Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

A Verified Implementation of the
Berlekamp—Zassenhaus Factorization Algorithm

Jose Divasén - Sebastiaan J. C. Joosten -
René Thiemann - Akihisa Yamada

Received: date / Accepted: date

Abstract We formally verify the Berlekamp-Zassenhaus algorithm for factoring
square-free integer polynomials in Isabelle/HOL. We further adapt an existing for-
malization of Yun’s square-free factorization algorithm to integer polynomials, and
thus provide an efficient and certified factorization algorithm for arbitrary univariate
polynomials.

The algorithm first performs factorization in the prime field GF(p) and then
performs computations in the ring of integers modulo pk, where both p and k are
determined at runtime. Since a natural modeling of these structures via dependent
types is not possible in Isabelle/HOL, we formalize the whole algorithm using locales
and local type definitions.

Through experiments we verify that our algorithm factors polynomials of degree
up to 500 within seconds.

This research was supported by the Austrian Science Fund (FWF) project Y757. Jose Divasén
is partially funded by the Spanish projects MTM2014-54151-P and MTM2017-88804-P. Sebas-
tiaan is now working at University of Twente, the Netherlands, and supported by the NWO
VICI 639.023.710 Mercedes project. Akihisa is now working at National Institute of Informat-
ics, Japan, and supported by ERATO HASUO Metamathematics for Systems Design Project
(No. JPMJER1603), JST. The authors are listed in alphabetical order regardless of individual
contributions or seniority.

J. Divasén
University of La Rioja, Spain
https://orcid.org/0000-0002-5173-128X

S.J.C. Joosten
University of Innsbruck, Austria
https://orcid.org/0000-0002-6590-6220

R. Thiemann

University of Innsbruck, Austria

Tel: +43-512-50753234

E-mail: rene.thiemann@uibk.ac.at
https://orcid.org/0000-0002-0323-8329

A. Yamada
University of Innsbruck, Austria
https://orcid.org/0000-0001-8872-2240

https://orcid.org/0000-0002-5173-128X
https://orcid.org/0000-0002-5173-128X
https://orcid.org/0000-0002-6590-6220
https://orcid.org/0000-0002-6590-6220
https://orcid.org/0000-0002-0323-8829
https://orcid.org/0000-0002-0323-8829
https://orcid.org/0000-0001-8872-2240
https://orcid.org/0000-0001-8872-2240

2 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

Keywords Factor Bounds - Hensel Lifting - Isabelle/HOL - Local Type Definitions -
Polynomial Factorization - Theorem Proving

1 Introduction

Modern algorithms to factor univariate integer polynomials — following Berlekamp
and Zassenhaus — first preprocesses the input polynomial to extract the content and
detect duplicate factors. Afterwards, the main task is to factor primitive square-free
integer polynomials, first over prime fields GF(p), then over quotient rings Z/p*Z,
and finally over integers Z [5, §]. Alﬁorithm m illustrates the basic structure of such
a method for factoring polynomials.

Algorithm 1: A modern factorization algorithm

Input: Univariate integer polynomial f.
Output: Factorization of f into the content ¢ and irreducible factors f; ; with their
multiplicities (f; ;)*.
4 Extract the content and compute a square-free factorization with multiplicities:
f=c (St (fm)™
for each f; #1 do

5 Choose a suitable prime p depending on f;.
6 Factor f; in GF(p)[z] via Berlekamp’s algorithm: f; = g1 ... g¢ (mod p).
7 Determine a suitable bound d on the degree, depending on g1, ..., gs. Choose an

exponent k such that every coefficient of a factor of f; in Z with degree at most
d can be uniquely represented by a number below p*.

8 Compute the factorization f; = hy -...-hy (mod pF) via the Hensel lifting.

9 Reconstruct the factorization f; = fi1 ... fi,n, in Z[z] where each f; ;
corresponds to the product of one or more h'’s.

return f =c- (fl,l)l et (fl,nl)l B (fm,l)m BRI (fm,nm)m

In earlier work on algebraic numbers [31] we implemented Algorithm m in Is-
abelle/HOL [29]. There, however, the algorithm was not formally proven correct
and thus followed by certification, i.e., a validity check on the result factorization.
Moreover, there was no guarantee on the irreducibility of resulting factors. During
our formalization we indeed found an error in the implementation of Line [of this
earlier work. Since in several experiments with algebraic numbers this error was not
exposed, this clearly shows the advantage of verification over certification.

In this work we fully formalize the correctness of our implementation. It delivers
a factorization into the content and a list of irreducible factors.

Theorem 1 (Factorization of Univariate Integer Polynomials)

assumes factorize_int_poly f = (c, fs)

shows square_free_factorization f (c, fs)
and V/(f;,1) € set fs. irreducible f;
and V/(f;,1) € set fs. degree f; # 0

L Our algorithm starts with step H, so that section numbers and step-numbers coincide.

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 3

Here, square_free_factorization f (c,[(fi,m1),...,(fn, mn)]) means that f = c-
f{nﬁ_l o .- fmatl e s a constant, each f; is square-free, and f; and f; are coprime
whenever i # j.

To obtain Theorem m we perform the following tasks.

— In Section E we introduce three Isabelle/HOL definitions of Z/mZ and GF (p). We
first define a type to represent these domains, which allows us to reuse many al-
gorithms for rings and fields from the Isabelle distribution and the AFP (Archive
of Formal Proofs). At some points in our development, however, the type-based
setting becomes too restrictive. Hence we also introduce the second integer rep-
resentation, which explicitly applies the remainder operation modulo m. For effi-
cient implementation we also introduce the third representation, which allows us
to employ machine integers [24] for reasonably small m. Between the representa-
tions we transform statements using transfer [L5] and local type definitions [21].

— The first part of the algorithm is square-free factorization over integer polynomi-
als. In Section H we adapt Yun’s square-free factorization algorithm [32, B5] from
Q to Z.

— The prime p in step f{ must be chosen so that f; remains square-free in GF(p).
Therefore, in Section ff we prove the crucial property that such a prime always
exists.

— In Section E, we formalize Berlekamp’s algorithm, which factors polynomials over
prime fields, using the type-based representation. Since Isabelle’s code generation
does not work for the type-based representation of prime fields, we follow the steps
presented in Section P to define a record-based implementation of Berlekamp’s
algorithm and prove its soundness.

— In Section [we formalize Mignotte’s factor bound and Graeffe’s transformation
used in step [, where we need to find bounds on the coefficients and degrees of
the factors of a polynomial. During this formalization task we detected a bug
in our previous oracle implementation, which computed improper bounds on the
degrees of factors.

— In Section § we formalize Hensel’s algorithm, lifting a factorization modulo p into
a factorization modulo pk. The basic operation there is lifting from p® to p*tt,
which we formalize in the type-based setting. Unfortunately, iteratively applying
this basic operation to lift p to p* cannot be done in the type-based setting.
Therefore, we remodel the Hensel lifting using the integer representation. We
moreover formalize the quadratic Hensel lifting and consider several approaches
to efficiently lift p to p*.

— Details on step { are provided in Section g where we closely follow the brute-
force algorithm as it is described by Knuth [[18, page 452]. Here, we use the same
representation of polynomials over Z/ p"7Z as for the Hensel lifting.

— In Section we illustrate how to assemble all the previous results in order to
obtain the verified factorize_int_poly algorithm. This includes some optimiza-
tions for improving the runtime of the algorithm, such as the use of reciprocal
polynomials and Karatsuba’s multiplication algorithm.

— Finally, we compare the efficiency of our factorization algorithm with the one in
Mathematica 11.2 [34] in Section [L]] and give a summary in Section [19.

Since the soundness of each sub-algorithm has been formalized separately, our
formalization is easily reusable for other related verification tasks. For instance, the
polynomial-time factorization algorithm of Lenstra, Lenstra and Lovész [23] has been

4 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

verified [L1], and that formalization could directly use the results about steps H~E of
Algorithmh from this paper without requiring any adaptations.

Our formalization is available in the AFP. The following website links theorems
in this paper to the Isabelle sources. Moreover, it provides details on the experiments.

https://doi.org/10.5281/zenodo.2525350

The formalization as described in this paper corresponds to the AFP 2019 version
which compiles with the Isabelle 2019 release.

1.1 Related Work

To our knowledge, the current work provides the first formalization of a modern
factorization algorithm based on Berlekamp’s algorithm. Indeed, it is reported that
there is no formalization of an efficient factorization algorithm over GF(p) available
in Coq [4, Section 6, note 3 on formalization].

Kobayashi et al. [19] provide an Isabelle formalization of Hensel’s lemma. They
define the valuations of polynomials via Cauchy sequences, and use this setup to
prove the lemma. Consequently, their result requires a ‘valuation ring’ as a precon-
dition in their formalization. While this extra precondition is theoretically met in
our setting, we did not attempt to reuse their results, because the type of polyno-
mials in their formalization (from HOL-Algebra) differs from the polynomials in our
development (from HOL/Library). Instead, we formalize a direct proof for Hensel’s
lemma. The two formalizations are incomparable: On the one hand, Kobayashi et al.
did not restrict to integer polynomials as we do. On the other hand, we addition-
ally formalize the quadratic Hensel lifting [36], extend the lifting from binary to
n-ary factorizations, and prove a uniqueness result, which is required for proving
Theorem [l|. A Coq formalization of Hensel’s lemma is also available. It is used for
certifying integral roots and ‘hardest-to-round computation’ [26].

If one is interested in certifying a factorization, rather than in a certified algo-
rithm that performs it, it suffices to test that all the found factors are irreducible.
Kirkels [17] formalized a sufficient criterion for this test in Coq: when a polynomial
is irreducible modulo some prime, it is also irreducible in Z. These formalizations are
in Coq, and we did not attempt to reuse them, in particular since there are infinitely
many irreducible polynomials which are reducible modulo every prime.

This work is a revised and extended version of our previous conference paper [[L0].
The formalization has been improved by adding over 7000 lines of new material,
which are detailed through different sections of this paper. This new material has
been developed to improve the performance of the verified factorization algorithm
and includes among others:

— Integration of unsigned-32/64-bit integer implementation, cf. Section E

— Formalization of distinct-degree factorization and integration of it as an optional
preprocessing step for Berlekamp’s factorization, cf. Section f.3.

