space of a particular baseline scenario contains only avoidable
collisions. However, as observed for the other baseline scenar-
ios, in most of them it is likely to find unavoidable collisions.

RQ2 Is there a difference between the avoidable collisions
found by the two approaches?

In RQ1, we observe that, in some cases, both the sequential
and the combined approaches find an avoidable collision. Now,
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Fig. 2. Comparison between ACSA and ACCA, i.e., avoidable collisions
found by the sequential and the combined approaches

TABLE IV
COMPARISON BETWEEN AVOIDABLE COLLISIONS ACSA AND ACCA

FOUND BY THE SEQUENTIAL AND THE COMBINED APPROACHES
(> (RESP. <): RESULT FROM SA IS STATISTICALLY SIGNIFICANTLY

BIGGER (RESP. SMALLER) THAN THE RESULT FROM CA.
=: THERE IS NO STATISTICALLY SIGNIFICANT DIFFERENCE.)

Dw Dw′ weights difference

S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7

> > > N/A > > > = > = N/A = < < < < < N/A < < <

we want to compare the solutions found by the two approaches
in these cases (i.e., the avoidable collisions ACSA and ACCA

extracted from the Pareto fronts as described in Sec. IV-D).
Fig. 2 reports, for the two approaches and for all the

scenarios, three measures of the solutions: the danger Dw

obtained with the original system ADSw, the danger Dw′

obtained with the modified system ADSw′ , and the weights
difference between the two systems. The boxplots report the
distribution of the results across the runs that found at least one
avoidable collision. Mann-Whitney U Test and A12 statistics
are used to compare the results of the two approaches; tests
results are reported in Table IV. Note that we cannot compare
results for S4, as the sequential approach did not find any
avoidable collision. In the following, when we report that a
measure is higher/lower in one of the two approaches or equal,



we refer to the result of the corresponding statistical test.
We observe that, for each scenario, the danger Dw obtained

with the original system is always higher in the sequential
approach than in the combined approach. This confirms our
intuition that the collision search of the sequential approach
tends to find more severe collisions than those found by the
collision-and-weights search.

Regarding the danger Dw′ obtained with the modified
system, instead, there is no clear trend: it is lower in the
sequential approach for S6 and S7, bigger in S2, and equal
in the other cases.

For the weights difference, the weights solving the collision
in the sequential approach are closer to the original weights
than those of the combined approach. This could be explained
by the difficulty of the problems tackled in the two approaches.
In the sequential approach, in which the two searches are
separated, the problem complexity is much lower than in the
combined approach, in which the two searches are performed
at the same time and therefore there is a strictly larger number
of search variables. As a consequence, for the sequential
approach, in the few cases in which the collision found by the
collision search is avoidable (see Table III), the weights search
has enough time to find the minimum difference in weights
that still avoids the collision. On the other hand, although
the combined approach is able to find many more avoidable
collisions, it usually does not find the one with a minimum
weights difference, because it would need a significantly
longer time to cope with the bigger search space.

D. Concluding Remarks

Based on the results of the research questions, we have the
following key observations.

First, it was easier for the sequential approach to find
collisions in general, since it was only required to find any
collision. However, it wasn’t able to find a higher number of
avoidable collisions, as it can be seen from the results of the
weights search. This is mainly due to the fact that it is easier
to find severe collisions which are not necessarily avoidable.

Second, the combined approach found more avoidable colli-
sions than the sequential approach. The only exception was the
first scenario, where the sequential approach performed better
than the combined approach. This is due to the fact that the
search space of this scenario had a higher number of avoidable
scenarios. Since the sequential approach breaks the overall
problem into two sub-problems (i.e., collision search and
weights search), it managed to find more avoidable collisions
given the much smaller search spaces.

Third, danger values obtained with the original system with
the sequential approach were always higher than the combined
approach. This was due to the fact that the collision search
of the sequential approach finds severe collisions that are
unavoidable as compared to the collision-and-weights search
of the combined approach.