— Integration of Graeffe’s transformation for tighter factor bounds, cf. Section H

— Formalization of a fast logarithm algorithm, required for Graeffe’s transforma-
tion, cf. Section [1.

— Formalization of balanced multifactor Hensel lifting based on factor trees, cf.
Section {.

https://doi.org/10.5281/zenodo.2525350

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 5

— Formalization of Karatsuba’s polynomial multiplication algorithm, cf. Section E

— Improvements on the GCD algorithm for integer polynomials, cf. Section [LJ.

— Integration of reciprocal polynomial before factoring, cf. Section [L{.

— Overall, the runtime of our verified factorization algorithm has improved signifi-
cantly. The new implementation is more than 4.5 times faster than the previous
version [L0] when factoring 400 random polynomials, and the new version is only
2.5 times slower than Mathematica’s factorization algorithm.

2 Preliminaries

Our formalization is based on Isabelle/HOL. We state theorems, as well as certain
definitions, following Isabelle’s syntax. For instance, of_int :: int = « :: ring_1 is the
ring homomorphism from integers to type «, which is of class ring_1. Isabelle’s type
classes are similar to Haskell; a type class is defined by a collection of operators (over
a single type variable «) and premises over them. The type class ring_1 is provided
by the HOL library, representing the algebraic structure of ring with a multiplicative
unit. We also often use the extension of the above function of_int to polynomials,
denoted by of_int_poly :: int poly = « :: ring_1 poly. Isabelle’s keywords are written
in bold. Other symbols are either clear from their notation, or defined on their
appearance. We only assume the HOL axioms and local type definitions, and ensure
that Isabelle can build our theories. Consequently, a sceptical reader that trusts the
soundness of Isabelle/HOL only needs to validate the definitions, as the proofs are
checked by Isabelle.

We also expect basic familiarity with algebra, and use some of its standard notions
without further explanation. The notion of polynomial in this paper always means
univariate polynomial. Concerning notation, we write /c f for the leading coefficient
of a polynomial f and res(f, g) for the resultant of f and another polynomial g.

The derivative of a polynomial f = 37" a;ztis f' = A iaizt 1. A factor-
ization of a polynomial f is a decomposition into irreducible factors f1, ..., fn such
that f = f1-...- fn. The irreducibility of a ring element x is defined via divisibility
(denoted by the binary relation dvd following Isabelle):

irreducible x <+— -z dvd 1 A (Vy.y dvd 2 — y dvd 1V z dvd y). (1)
We also define the degree-based irreducibility of a polynomial f as
irreducibleq f «— degree f # 0 A (Vg. g dvd f — degree g € {0, degree f}). (2)

Note that (m) and (E) are not equivalent on integer polynomials; e.g., a factor-
ization of f = 102% — 10 in terms of ([ll) will be f =2-5-(x — 1) - (z + 1), where the
prime factorization of the content, i.e., the GCD of the coefficients, has to be per-
formed. In contrast, (P) does not demand a prime factorization, and a factorization
may be f = (10z — 10) - (x + 1). Note that definitions (m) and (E) are equivalent on
primitive polynomials,; i.e., polynomials whose contents are 1, and in particular for
field polynomials.

In a similar way to irreducibility w.r.t. (E)7 we also define that a polynomial f
is square-free if there does not exist a polynomial g of non-zero degree such that
g2 divides f. In particular, the integer polynomial 22z is square-free. A polynomial
f is separable if f and its derivative f’ are coprime. Every separable polynomial is
square-free, and in fields of characteristic zero, also the converse direction holds.

6 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

3 Formalizing Prime Fields

Our development requires several algorithms that work in the quotient ring Z/ o/
and the prime field GF(p). Hence, we will need a formalization of these fundamental
structures.

We will illustrate and motivate different representations of these structures with
the help of a heuristic to ensure that two integer polynomials f and g are coprime
[18, pages 453ff]: If f and g are already coprime in GF(p)[z] then f and g are coprime
over the integers, too. In particular if f and its derivative f’ are coprime in GF (p)[z],
i.e., f is separable modulo p, then f is separable and square-free over the integers.
Hence, one can test whether f is separable modulo p for a few primes p, as a quick
sufficient criterion to ensure square-freeness.

The informal proof of the heuristic is quite simple and we will discuss its formal
proof in separate sections.

— If f is separable modulo p, then f is square-free modulo p (Section @)

— If f is square-free modulo p then f is square-free in Z[z], provided that /c f and
p are coprime (Section B.9).

— Testing separability (i.e., coprimality) modulo p is implemented via the Euclidean
algorithm in the ring GF(p)[z] (Section B.J).

Moreover, we will describe the connection of the separate steps, which is nontrivial
since these steps use different representations (Section B.4).

3.1 Type-Based Representation

The type system of Isabelle/HOL allows concise theorem statements and good sup-
port for proof automation [21]. In our example, we formalize the first part of the
proof of the heuristic conveniently in a type-based setting for arbitrary fields, which
are represented by a type variable 7 with sort constraint field. All the required
notions like separability, coprimality, derivatives and square-freeness are implicitly
parametrized by the type.

Lemma 1 fixes f :: 7 :: field poly
assumes separable f
shows square_free f

In order to apply Lemma m to a finite field GF(p) we need a type that represents
GF(p). To this end, we first define a type to represent Z/pZ for an arbitrary p > 0,
which forms the prime field GF(p) when p is a prime. Afterwards we can instantiate
the lemma, as well as polymorphic functions that are available for field, e.g., the
Gauss—Jordan elimination, GCD computation for polynomials, etc.

Since Isabelle does not support dependent types, we cannot directly use the term
variable p in a type definition. To overcome the problem, we reuse the idea of the
vector representation in HOL analysis [L3]: types can encode natural numbers. We
encode p as CARD(«), i.e., the cardinality of the universe of a (finite) type represented
by a type variable a. The typedef keyword introduces a new type whose elements
are isomorphic to a given set, along with the corresponding bijections.

typedef (c« :: finite) mod_ring = {0 .. < CARD(a)}

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 7

Given a finite type a with p elements, « mod_ring is a type with elements O, ...,
p — 1. With the help of the lifting and transfer package, we naturally define arith-
metic in & mod_ring based on integer arithmetic modulo CARD(«); for instance,
multiplication is defined as follows:

lift_definition times_mod_ring :: « mod_ring = « mod_ring = « mod_ring
isAzy. (x-y) mod CARD(c)

Here the lift_definition keyword applies the bijections from our type definition via
typedef such that times_mod_ring is defined on a mod_ring through a definition on
the type of the elements of the set used in the typedef, namely natural numbers. It
is straightforward to show that o mod_ring forms a commutative ring:

instantiation mod_ring :: (finite) comm_ring

Note that comm_ring does not assume the existence of the multiplicative unit 1. If
CARD(«) = 1, then o mod_ring is not an instance of the type class ring_1, for which
0 # 1 is required. Hence we introduce the following type class:

class nontriv = assumes CARD(a) > 1

and derive the following instantiantion:E
instantiation mod_ring :: (nontriv) comm_ring_1

Now we enforce the modulus to be a prime number, using the same technique as
above, namely introducing a corresponding type class.

class prime_card = assumes prime (CARD(c))

The key to being a field is the existence of the multiplicative inverse 2 ~*. This
follows from Fermat’s little theorem: for any nonzero integer = and prime p,

z-2P 2 =2"P"'=1 (mod p)

that is, 27! = g @ARP(M)=2 jf CARD(«) is a prime. The theorem is already available
in the Isabelle distribution for the integers, and we just apply the transfer tactic [L5]
to lift the result to (« :: prime_card) mod._ring.

instantiation mod_ring :: (prime_card) field

In the rest of the paper, we write o GFp instead of (« :: prime_card) mod_ring.E

2 A formalization of the ring Z/pZ is already present in HOL-Library.Numeral_Type as a
locale mod_ring. In principle we could reuse results from the library by proving a connection
between the locale and our class; however, as the resulting proofs became slightly longer than
direct proofs, we did not use this library.

3 We would like to have introduced this abbreviation also in Isabelle. However, we are not
aware of how to do this, since the type_synonym keyword does not allow specifying type
constraints such as « :: prime_card.

8 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

3.2 Integer Representation

The type-based representation becomes inexpressive when, for instance, formalizing
a function which searches for a prime modulus p such that a given integer polynomial
f is separable modulo p and hence square-free modulo p. Isabelle does not allow us
to state this in the type-based representation: there is no existential quantifier on
types, so in particular the expression

“Jav. prime (CARD(«)) A square_free (of_int_poly f :: o GFp poly)”

is not permitted.

Hence we introduce the second representation. This representation simply uses
integers (type int) for elements in Z/mZ or GF(p), and uses int poly for polynomials
over them. To conveniently develop formalization we utilize Isabelle’s locale mecha-
nism [B], which allows us to locally declare variables and put assumptions on them
in a hierarchical manner. We start with the following locale that fixes the modulus:

locale poly_mod = fixes m :: int

For prime fields we additionally assume the modulus to be a prime.

locale poly_mod_prime = poly_mod p for p :: int + assumes prime p

Degrees, divisibility and square-freeness for polynomials modulo m are defined byE

definition degree,, f = degree (f mod m)
definition f dvd,, g +— (3h. g = f - h (mod m))
definition square_free,, f <—

f#0 (mod m) A (Vg. degree,, g # 0 — —g - g dvdy, f)

The integer representations have an advantage that they are more expressive than
the typed-based ones. For instance, the soundness statement of the aforementioned
function can be stated like “... — 3p. prime p A square_free,, f”. Another advantage
of the integer representation is that one can easily state theorems which interpret

polynomials in different domains like Z[z] and GF(p)[z]. For instance, the second
part of the soundness proof of the heuristic is stated as follows:

Lemma 2 fixes f :: int poly
assumes prime p and square_free,, f and coprime (Ic f) p
shows square_free f

Note that there is no type conversion like of_int_poly needed.

A drawback of this integer representation is that many interesting results for
rings or fields are only available in the Isabelle library and AFP in type-based forms.
To overcome the problem, we establish a connection between the type-based repre-
sentation a mod_ring and the locale poly_mod. This is achieved by first introducing
the intermediate locale

locale poly_mod_type = poly_mod m
for m and ty :: « :: nontriv itself +
assumes m = CARD(«)

4 In this paper we use the conventional notations f = g (mod m) and f mod m. In the
formalization these notions are defined as eq_m and Mp respectively.

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 9

for Z/mZ and its sublocale for prime fields:

locale poly_mod_prime_type = poly_mod_type m ty
for m ::int and ty :: « :: prime_card itself

Second, we import type-based statements into these intermediate locales by means of
transfer [15]. The mechanism allows us to translate facts proved in one representation
into facts in another representation. To apply this machinery we first define the
representation relation MP_Rel :: int poly = a mod_ring poly = bool describing
when an integer polynomial represents a polynomial of type o mod_ring poly. Then
we prove a collection of transfer rules, stating the correspondences between basic
notions in one representation and those in the other representation. For instance,

Lemma 3 (MP_Rel ===> MP_Rel ===> MP_Rel) (-) ()

relates multiplication of polynomials of type int poly with multiplication of polyno-
mials of type a mod_ring poly. Concretely, it states that, if polynomials f and g of
type int poly are related to polynomials f and g of type o mod_ring poly respectively
(via MP_Rel), then f - g is related to f - g, again, via MP_Rel. Note that the same
syntax is used to represent the polynomial multiplication operation in both worlds
(int poly and o mod_ring poly). The ===> symbol represents the relator for function
spaces. That is, related functions map related inputs to related outputs. Then facts
about rings and fields are available via transfer; e.g., from

Lemma 4 f# 0= g# 0 = degree (f - g) = degree f + degree g
of standard library, we obtain

Lemma 5 (in poly_mod_prime_type)
f#Z0 (mod m) = g #0 (mod m) = degreen, (f-g) = degreen, f + degreen, g

Finally, we migrate Lemma E from locale poly_mod_prime_type to poly_mod_prime.
It is impossible to declare the former as a sublocale of the latter, since the locale as-
sumption m = CARD(«) can be satisfied only for certain . Instead, we see Lemma
from the global scope; then the statement is prefixed with assumption m = CARD(«).
In order to discharge this assumption we use the local type definition mechanism [21]],
an extension of HOL that allows us to define types within proofs.

Lemma 6 (in poly_mod_prime)
f#Z0 (mod m) = g #0 (mod m) = degreen, (f-g) = degree,, f + degreen, g

3.3 Record-Based Implementation

The integer representation from the preceding section does not speak about how to
implement modular arithmetic. For instance, although Lemma J can be interpreted
as that one can implement multiplication of polynomials in Z/mZ[x] by that over
Z[z], there are cleverer implementations that occasionally take remainder modulo m
to keep numbers small.

Hence, we introduce another representation.

10 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

3.3.1 Abstraction Layer

This third representation introduces an abstraction layer for the implementation of
the basic arithmetic in Z/mZ and GF(p), and builds upon it various algorithms over
(polynomials over) Z/mZ and GF(p). Such algorithms include the computation of
GCDs, which is used for the heuristic when checking, for various primes p, whether
the polynomial f is separable modulo p, i.e., the GCD of f and f’ in GF(p)|[x] is 1
or not.

The following datatype, which we call dictionary, encapsulates basic arithmetic
operations. Here the type variable p_represents Isabelle/HOL’s types for executable
integers: integer, uint32, and uint64.

datatype p arith_ops_record = Arith_Ops_Record
(zero: p)
(one: p)
(plus: p = p = p)

(of_int: int = p)
(to_int: p = int)

Given a dictionary ops, we build more complicated algorithms. For instance,
following is the Euclidean algorithm for GCD computation, which is adjusted from
the type-based version from the standard library.

partial_function gcd_eucl_i ops a b =
(if b = zero ops then normalize ops a else gcd_eucl_i ops b (modulo ops a b))

Here and often we use partial_function [20], since gcd_eucl_i and others terminate
only if ops contains a correct implementation of the basic arithmetic functions. Ob-
viously, these algorithms are sound only if ops is correct. Correct means that the
functions zero, plus etc. implement the ring operations and indeed form a euclidean
semiring, a ring, or a field, depending on the algorithm in which the operations are
used.

So we now consider proving the correctness of derived algorithms, assuming the
correctness of ops in form of locales. The following locale assumes that ops is a
correct implementation of a commutative ring 7 using a representation type p, where
correctness assumptions are formulated in the style of transfer rules, and locale
parameter R is the representation relation.

locale ring_ops =
fixes ops :: p arith_ops_record
and R :: p = 7T :: comm_ring_1 = bool
assumes R (zero ops) 0
and (R ===> R ===> R) (plus ops) (+)
and ... (* correctness of ring operations *)

5 The preliminary version [[L0] of this paper does not require such an abstraction layer since
there we always implement GF(p) via integers.

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 11

The second assumption just states that the output of the addition operation of
the ops record (plus ops) is related to the output of the addition operation (+) of
elements of type 7 via R, provided that the input arguments are also related via R.

We need more locales for classes other than comm_ring_1. For instance, for the
Isabelle/HOL class normalization_euclidean_semiring, which admits the Euclidean al-
gorithm, we need some more operations to be correctly implemented.

locale euclidean_semiring_ops = ring_ops +
assumes (R ===> R ===> R) (modulo ops) (mod)
and ... (* normalization of GCDs, etc. *)

In this locale we prove the soundness of ged_eucl_i, again in form of a transfer rule.
The proof is simple since the definition of gecd_eucl_i is a direct translation of the
definition of gcd.

Lemma 7 (in euclidean_semiring_ops) (R ===> R ===> R) (gcd_eucl_i ops) gcd

For class field moreover the inverse operation has to be implemented. Since in
our application p is usually small, we compute z 1 as P72, using the binary expo-
nentiation algorithm.

locale field_ops = euclidean_semiring_ops +
assumes (R ===> R) (inverse ops) Fields.inverse

3.8.2 Defining Implementations

Here we present three record-based implementations of GF(p) using integers, 32-
bit integers, and 64-bit integers. This means to instantiate 7 by a GFp, and the
representation type p by integer, uint32, and uint64.

We first define the operations using integer, which is essentially a direct transla-
tion of the definitions in Section B.]|. For example, x -y is implemented as (z-y) mod p
as in times_mod_ring, and the inverse of x is computed via z? ~2. The soundness of
the implementation, stated as follows, is easily proven using the already established
soundness proofs for the type-based version.

Lemma 8 assumes p = CARD(«)
shows field_ops (finite_field_ops_integer p) (mod_ring_rel_integer :: integer = o GFp
= bool)

Hereafter, finite_field_ops... denotes the dictionary of basic arithmetic operations for
GF(p) (where the representation type p should be clear), and mod_ring_rel... denotes
the representation relation.

The implementations using uint32 and uint64 have the advantage that generated
code will be more efficient as they can be mapped to machine integers [24]. It should
be taken into account that they work only for sufficiently small primes, so that no
overflows occur in multiplications: e.g., 65535 - 65535 < 232, The corresponding
soundness statements look as follows, and are proven in a straightforward manner
using the native words library [24].

Lemma 9 assumes p < 65535 and p = CARD(«)
shows field_ops (finite_field_ops32 p) (mod_ring_rel32 :: uint32 = o GFp = bool)

12 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

Lemma 10 assumes p < 4294967295 and p = CARD(«)
shows field_ops (finite_field_ops64 p) (mod_ring_rel64 :: uint64 = a GFp = bool)

To obtain an implementation of GCD for polynomials over GF(p), we need fur-
ther work: instantiating 7 by « GFp poly. So we define a dictionary poly_ops ops
:: p list arith_ops_record implementing polynomial arithmetic. Here polynomials are
represented by their coefficient lists: the representation relation between p list and 7
poly is defined pointwise as follows.

definition (in ring_ops) poly_rel f g +— list_all2 R f (coeffs g)

We define poly_ops by directly translating the implementations of polynomial arith-
metic from the standard library; it is thus straightforward to prove the following
correctness statement.

Lemma 11 (in field_ops) euclidean_semiring_ops (poly_ops ops) poly_rel
Finally we can instantiate Lemma H for polynomials as follows.

Lemma 12 (in field_ops)
(poly_rel ===> poly_rel ===> poly_rel) (gcd_eucl_i (poly_ops ops)) gecd

3.4 Combination of Results

Let us shortly recall what we have achieved at this point. We formalized Lemma m
in a type-based setting, and the type variable 7 can be instantiated by the type
a GFp, where the cardinality of a encodes the prime p. Moreover, we have a con-
nection between square-freeness in GF(p)[z] and Z[z], all represented via integer
polynomials in Lemma P. Finally, we rewrote the type-based GCD-algorithm into a
record-based implementation, and we provide three different records that implement
basic arithmetic operations in GF(p) and GF(p)[x].

Let us now assemble all of the results. In the implementation layer we just define
a test on separability of f using the existing functions like gcd_poly_i from the
implementation layers. In the following definition, one_poly_i corresponds to the
implementation of the one polynomial based on the one element provided by the
arithmetic operations record.

definition separable_i ops [= (gcd_poly_i ops [(pderiv_i ops f) = one_poly_i ops)

Since separable_i requires as input the polynomial in the internal representation type
p, we write a wrapper which converts an input integer polynomial into the internal
type. Here, of_int_poly_i heavily relies upon the function of_int from the arithmetic
operations record.

definition separable_impl_main p ops (f :: int poly) =
(separable_i ops (of_int_poly_i ops f))

The soundness of this function as a criterion for square-freeness modulo p is
proven in a locale which combines the locale field_ops — ops is a sound implementation
of a GFp — with the requirement that locale parameter p is equal to the cardinality
of a.

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 13

Lemma 13 assumes separable_impl_main p ops f
shows square_free, f

The proof goes as follows: Consider the polynomial g := of_int_poly f. The soundness
of of_int_poly_i states that of_int_poly_i ops f and g = of_int_poly f are related by
poly_rel. In combination with the soundness of separable_i (via ged_eucl_i) we know
that the GCD of g and g’ is 1, i.e., separable g. Then Lemma [|| concludes square_free
g. Using the premise p = CARD(«), we further prove square_free (of_int_poly f ::
a GFp poly) = square_free, f, thus concluding square_free, f.