Finally, in terms of weight difference, when the sequential
approach found avoidable collisions, it was able to find closer
weights to the original ones than the combined approach. As

we observed in RQ2, this is due to the fact that the complexity
of the sequential approach is lower than that of the combined
approach. We can conclude that the higher complexity of the
combined approach allows it to find many more avoidable
collisions (which is our main aim), but it pays a price in terms
of quality of the solutions.

VI. PRACTICAL IMPLICATIONS

Reducing Manual Effort for Finding Avoidable Collisions.
Finding collisions for autonomous cars under varied environ-
mental conditions is critical to ensure their safety. Manually
finding realistic collisions is labor-intensive, inefficient, and
error-prone and may even lead to missing severe collisions
that could be avoided. Tools exist that can help finding
collisions; however, they cannot determine if such collisions
were realistic, nor if they would have been avoidable by
a system configured differently. Therefore, in practice such
collisions have to be manually checked by test engineers. To
this end, our work aims to provide an automated way for test
engineers working at our industry partner to automatically find
avoidable collisions, reducing manual effort in determining
whether a collision is avoidable or not. Moreover, our approach
provides additional information about how the system could
be configured to avoid such a collision, further reducing
debugging efforts.
Better Understanding the Behaviours of Path Planners.
Often test engineers do not have detailed knowledge about the
inner working of the path planner they work with. Moreover,
they have limited knowledge about possible known environ-
mental conditions under which the path planners have to
make decisions. Thus, testing is based on the assumptions on
the environmental conditions that do not necessarily hold in
reality. Therefore, it is essential to understand the behaviours
of such components during their development as much as
possible, so that their implementation can be made safe before
their actual deployment in autonomous cars. Our tool can help
test engineers understand the behaviour of path planners by
assessing how changing weights of different aspects in the
cost function of path planners can prevent collisions under
various environmental conditions. Finding such weights is a
key to improve the safety of these path planners, since it can
be already evaluated during development and doesn’t require
an extensive knowledge about the system design.
Application to Other Scenarios and Path Planners. Our
approach is by no means specific to the scenarios we ex-
perimented with and the path planner provided to us by our
industry partner. It can be applied to other scenarios of the
provided path planner and to other path planners. However,
the application to other path planners will require adapting
the implementation of the approach.
Limitations. Our work has demonstrated promising results;
however, it still has several limitations that we plan to deal
with in the future. First, we experimented with one scenario
at a time, and we need to extend the approach for multiple
scenarios. Second, we experimented only with NSGA-II, and
there is a possibility that other algorithms may provide even



better quality solutions [16]. Third, finding avoidable collisions
aims at improving safety; however, it doesn’t ensure the safety.
Thus, our approach should be followed by the application
of other approaches that aims at checking whether a system
behaves as suggested by safe models [27], [28], [30]. Fourth,
we need approaches to explain why a collision is actually
avoidable: to this aim, we could analyse how the values
computed by the cost function change in the modified system.