Since we are still in a locale that assumes arithmetic operations, we next define
a function of type int = int poly = bool which is outside any locale. It dynamically
chooses an implementation of GF(p) depending on the size of p.

definition separable_impl p = (
if p < 65535 then separable_impl_main p (finite_field_ops32 p)
else if p < 4294967295 then separable_impl_main p (finite_field_ops64 p)
else separable_impl_main p (finite_field_ops_integer p))

Lemma 14 assumes separable_impl p f
and prime p
shows square_free, f

Although the soundness statement in Lemma @ is quite similar to the one
of Lemmagﬁ, there is a major obstacle in formally proving it in Isabelle/HOL:
Lemma [1§ was proven in a locale which fixes a type « such that p = CARD(«). In
order to discharge this condition we have to prove that such a type « exists for every
p ::int. This claim is only provable using the extension of Isabelle that admits local
type definitions [21].

Having proven Lemma @, which solely speaks about integer polynomials, we can
now combine it with Lemma P to have a sufficient criterion for integer polynomials
to be square free.

The dynamic selection of the implementation of GF(p) in separable_impl — 32-bit
or 64-bit or arbitrary precision integers — is also integrated in several other algorithms
that are presented in this paper. This improves the performance in comparison to a
static implementation which always uses arbitrary precision integers, as it was done
in our previous version [[L0], cf. Section [L1].

4 Square-Free Factorization of Integer Polynomials

Algorithm m takes an arbitrary univariate integer polynomial f as input. As the
very first preprocessing step, we extract the content — a trivial task. We then detect
and eliminate multiple factors using a square-free factorization algorithm, which is
described in this section. As a consequence, the later steps of Algorithm m can assume
that f; is primitive and square-free.

Ezxample 1 Consider the input polynomial 48+ 1128z + 657922 — 11162% — 60422* +
5592z° + 41912 — 260427 — 4082° + 10802° + 300z°. In step H of Algorithm ﬂ this

14 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

polynomial will be decomposed into
3-(4+ 47z — 22° — 232° + 182" 4 102°)°.
f

The square-free primitive polynomial f will be further processed by the remaining
steps of Algorithm [If and serves as a running example throughout this paper.

We base our verified square-free factorization algorithm on the formalization [32,
Sect. 8] of Yun’s algorithm [35]. Although Yun’s algorithm works only for polynomials
over fields of characteristic 0, it can be used to assemble a square-free factorization
algorithm for integer polynomials with a bit of post-processing and the help of Gauss’
Lemma as follows: Interpret the integer polynomial f as a rational one, and invoke
Yun’s algorithm. This will produce the square-free factorization f = £- fllyQ o frmo
over Q. Here, £ is the leading coefficient of f, and all f; g are monic and square-free.
Afterwards eliminate all fractions of each f; g via a multiplication with a suitable
constant c;, i.e., define f;z := ¢; - fi g, such that f;z is primitive. Define ¢ :=
0=(ct-...-c"). Then f = c- fll’Z ...+ fn.z is a square-free factorization of f over
the integers, where c is precisely the content of f because of Gauss’ Lemma, i.e., in
particular ¢ € Z.

The disadvantage of the above approach to perform square-free factorization over
the integers is that Yun’s algorithm over Q requires rational arithmetic, where after
every arithmetic operation a GCD is computed to reduce fractions. We therefore
implement a more efficient version of Yun’s algorithm that directly operates on in-
teger polynomials. To be more precise, we adapt certain normalization operations of
Yun’s algorithm from field polynomials to integer polynomials, and leave the remain-
ing algorithm as it is. For instance, instead of dividing the input field polynomial by
its leading coefficient to obtain a monic field polynomial, we now divide the input
integer polynomial by its content to obtain a primitive integer polynomial. Simi-
larly, instead of using the GCD for field polynomials, we use the GCD for integer
polynomials, etc.

To obtain the soundness of the integer algorithm, we show that all polynomials
fz and fp that are constructed during the execution of the two versions of Yun’s
algorithm on the same input are related by a constant factor. In particular f; z =
¢i - fi,0 is satisfied for the final results f; 7z and f; g of the two algorithms for suitable
¢; € Q. In this way, we show that the outcome of the integer variant of Yun’s
algorithm directly produces the square-free factorization f = c- fllyz oot foz from
above, so there even is no demand to post-process the result. The combination of the
integer version of Yun’s algorithm together with the heuristic of Section J is then
used to assemble the function square_free_factorization_int.

Theorem 2 (Yun Factorization and Square-Free Heuristic)

assumes square_free_factorization_int f = (c, fs)
shows square_free_factorization f (c, fs)
and V(f;,i) € set fs. primitive f; Nlc f >0

5 Square-Free Polynomials in GF(p)

Step a in Algorithm E mentions the selection of a suitable prime p, where two condi-
tions have to be satisfied: First, p must be coprime to the leading coefficient of the in-

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 15

put polynomial f. Second, f must be square-free in GF(p), required for Berlekamp’s
algorithm to work. Here, for the second condition we use separability as sufficient
criterion to ensure square-freeness.

Example 2 Continuing Example m, we need to process the polynomial
f =4+ 47z — 22° — 232° + 182" + 102°.

Selecting p = 2 or p = 5 is not admissible since these numbers are not coprime to
10, the leading coefficient of f. Also p = 3 is not admissible since the GCD of f and
f'is 2+ in GF(3). Finally, p = 7 is a valid choice since the GCD of f and f’ is 1
in GF(7), and 7 and 10 are coprime.

In the formalization we must prove that a suitable prime always exists and pro-
vide an algorithm which returns such a prime. Whereas selecting a prime that satisfies
the first condition is in principle easy — any prime larger than the leading coefficient
will do — it is actually not so easy to formally prove that the second condition is
satisfiable. We split the problem of computing a suitable prime into the following
steps.

— Prove that if f is square-free over the integers, then f is separable (and therefore
square-free) modulo p for every sufficiently large prime p.

— Develop a prime number generator which returns the first prime such that f is
separable modulo p.

The prime number generator lazily generates all primes and aborts as soon as
the first suitable prime is detected. This is easy to model in Isabelle by defining the
generator (suitable_prime_bz) via partial_function.

Our formalized proof of the existence of a suitable prime proceeds along the
following line. Let f be square-free over Z. Then f is also square-free over QQ using
Gauss’ Lemma. For fields of characteristic 0, f is square-free if and only if f is
separable. Separability of f, i.e., coprimality of f and f’ is the same as demanding
that the resultant is non-zero, so we get res(f, f') # 0. The advantage of using
resultants is that they admit the following property: if p is larger than res(f, f') and
the leading coefficients of f and f’, then res,(f, f') # 0, where res,(f,g) denotes
the resultant of f and g computed in GF(p). Now we go back from resultants to
coprimality, and obtain that f and f’ are coprime in GF(p), i.e., f is separable
modulo p.

Whereas the reasoning above shows that any prime larger than res(f, f'), Ic f
and /c f’ is admitted, we still prefer to search for a small prime p since Berlekamp’s
algorithm has a worst case lower bound of p - degree f operations. The formal state-
ment follows:

Lemma 15 (Suitable prime)

assumes square_free f

and p = suitable_prime_bz f
shows prime p

and coprime (Ic f) p

and square_free, f

16 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

6 Berlekamp’s Algorithm

In this section we will describe step E of Algorithm m, i.e., our verified implementation
of Berlekamp’s Algorithm to factor square-free polynomials in GF(p).

6.1 Informal Description

Algorithm E briefly describes Berlekamp’s algorithm [B]. It focuses on the core compu-
tations that have to be performed. For a discussion on why these steps are performed
we refer to Knuth [L8, Section 4.6.2].

Algorithm 2: Berlekamp’s factorization algorithm

Input: Square-free polynomial f over GF(p) with d = degree f # 0.
Output: Constant ¢ and set F' of monic and irreducible factors fi,..., fn such that
f=c fi-...-fn
1 Let ¢ be the leading coefficient of f. Update f := f/c.
2 Compute the Berlekamp matrix By € GF(p)?*9 for f, where the i-th row is the
vector of the coefficients of polynomial z?'* mod f.
3 Compute the dimension r and a basis by, ..., b, of the left null space of By — I, where
I is the identity matrix of size d X d.
4 For each basis vector b; construct the corresponding polynomial h; where the entries
in b; are the coefficients of h;.
5 Set F:={f}, H:={h1,...,he}\ {1}, Fy := 0.
6 If |F|=rV H =0, return c and F U F7.
7 Pick h € H and update H := H \ {h}.
Update I := {gcd(fi,h —j) | fi € F,0<j <p}\{1}.
8 If one can find k irreducible polynomials in F', move them to F7 and update r :=r — k.
9 Goto step .

We illustrate the algorithm by continuing Example E

Ezample 8 In Algorithm m, step E, we have to factor f in GF(7)[z]. To this end, we
first simplify f by

f =445z +52° +52° +4z* +32° (mod 7)

before passing it to Berlekamp’s algorithm.

Step [I| now divides this polynomial by its leading coefficient ¢ = 3 in GF(7) and
obtains the new f := 6 + 4z + 42 + 42> + 62* + 5.

Step E computes the Berlekamp matrix as

10000
46243
Bf=|23614
63531
15566

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 17

since
2mod f = 1 (mod 7)
2" mod f = 4+ 6z + 222 + 423 + 32z (mod 7)
' mod f = 24 3z + 622 + 2 + 42* (mod 7)
2’ mod f = 6+ 3z + 52% + 32 + 2* (mod 7)
2 mod f = 145z +52% +62° + 62 (mod 7).

Step E computes a basis of the left null space of By — I, e.g., by applying the

Gauss-Jordan elimination to its transpose (By — I)T:
00000\" (04261 01002
45243 05335 00101
23514 =102555|—=100012
63521 04126 00000
15565 03415 00000

We determine r = 2, and extract the basis vectors by = (1 0 0 0 0) and b2 =
(0565 1). Step H converts them into the polynomials hy = 1 and he = 5z + 622 +
523 + 2*, and step a initializes H = {ho}, F = {f}, and F = 0.

The termination condition in step Ezdoes not hold. So in step H we pick h = ha
and compute the required GCDs.

ng(fah‘2_1):6+5$+6$2+5$3—|—$4 ::fl
ged(fihe —4) =14z =: fo
ged(f he —i) =1 for all i € {0,2,3,5,6}

Afterwards, we update F:= {f1, fo} and H := 0.

Step H{ is just an optimization. For instance, in our implementation we move all
linear polynomials from F' into F7, so that in consecutive iterations they do not
have to be tested for further splitting in step H Hence, step E updates Fr := {f2},
F:={f1},and r := 1.

Now we go back to step E, where both termination criteria fire at the same time
(|IF|=1=rAH =0). We return c- f1 - f2 as final factorization, i.e.,

f=3-(1+x)(6+5z+62°+52>+2") (mod 7)

All of the arithmetic operations in Algorithm E have to be performed in the prime
field GF(p). Hence, in order to implement Berlekamp’s algorithm, we basically need
the following operations: arithmetic in GF(p), polynomials over GF(p), the Gauss—
Jordan elimination over GF(p), and GCD-computation for polynomials over GF(p).

6.2 Soundness of Berlekamp’s Algorithm

Our soundness proof for Berlekamp’s algorithm is mostly based on the description
in Knuth’s book.

We first formalize the equations (7,8,9,10,13,14) in the textbook [18, pages 440
and 441]. To this end, we also adapt existing proofs from the Isabelle distribution and
the AFP; for instance, to derive (7) in the textbook, we adapted a formalization of
the Chinese remainder theorem, which we could find only for integers and naturals, to
be applicable to polynomials over fields. For another example, (13) uses the equality

18 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

(f+9)? = fP+g® where f and g are polynomials over GF(p), which we prove using
some properties about binomial coefficients that were missing in the library. Having
proved these equations, we eventually show that after step E of Algorithm P, we have
a basis b1,..., b of the left null space of By — I.

Now, step H transforms the basis into polynomials. We define an isomorphism
between the left null space of By — I and the Berlekamp subspace

We:={h|h’ =h (mod f), degree h < degree f}

so that the isomorphism transforms the basis b1, . .., br into a Berlekamp basis Hy :=
{h1,...,hr}, a basis of Wy. Then we prove that every factorization of f has at most
r factors.

In this proof we do not follow Knuth’s arguments, but formalize our own version
of the proof to reuse some results which we have already proved in the develop-
ment. Our proof is based on another isomorphism between the vector spaces Wy
and GF(p)" as well as the use of the Chinese remainder theorem over polynomials
and the uniqueness of the solution.

Lemma 16 Every factorization of a square-free monic polynomial f € GF(p)[x]
has at most dim Wy factors.

Proof Let f = f1-...- fr (mod p) be a monic irreducible factorization in GF(p)[z],
which exists and is unique up to permutation since GF(p)[z] is a unique factorization
domain. We show that there exists an isomorphism between the vector spaces Wy
and GF(p)". Then they have the same dimension and thus every factorization of f
has at most dim Wy = dim GF(p)" = r factors, which is the desired result.

First, the following equation holds for any polynomial g € Wy. It corresponds to
equation (10) in the textbook [18, page 440].

@ —9= 1] @-a. (10)

a€GF(p)

From this we infer that each f; divides HaeGF(p) (g — a). Since f; is irreducible, f;
divides g — a for some a € GF(p) and thus, (g mod f;) = —a is a constant.
Now we define the desired isomorphism ¢ between Wy and GF(p)" as follows:

¢: Wy — GF(p)"
g+— (gmod f1,...,gmod fr)

To show that ¢ is an isomorphism, we start with proving that ¢ is injective. Let
us assume that ¢ g = 0 for some g € Wy. It is easy to show degree g < degree f
and Vi < r. g = ¢g (mod f;). Since v = 0 € Wy satisfies these properties, the
uniqueness result of the Chinese remainder theorem guarantees that g = 0. This
implies_the injectivity of ¢, since any linear map is injective if and only if its kernel
is {0} [2, Proposition 3.2].

To show that ¢ is surjective, consider an arbitrary = = (z1,...,z,) € GF(p)".
We show that there exists a polynomial g € Wy such that ¢ g = . The Chinese
remainder theorem guarantees that there exists a polynomial g such that:

degree g < degree f (3)
Vi<r.g=x; (mod f;) 4)

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 19

Then, for each i < r we have x; = coeff (g mod f;) 0 = (g mod f;), and so
g° = g (mod f;). Since each f; is irreducible and f is square-free, we have gP =

(mod T[] fs). As [[f: = f, we conclude g € Wy. Finally, ¢ g = = follows from (E;
and the fact that g mod f; is a constant. a

As expected, the proof in Isabelle requires more details and it takes us about 300
lines (excluding any previous necessary result and the proof of the Chinese remainder
theorem). We define a function for indexing the factors, we prove that both W; and
GF(p)" are finite-dimensional vector spaces and also that ¢ is a linear map. Since
each equation of the proof involves polynomials over GF(p) (so everything is modulo
p), we also proved facts like degree [fi = >_ degree f; and so on. In addition, we
also extend an existing AFP entry [22] about vector spaces for some necessary results
about linear maps, isomorphisms between vector spaces, dimensions, and bases.

Once having proved that Hp is a Berlekamp basis for f and that the number of
irreducible factors is |Hp|, we prove (14); for every divisor f; of f and every h € Hy,
we have

fo=] sed(fi,h—3). (14)

0<j<p

Finally, it follows that every non-constant reducible divisor f; of f can be properly
factored by ged(fi, h — j) for suitable h € H, and 0 < j < p.

In order to prove the soundness of steps Blia in Algorithm E, we use the following
invariants — these are not stated by Knuth as equations. Here, H ;4 represents the
set of already processed polynomials of Hy,.

1. f=1I(F U F).

. All f; € F U Fy are monic and non-constant.

. All f; € Fy are irreducible.

. Hy=HUH,;.

. ng(fz,h*]) € {1,f1} forall h € Hyy, 0 < j<pand f; € FUFT.
. |F[| +r= |Hb|

S UL W N

It is easy to see that all invariants are_initially established in step E by picking
Hyq = {1} N Hp. In particular, invariant B is satisfied since the GCD of the monic
polynomial f and a constant polynomial ¢ is either 1 (if ¢ # 0) or f (if ¢ = 0).

It is also not hard to see that step [preserves the invariants. In particular
invariant B is satisfied for elements in F7 since these are irreducible. Invariant
follows from ([14).

The irreducibility of the final factors that are returned in step E can be argued
as follows. If |F'| = r, then by invariant E we know that |Hp| = |F'U Fy|, ie., FUF;
is a factorization of f with the maximum number of factors, and thus every factor is
irreducible. In the other case, H = () and hence H,;qy = H} by invariant f. Combining
this with invariant | shows that every element f; in F'U F; cannot be factored by
ged(fi, h — j) for any h € Hp and 0 < j < p. Since Hp is a Berlekamp basis, this
means that f; must be irreducible.

Putting everything together we arrive at_the formalized main soundness state-
ment of Berlekamp’s algorithm. As in Section .3 we will integrate the distinct-degree
factorization [[1§, pages 447 and 448], the algorithm takes, besides the monic poly-
nomial f to be factored, an extra argument d € N such that any degree-d factor of
f is known to be irreducible. Fixing d = 1 yields the usual Berlekamp’s algorithm.
The final statement looks as follows.

20 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

Theorem 3 (Berlekamp’s Algorithm for monic polynomials)

assumes square_free (f :: o GFp poly)
and berlekamp_monic_factorization d f = fs
andV¥g. g dvd f N degree g = d — irreducible g
and degree f > 0
and monic f

shows f = prod._list fs
and V' f; € set fs. irreducible f; A monic f;

In order to prove the validity of the output factorization, we basically use the
invariants mentioned before. However, it still requires some tedious reasoning.

6.3 Formalizing the Distinct-Degree Factorization Algorithm

The distinct-degree factorization (cf. [L8, pages 447 and 448]) is an algorithm that
splits a square-free polynomial into (possibly reducible) factors, where irreducible
factors of each factor have the same degree. It is commonly used before applying
randomized algorithms to factor polynomials, and can also be used as a preprocessing
step before Berlekamp’s algorithm. Algorithm E briefly describes how it works.

Algorithm 3: Distinct-degree factorization algorithm

Input: A monic square-free polynomial f of nonzero degree.

Output: The set of all pairs (4, g) such that g is the product of all monic irreducible
factors of f of degree 1.

If degree f =1 then return (1, f).

Setv:=f,d:=0,w:==x, gq:=1and S:=0.

If v = 1 then return S.

If 2d > degree v then return {(degree v,v)} U S.

Update d :=d + 1, w := wP mod v and gq4 := ged(w — z,v).

If g4 # 1, update v := v div gg, w := wmod v and S := {(d, gq)} U S.

Goto step B

N0 AW N

We implement the algorithm in Isabelle/HOL as distinct_degree_factorization.
Termination follows from the fact that difference between d and the degree of v
decreases in every iteration. The key to the soundness of the algorithm is the fact

that any irreducible polynomial f of degree d divides the polynomial 2?" — 2 and
does not divide ¥ — z for 1 < ¢ < d. The corresponding Isabelle’s statement looks
as follows where the polynomial x is encoded as monom 1 1, i.e., 1 -z

Lemma 17 fixes f :: o :: GFp poly
assumes irreducible f and degree f = d
shows f dvd (monom 1 1)”(CARD(«) "d) — monom 1 1
and1 <c¢= c¢<d= - f dvd (monom 1 1)”(CARD(c) "¢) — monom 1 1

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 21

Knuth presents such a property as a consequence of an exercise in his book,
whose proof is sketched in prose in just 5 lines [18, Exercise 4.6.2.16]. In comparison,
our Isabelle proof required more effort: it took us about 730 lines, above all because
we proved several facts and subproblems:

— Given a degree-n irreducible polynomial f € GF(p)[z], the p™ polynomials of
degree less than n form a field under arithmetic modulo f and p.

— Any field with p™ elements has a generator element ¢ such that the elements of
the field are {0,1,¢,€2,... ,§pn_2}. We do not follow Knuth’s short argument in
this step, but we reuse some theorems of the Isabelle library to provide a proof
based on the existence of an element in the multiplicative group of the finite field
with the adequate order.