VII. THREATS TO VALIDITY

This section discusses the threats to validity of our experi-
ments based on the classification of threats defined in [35].
Conclusion Validity. When dealing with search algorithms,
their randomness must be accounted for while drawing conclu-
sions from the results. By following the guidelines of reporting
results for randomized algorithms [2], we repeated our exper-
iments 30 times for both NSGA-II and RS to ensure that the
results are not obtained by chance. Moreover, we compared the
two algorithms using Mann-Whitney U Test and A12 statistics
by following the same guidelines [2]. Moreover, to have a
fair comparison between sequential and combined approaches,
we used the same search space size for scenarios fields for
collision search and collision-and-weights search, and weights
in weights search and collision-and-weights search.
Construct Validity Threats. When designing the experiments
involving the search algorithms, appropriate measures must
be chosen to compare various algorithms. To this end, to
compare the results of NSGA-II and RS, we chose the HV
quality indicator by following the guidelines provided in [34].
We chose NSGA-II since it is one of the most commonly
used multi-objective search algorithms. However, we admit
that more experiments with additional algorithms are needed.
In addition, to avoid any bias towards any specific algorithm,
we use the same stopping criterion for NSGA-II and RS, i.e.,
the number of fitness evaluations. For the sequential approach,
we set the number of fitness evaluations to 2400, whereas for
the combined approach we set this to 1200. This is due to
the reason that for each fitness evaluation for the combined
approach, we invoke the path planner twice, whereas for the
sequential approach the path planner is invoked once for each
fitness evaluation for collision and weights searches. Thus, the
total time for both approaches is comparable.
Internal Validity. In the context of search algorithms, the most
relevant threats are related to the selection of the algorithms
and their parameter settings. We chose NSGA-II since it
is a widely used algorithm in SBSE. However, we plan to
investigate other relevant algorithms in the future. Moreover,
we chose the default parameter settings of NSGA-II from
jMetal. We are fully aware that different parameter settings
can lead to different quality of results; however, it has been
suggested [3] that even default parameter settings of the
algorithms lead to good quality results.
External Validity. Like any experiment, our experiments have
external validity threats. We used seven scenarios for our
experiments, and we definitely need more scenarios (e.g.

discussed in [18], [38] to generalize the results to a wider
context). Moreover, we also admit that we need to experiment
with different path planners to further generalize the results.

VIII. RELATED WORK

There is a rich literature of related work, both from the
perspective of testing and of various kinds of driving-related
systems. The starting point of the research is contained
in [9]–[11], where various kinds so-called Advanced Driver
Assistance Systems (ADAS) have been tested. Improvements
have been reported in [6]–[8], [31], [32]. While the testing
procedures are comparable, the system provided by our in-
dustry partner is not an ADAS, but an ADS. As the dif-
ferent levels of automation [29] suggest, there are crucial
differences between assistance systems of level 1&2 and
automated and autonomous driving systems of level 4&5.
Technically speaking, the assistance systems are oftentimes
rather simple control loops, while the more complex systems
contain dedicated decision, planning and control components,
making design, development, and testing much more difficult.
Further, while [6], [7] search for collisions, those collisions
may be not avoidable and therefore not of great use, since for
some collisions the ADS could not do much to avoid them.
Other works [1], [5], [17], [21] provide a basis within the
domain in which we conducted our research. These works
provide various methodological and technical ideas, which
involve search-based test scenario generation. They all yield
safety-critical test scenarios. However, none of them provides a
suitable system configuration to improve on failed test scenar-
ios. Therefore, the design and development team receives no
additional information about how the system can be improved.
Works in [13], [25] come from different domains but are
still relevant due to their concern with search-based scenario
generation.

IX. CONCLUSIONS

When testing automated and autonomous driving systems
in virtual environments, collisions between vehicles cannot
be claimed to be failures without access to a complete
specification or extensive domain knowledge. In that regard,
this paper introduces a definition of avoidable collision that
depends on neither. The subject under analysis is a path
planner component, provided by our industry partner, which
can be re-parametrized by changing the so-called ‘weights’.
By first identifying a dangerous collision using search-based
techniques and subsequently searching for alternative weights
which are able to avoid it, it can be shown that there is at least
one situation where the original ones are not optimal.

Another issue is that approaches for finding such avoidable
collisions, as the one described above, are not trivially correct
or efficient. We have shown examples where the search for
dangerous collisions is only able to find unavoidable ones,
which offer no opportunity to identify a (potentially) better
set of weights, or any useful insight into how the system
behaves. For this reason, this paper also introduces a search-
based methodology, referred to as the combined approach.



In it, scenario variables and system parameters are changed
simultaneously, searching directly for collisions which are
avoidable — for a given scenario, they occur under the original
weights, but not under alternative ones.

These results are valuable for testing engineers: every col-
lision can automatically be determined to be an actual failure
or not. Moreover, they are valuable to system designers: every
collision comes with an example of an alternative parametriza-
tion which avoids it, which at the very least gives them useful
insight into how the system could optimally behave.
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