— Given a degree-n irreducible polynomial f € GF(p)[z], z?" — x is divisible by f
if and only if m is a multiple of n. Essentially, we are proving that GF(p™) is a
subfield of GF(p™) if and only if n divides m.

The difference between the sizes of Knuth’s and our proofs is also due to some
properties which Knuth leaves as exercises. For instance, we show that a?" = a for
any element a € GF(p), also that (f 4+ g)?" = f?" 4+ ¢?" in the ring GF(p)[z], for
natural numbers z > 1, a > 0 and b > 0 we demonstrate % — 1 dvd 2P — 1 —
a dvd b and some other properties like these ones which cause the increase in the
number of employed lines. The whole formalization of these facts, the termination-
proof of the algorithm and its soundness can be seen in the file Distinct_Degree_
Factorization.thy of our development.

Once we have the distinct-degree factorization formalized, it remains to find a
way to split each factor that we have found into the desired irreducible factors, but
this can just be done by means of the Berlekamp’s algorithm. This way, we have two
ways of factoring polynomials in GF(p)[z]:

— Using Berlekamp’s algorithm directly.
— Preprocessing the polynomial using the distinct-degree factorization and then
apply Berlekamp’s algorithm to the factors.

We verified both variants as a single function finite_field_factorization where a
Boolean constant is used to enable or disable the preprocessing via distinct-degree
factorization. Our experiments revealed that currently the preprocessing slows down
the factorization algorithm, so the value of the Boolean constant is set to disable
the preprocessing. However, since distinct degree factorization heavily depends on
polynomial multiplication, the preprocessing might pay off, once more efficient poly-
nomial multiplication algorithms become available in Isabelle.

Independent of the value of the Boolean constant, the final type-based statement
for the soundness of finite_field_factorization is as follows.

Theorem 4 (Finite Field Factorization)

assumes square_free (f :: o GFp poly)
and finite_field_factorization f = (c, fs)
shows unique_factorization f (c, mset fs)

6 Knuth gives a brief outline of a proof, but he also classifies the exercise as a problem of
moderate complexity that may involve more than two hours’ work to solve it on paper.

22 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

Here, mset converts a list into a multiset, and unique_factorization f demands
that the given factorization is the unique factorization of f, i.e., ¢ is the leading
coefficient of f and fs a list of irreducible and monic factors such that f =c-[] fs.
Uniqueness follows from the general theorem that the polynomials over fields form
a unique factorization domain.

6.4 Implementing Finite Field Factorization

The soundness of Theorem H is formulated in a type-based setting. In particular, the
function finite_field_factorization has type

a GFp poly = o GFp x o GFp poly list.

In our use case, recall that Algorithm ﬂ first computes a prime number p, and
then invokes a factorization algorithm (such as Berlekamp’s algorithm) on GF(p).
This requires Algorithm [to construct a new type 7 with CARD(7) = p depending
on the value of p, and then invoke finite_field_factorization for type T GFp.

Unfortunately, this is not possible in Isabelle/HOL. Hence, Algorithm ﬂ requires
a finite field factorization algorithm to have a type like

int = int poly = int X int poly list

where the first argument is the dynamically chosen prime p.

The final goal is to prove Theorem Y but just involving integers, integer poly-
nomials and integer lists, and then avoiding statements and definitions that require
anything of type o GFp (or in general, anything involving the type « :: prime_card).

The solution is to follow the steps already detailed in Section J. We briefly recall
the main steps here:

— We implement a record-based copy of all necessary algorithms like Gauss—Jordan
elimination, berlekamp_monic_factorization and finite_field_factorization where the
type-based arithmetic operations are replaced by operations in the record.

— In a locale that assumes a sound implementation of the record-based arithmetic
and that fixes p such that p = CARD(« :: prime_card), we develop transfer rules
to relate the new implementation of all subalgorithms that are invoked with the
corresponding type-based algorithms.

— Out of the locale, we define a function finite_field_factorization_int which dynam-
ically selects an efficient implementation of GF(p) depending on p, by means of
finite_field_ops... p. This function has the desired type. Its soundness statement
can be proven by means of the transfer rules, but the resulting theorem still
requires that p = CARD(a).

— Thanks to local type definitions, such a premise is replaced by prime p.

As the approach is the same as the presented in Section E, we omit here the
details. We simply remark that the diagnostic commands transfer_prover_start and
transfer_step were helpful to see why certain transfer rules could initially not be
proved automatically; these commands nicely pointed to missing transfer rules.

Most of the transfer rules for non-recursive algorithms were proved mainly by
unfolding the definitions and finishing the proof by transfer_prover. For recursive al-
gorithms, we often perform induction via the algorithm. To handle an inductive case,

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 23

we locally declare transfer rules (obtained from the induction hypothesis), unfold one
function application iteration, and then finish the proof by transfer_prover.

Still, problems arose in case of underspecification. For instance it is impossible
to prove an unconditional transfer rule for the function hd that returns the head of a
list using the standard relator for lists, (list_all2 R ===> R) hd hd; when the lists of
type a list and 8 list are empty, we have to relate undefined :: o with undefined :: (.
To circumvent this problem, we had to reprove invariants that hd is invoked only on
non-empty lists.

Similar problems arose when using matrix indices where transfer rules between
matrix entries A;; and B;j; are available only if ¢ and j are within the matrix dimen-
sions. So, again we had to reprove the invariants on valid indices — just unfolding
the definition and invoking transfer_prover was not sufficient.

Although there is some overhead in this approach — namely by copying the type-
based algorithms into record-based ones, and by proving the transfer rules for each of
the algorithms — it still simplifies the overall development: once this setup has been
established, we can easily transfer statements about properties of the algorithms,
without having to copy or adjust their proofs.

This way, we obtain a formalized and executable factorization algorithm for poly-
nomials in finite fields where the prime number p can be determined at runtime, and
where the arithmetic in GF(p) is selected dynamically without the risk of integer
overflow. The final theorem follows, which is the integer-based version of Theorem H.

Theorem 5 (Finite Field Factorization on Integers)

assumes finite_field_factorization_int p f = (c, fs)
and square_free,, f
and prime p
shows unique_factorization,, f (c, mset fs)
and c € {0 ..< p}
and V' f; € set fs. set (coeffs f;) C {0 ..< p}

In summary, the development of the separate implementation is some annoying
overhead, but still a workable solution. In numbers: Theorem { requires around 4 300
lines of difficult proofs whereas Theorem f| demands around 600 lines of easy proofs.

7 Mignotte’s Factor Bound

Reconstructing the polynomials proceeds by obtaining factors modulo p*. The value
of k should be large enough, so that any coefficient of any factor of the original
integer polynomial can be determined from the corresponding coefficients in Z/ ka.
We can find such k by finding a bound on the coefficients of the factors of f, i.e., a
function factor_bound such that the following statement holds:

Lemma 18 (Factor Bound)

assumes f # 0 and g dvd f and degree g < d
shows |coeff g j| < factor_bound f d

24 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

Clearly, if b is a bound on the absolute value of the coefficients, and p* > 2-b
then we can encode all required coefficients: In Z/ ka we can represent the numbers

{—kaglj,...,[pk;}} 2> {-b,...,b}.

The Mignotte bound [27] provides a bound on the absolute values of the co-
efficients. The Mignotte bound is obtained by relating the Mahler measure of a
polynomial to its coefficients. The Mahler measure is defined as follows:

mahler_measure f = |lc f|- H max{1, ||}

=1

where n = degree f and r1, ...,y are the complex roots of f taking multiplicity into
account. For nonzero f, Ic f is a nonzero integer. It follows that mahler_measure f >
1. The equality mahler_measure (g - h) = mahler_measure g - mahler_measure h easily
follows by the definition of the Mahler measure. We conclude that mahler_measure g <
mahler_measure f if g is a factor of f.

The Mahler measure is bounded by the coefficients from above through Landau’s
inequality:

mahler_measure f < \/Z?Zl (coeff f i)?

Mignotte showed that the coefficients also bound the measure from below: |coeff g i| <
(d) - mahler_measure g whenever degree g < d. Putting this together we get:

i

|coeff g j| < (d) - mahler_measure g
J

< (Ld(/i2j> - mahler_measure f

d 2
< (Ld/2J> <1/ >_, (coeff f 1)

= d 2- coe i)?

Consequently, we could define factor_bound as follows:

factor_bound f d = L\/(Ld‘/iQJ)Q -3, (coeff £ i)?]

Such a definition of factor_bound was the one used in our previous work [L0].
However, we have introduced an important improvement at this point to get tighter
factor bounds by means of integrating Graeffe transformations.

Given a complex polynomial f = cJ],(x —), we can define its m-th Graeffe
transformation as the polynomial f,, = ¢ [[.(f —rZ).

X3
These polynomials are easy to compute, since

fm:{f, if m = 0.)

c-(g* — xzh?), otherwise

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 25

where g and h are the polynomials that separates fp,—1 into its even and odd
parts such that fm—1(z) = g(z?) + zh(z?). For instance, if fr—1 = ax®* + ba® +
cx? +dx + e then ¢ = az® + cx + e and h = bz + d.

We implement both the definition of Graeffe transformation and (a) and then
we show they are equivalent. The former one makes proofs easier, whereas the latter
one is devoted for computational purposes and thus used during code generation.
At this point we introduce functions involving lists, e.g. poly_even_odd (to obtain
the odd and even parts of a polynomial) and alternate (to split a list into another
two ones in which elements are alternated). For a polynomial f of degree n, we then
prove three important facts:

— mabhler_measure f, = (mahler_measure f)*"

— mahler_measure f < *\/3". (coeff fm i)
— |coeff fi| < (™) - mahler_measure f + ("~]) - |lc f|

The first one follows from the definition of Mahler measure and Graeffe trans-
formation, the second one follows from the first property and the Landau’s inequal-
ity and the third one is obtained from the definition of Mahler measure and the
Mignotte’s inequality.

The implementation of an approximation for the Mahler measure based on Gra-
effe transformations requires the computation of n-th roots, which already can be
done thanks to previous work based on the Babylonian method [30]. That work im-
plements functions to decide whether {/a € Q and compute the ceiling and floor of
{/a. The computation of the n-th root of a number is based on a variant of Newton
iteration, but involving integer divisions instead of floating point or rational divi-
sions, i.e., each occurrence of / in the algorithm has been substituted by div. We
must also choose a starting value in the iteration, which must be larger than the
n-th root. This property is essential, since the algorithm will abort as soon as we fall
below the n-th root. Thus, the starting value is defined as 2/M°g2¢1/71,

This of course requires a function to approximate logarithms. At first, the de-
velopment [30] implemented this approximation in a naive way, i.e., multiplying the
base until we exceed the argument, which causes an impact on the efficiency and
avoid an improvement on the performance if Graeffe transformations are integrated.

To tackle this, we implement the discrete logarithm function in a manner similar
to a repeated squaring exponentiation algorithm. This way, we get a fast logarithm
algorithm, as required for Graeffe transformations. This algorithm allows us to derive
the floor- and ceiling-logarithm functions. We also connect them to the log function
working on real numbers.

Lemma 19 assumesb > 1 and a > 0
shows log_ceiling b a = [log b a]

Once we have a fast logarithm algorithm implemented, we can now define a func-
tion mahler_approximation which returns an upper bound for the Mahler measure,
based on the Graeffe transformations. We refer to the sources and [J] for the de-
tails of the implementation. The function receives three parameters: the number m
of Graeffe transformations which are performed, a scalar ¢ and the polynomial f.
Using the previous properties, we can now prove the following important fact:

|c - mahler_measure f| < mahler_approximation m ¢ f

26 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

Table 1 Approximating the Mahler measure of the polynomials f and g.

m mahler_approximation m 1 f mahler_approximation m 1 g
0 363 144
1 221 38
2 200 33
3 196 33
4 196 32

Putting all together, for a polynomial g of degree g = n < d we have:

|coeff g j| < (nj 1) mahler_measure g + < 11> |lc f|
(L(dd—_1)1/2J> mahler_measure f + (L - /2J> -|le f]

-2 (L(d 1)/2J> e]

Consequently, we can define factor_bound based on mahler_approximation, but
firstly it remains to decide the number of iterations (the value of m), in a balance
between the precision of the bound and the computational time needed to get it.
First we tried too high numbers which gave good results for small polynomials but
have been too expensive to compute for larger polynomials, i.e., where the factor-
bound computation resulted in a timeout. After some experiments we finally selected
a value of m = 2 and defined factor_bound in Isabelle as follows, which is a function
that satisfies the statement presented at the beginning of this section:

IN

mahler_approximation m (

factor_bound f d = (let d1 = d — 1; d2 = d1 div 2; binom = (d1 choose d2)
in mahler_approximation 2 binom f + binom - abs (lc f))

For m = 2 we get quite some decrease in the estimation of the Mahler measure.
Let us show two examples of it. Consider the polynomials f = 2% + 827 + 472° +
13625 4+ 28521 4+ 1712% — 2022 — 212+ 2 and g = 22° — 1627 +262° — 102° — 412* +
8923 — 8722 4 52z — 10 that appear in [, Sections 3.6.1 and 3.6.2].

The paper estimates a Mahler measure of 197 for f and 33.4 for g, Our results are
presented in Table [ll. They clearly illustrate an improved precision when applying
Graeffe’s transformation a few times.

Interestingly, even with the slightly worse estimation of 200 for f when m = 2,
we result in better factor bounds: they report 1 181 and 200 for the largest coefficient
for a factor of degree 4 of f and g, respectively, whereas our factor_bound f 4 results
in 604 and factor_bound g 4 = 106.

So in both cases, the Mahler measure estimations are close to the ones in [l (with
m = 2), but we manage to get much smaller coefficient bounds via the Mignotte
bound (roughly a factor of 2).

In order to compute a factor bound via Theorem @ it remains to choose a bound
d on the degrees of factors of f that we require for reconstruction. A simple choice is
d = degree f—1, but we can do slightly better. After having computed the Berlekamp

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 27

factorization, we know the degrees of the factors of f in GF(p). Since the degrees will
not be changed by the Hensel lifting, we also know the degrees of the polynomials
h; in step E of Algorithm m

Since in step g of Algorithm m we will combine at most half of the factors, it suf-
fices to take d = ZZ‘ZL%J degree h;, where we assume that the sequence hi,..., hm
is sorted by degree, starting with the smallest. In the formalization this gives rise to
the following definition:

degree_bound hs = (let ds = sort (map degree hs)
in sum_list (drop (length ds div 2) ds))

Note also that in the reconstruction step we actually compute factors of Ic f - f.
Thus, we have to multiply the factor bound for f by |lc f].

Ezample 4 At the end of Example E we have the factorization f = 4 + 47z — 222 —
2323 +182* +102° =3 - (1 4+ 2) - (6 + 5z + 622 + 52° + 2*) (mod 7).

We compute d = degree (6 + 5z + 62° 4 52° + 2*) = 4. With the bound
used in our previous work [10], we have to be able to represent coefficients of at

most 10 - L\/(g)Q (42 4472 +22 4+ 232 4182 + 102)] = 3380, i.e., the numbers
{—3380,...,3380}. In contrast, using the new estimations we can reduce the bound,
and compute that it suffices to represent coefficients of at most 1730. Thus the
modulus has to be larger than 2 - 1730 = 3460. Hence, in step [1] of Algorithm ﬂ we
choose k = 5, since this is the least number k such that p* = 7% > 3460.

Finally, we report that our previous oracle implementation [31, Sect. 4] had a
flaw in the computation of a suitable degree bound d, since if, just defined d to be
the half of the degree of f. This choice might be insufficient:¥ Consider the list of
degree of the h; to be [1,1,1,1,1,5]. Then the product hi - he of degree 6 might
be a factor of f, but the degree bound in the old implementation was computed as
% = 5, excluding this product. This wrong choice of d was detected only
after starting to formalize the required degree bound.

8 Hensel Lifting
Given a factorization in GF(p)[z]:

f=lef-gi-...-gm (mod p)

which Berlekamp’s algorithm provides, the task of the Hensel lifting is to compute
a factorization in Z/p*Z[x]

f=lcf-hi-... hp (modpF).

Hensel’s lemma, following Miola and Yun [2§], is stated as follows.

7 Indeed, one can reduce the degree bound to half of the degree of f if one uses a slightly more
complex reconstruction algorithm which sometimes considers the complement of the selected
factors. We did not investigate the trade-off between the two alternatives.

28 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

Lemma 20 (Hensel) Consider polynomials f over Z, g1 and h1 over GF(p) for a
prime p, such that g1 is monic and f = g1 - h1 (mod p). For any k > 1, there exist
polynomials g, and hy over Z/p*7 such that gi is monic, f = gi - h, (mod p*),
g = g1 (mod p), hy, = h1 (mod p). Moreover, if f is monic, then g, and hy are
unique (mod p*).

The lemma is proved inductively on k where there is a one step lifting from
Z/ka to Z/pk'HZ. To be more precise, the one step lifting assumes polynomials
gx and hy, over Z/ ka satisfying the conditions, and computes the desired gi41 and
hi+1 over Z/karlZ.

As explained in Section E, it is preferable to carry on the proof in the type-based
setting whenever possible, and indeed we proved the one-step lifting in this way.

Lemma 21 (Hensel lifting — one step)

assumes CARD(a)) = CARD(B :: prime_card) - CARD(«)
and CARD(B) dvd CARD(v)
and #f = g - h and monic g and coprime (#g) (#h)
and degree f = degree g + degree h
and hensel_1 TYPE(B) f g h = (g, h)
shows f =G-h A monicG A g=#G A h=F#h A
degree g = degree G A degree h = degree h A coprime (#7) (#h)
and ... (* uniqueness statement *)

Here, CARD(«x) represents p* 1, CARD(j3) represents p, and CARD(~y) represents
p". The prefix “#” denotes the function that converts polynomials over integer mod-
ulo m into those over integer modulo n, where the type inference determines n.

Unfortunately, we could not see how to use Lemma R1| in the inductive proof of
Lemma R in a type-based setting. A type-based statement of Lemma R(would have
an assumption like CARD(ar) = p®. Then the induction hypothesis would look like

CARD(a) = p" = ... (6)

and the goal statement would be CARD(a) = pF*1 = There is no hope to
be able to apply the induction hypothesis (E) for this goal, since the assumptions
are clearly incompatible. A solution to this problem seems to require extending the
induction scheme to admit changing the type variables, and produce an induction
hypothesis like CARD(?c) = p* = ... where ?« can be instantiated. Unfortunately
this is not possible in Isabelle/ HOL. A rule that seems useful for this problem is the
cross-type induction schema [@], which is a general-purpose axiom for cross-type
well-founded induction and recursion. However, it is not admissible in current HOL.

We therefore formalized most of the reasoning for Hensel’s lemma on integer
polynomials in the integer-based setting (cf. Section @), so that the modulus (the &
in the p¥) can be easily altered within algorithms and inductive proofs.? The binary
version of Hensel’s lemma is formalized as follows, and internally one step of the
Hensel lifting is applied over and over again, i.e., the exponents are p, p2, p>, p?, ..
[28, Sect. 2.2]. In the statement, Isabelle’s syntax 3! represents the unique existential
quantification.

8 One might transfer the type-based Lemma @ to integer polynomials, in or to use it
within the inductive proof of Lemma R2. However, the current proof of Lemma does not
rely upon Lemma R1.

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 29

Lemma 22 (Hensel lifting — multiple steps, binary)

assumes prime p and coprime,, g h and f = g-h (mod p)
and gmodp =g and hmodp = h
and monic g and k # 0
shows 3! (g, h).
f=3-h (mod p*) A monicg A
g=7 (mod p) A h=h (mod p) A gmod p* =g A hmod p* = h

It is also possible to lift in one step from p” to p**, which is called the quadratic
Hensel lifting, cf. [28, Sect. 2.3]. In this paper we consider several combinations of
one-step and quadratic Hensel lifting.

In the following we use the symbols —, =, and “\ to indicate a one-step Hensel
lifting step, a quadratic Hensel lifting step, and the operation which decreases the
modulus from p**7 to p?, respectively. For each alternative, we immediately illustrate
the sequence of operations that are performed to produce a factorization modulo p°?.

1. Repeated one-step lifting:
pt—=p = pt .. —pt

2. Repeated quadratic lifting [28, Sect. 2.3], which applies the quadratic Hensel
lifting until p2£ > k and then finally take remainder operation modulo p® in

order to convert the Z/ pZZZ factorization into a Z/p*Z factorization. Hence, the
operations for k = 51 are:

1 2 4 8 16 32 64 51
p=p =p =>p =>p =p =p P
3. Combination of one-step and quadratic liftings. Lifting to pk proceeds by recur-
k
Sivelky computing the lifting to pL5J7 then perform a quadratic Hensel lifting to
p?'L2) and if k is odd, do a final linear Hensel lifting to p*. Hence, the operations
are:
1 2 3 6 12 24 25 50 51
p =p —p =p =p =p —p =p —p
Although the numbers stay smaller than in the second approach, this approach
has the disadvantage that the total number of Hensel liftings is larger.
4. Combination of quadratic lifting and modulus decrease. To obtain a lifting for
p", we recursively compute the lifting to pFEW , then do a quadratic Hensel lifting
to pz'rg], and if k is odd, do a final decrease operation to p®.

1 2 4 8 7 14 13 26 52
pr=p =t =" N\ = p N\ =™ = p” N\
In comparison to the third approach, we have slightly larger numbers, but we
can replace (expensive) one-step Hensel liftings by the cheap modulus decrease.

In our experiments, it turned_out that alternative H is faster than E, which in
turn is faster than B. Alternative [is faster than [l| in contrast to the result of Miola
and Yun [28, Sect. 1].H Therefore, the current formalization adopts alternative {,
whereas our previous version [L(] implemented alternative p.

9 Perhaps our quadratic version of Hensel lifting is faster than the iterated one-step version
since we did not integrate (and prove) optimizations (iii) and (iv) of Miola and Yun [2§, Sect.
2.4].

30 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

We further extend the binary (quadratic) lifting algorithm to an m-ary lifting
algorithm. It inputs a list fs of factors modulo p of a square-free polynomial f, splits
it into two groups fs; and fs,, then applies the binary Hensel lifting to ([]fsy) -
(I1fs5) = f (mod p) obtaining g1-g2 = f (mod p*), and finally calls the algorithm
recursively to both [] fs; = g1 and [] fs5 = g2 (mod p).

Since the runtime of the binary Hensel lifting is nonlinear to the degree, the lists
fs1 and fs, should better be balanced so that their products have similar degrees.
To this end, we define the following datatype instead of lists:

datatype « factor_tree =

Factor_Leaf o "int poly” | Factor_Node o« "« factor_tree” "« factor_tree”

We implement operations involving this datatype, such as obtaining the multiset
of factors of a factor tree, subtrees and product of factor trees modulo p. This change
from lists to trees allows us to implement the multifactor Hensel lifting [33, Chapter
15.5] as well as easily balance the involved trees with respect to the degree, that is,
we construct the tree so that the sum of the degrees of the factors of f modulo p
which are stored in the left-branch is similar to the sum of the degrees of the factors
stored in the right-branch of the tree. This way, we avoid expensive computations of
Hensel lifting steps involving high-degree polynomials. We refer to the 1st edition of
the textbook [B3] for further details on factor trees and to the Isabelle sources for
our implementation.

The final lemma that states the soundness of the Hensel lifting.

Lemma 23 (Hensel Lifting — general case)

assumes hensel_lifting p k f fs = gs
and k # 0 and prime p and coprime (Ic f) p
and square_free, f and factorization, f (c, mset fs)
and c € {0 ..< p}
and Vf; € set fs. set (coeffs f;) C {0 ..< p}
shows unique_factorization,. f (lc f, mset gs)
and Vg; € set gs. monic g; A irreducible, g;

Note that uniqueness follows from the fact that the preconditions already imply
that f is uniquely factored in Z/pZ — just apply Theorem f.

We do not go into details of the proofs, but briefly mention that also here local
type definitions have been essential. The reason is that the computation relies upon
the extended Euclidean algorithm applied on polynomials over GF(p). Since the
soundness theorem of this algorithm is available only in a type-based version in the
Isabelle distribution, we first convert it to the integer representation of GF(p) and
a record-based implementation as in Section B.

We end this section by proceeding with the running example, without providing
details of the computation.

Ezample 5 Applying the Hensel lifting on the factorization of Example E with k=5
from Example { yields

f=3-(2885+x) - (14027 + 7999z + 13691z + 7201z> + z*) (mod p*)

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 31

9 Reconstructing True Factors

For formalizing step E of Algorithm m, we basically follow Knuth, who describes the
reconstruction algorithm briefly and presents the soundness proof in prose [L8, steps
F2 and F3, pages 451 and 452]. At this point of the formalization the De Bruijn
factor is quite large, i.e., the formalization is by far more detailed than the intuitive
description given by Knuth.

The following definition presents (a simplified version of) the main worklist algo-
rithm, which is formalized in Isabelle/HOL via the partial_function command.

reconstruction f d rf hs res [| =
letd=d+1
in if rf < 2d then f # res
else reconstruction f d rf hs res (sublists hs d)
reconstruction f d rf hs res (gs # todo) =
let g = invy,. ((Ic f - prod_list gs) mod p") in
if—~gdvdicf-f
then reconstruction f d rf hs res todo
else let
fi = primitive_part g;
f=1Fdi f;
rf = rf — length gs;
Tes = fi # res
in if rf < 2d then f # Tes else let
hs = fold removel gs hs;
todo = sublists hs d
in reconstruction f d rf hs 7es todo

Here, rf is supposed to be the number of remaining factors, i.e., the length of
hs; sublists hs d denotes the list of length-d sublists of hs; and invy, is the inverse
modulo function, which converts a polynomial with coefficients in {0,...,m} into
a polynomial with coefficients in {—| 25|, ..., [™-1]}, where the latter set is a
superset of the range of coefficients of any potential factor of Ic f - f, cf. Section [f.

Basically, for every sublist gs of hs we try to divide Ic f - f by the reconstructed
potential factor g. If this is possible then we store f;, the primitive part of g, in the
list res of resulting integer polynomial factors and update the polynomial f and its
factorization hs in Z/p"Z accordingly. When the worklist becomes empty or a factor
is found, we update the number rf of remaining factors hs and the length d of the
sublists we are interested in. Finally, when we have tested enough sublists (rf < 2d)
we finish.

For efficiency, the actual formalization employs three improvements over the
simplified version presented here.

— Values which are not frequently changed are passed as additional arguments. For
instance Ic f - f is provided via an additional argument and not recomputed in
every invocation of reconstruction.

10 Although partial_function does not support pattern matching, we prefer to use pattern
matching in the presentation.

32 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

— For the divisibility test we first test whether the constant term coeff g 0 of the
candidate factor g divides that of Ic f - f. In our experiments, in over 99 % of
the cases this simple integer divisibility test can prove that g is not a factor of
Ic f- f. This test is in particular efficient, since the constant term of g is just the
product of the constant terms of the polynomials in gs, so that one can execute
the test without computing g itself.

— The enumeration of sublists is made parametric, and we developed an efficient
generator of sublists which reuses results from previous iterations. Moreover, the
sublist generator also shares computations to calculate the constant term of g.

Ezxample 6 Continuing Example E, we have only two factors, so it suffices to consider
d = 1. We obtain the singleton sublists [g1] = [2885+z] and [g2] = [14027+7 9992+
1369122 + 72012 4 z*]. The constant term of invyk (lc f - g1) is the inverse modulo
of (10-2885)modp”, i.e., —4 764, and similarly, for go we obtain 5 814. Since neither
of them divides 40, the constant term of Ic f - f, the algorithm returns [f], i.e., f is
irreducible.

The formalized soundness proof of reconstruction is much more involved than the
paper proof; it is proved inductively with several invariants, for instance

— correct input: rf = length hs

— corner cases: 2d < 7f, todo # [— d < rf, d =0 — todo =[]

— irreducible result: Vf; € set res. irreducible f;

— properties of prime: square_free, f, coprime (lc f) p

— factorization mod p*: unique_factorization,. f (Ic f, hs)

— normalized input: h; mod pk = h; for all h; € set hs

— factorization over integers: the polynomial f - []res stays constant throughout
the algorithm

— all factors of Ic f- f with degree at most degree_bound hs have coefficients in the
range {— 221] .. [

— all non-empty sublists gs of hs of length at most d which are not present in todo
have already been tested, i.e., these gs do not give rise to a factor of f

The hardest parts in the proofs were to ensure the validity of all invariants after a
factor g has been detected — since then nearly all parameters are changed — and to
ensure that the final polynomial f is irreducible when the algorithm terminates.

In total, we achieve the following soundness result, which already integrates
many of the results from the previous sections. Here, berlekamp_hensel is a sim-
ple composition of the finite field factorization algorithm (that is, the function
finite_field_factorization_int which internally uses the Berlekamp factorization) and
the Hensel lifting, and zassenhaus_reconstruction invokes reconstruction with the right
set of starting parameters.

Theorem 6 (Zassenhaus Reconstruction of Factors)

assumes prime p
and coprime (Ic f) p
and square_free, f
and 0 < degree f
and berlekamp_hensel p k f = hs

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 33

and d = degree_bound hs

and 2 - |lc f| - factor_bound f d < p*

and zassenhaus_reconstruction hs p k f = fs
shows f = prod._list fs

and v f; € set fs. irreducible f;

The worst-case runtime of this factor-reconstruction algorithm is known to be
exponential. We also have a polynomial-time version based on the lattice reduction
algorithm [[7, 11], but this contribution goes beyond the scope of this paper.

10 Assembled Factorization Algorithm

At this point, it is straightforward to combine the algorithms presented in Sections a
to { to get a factorization algorithm for square-free polynomials.

berlekamp_zassenhaus_factorization f = let
p = suitable_prime_bz f;
(_, gs) = finite_field_factorization_int p f;
d = degree_bound gs;
bnd = 2 - |lc f| - factor_bound f d;
k = find_exponent p bnd;
hs = hensel_lifting p k f gs
in zassenhaus_reconstruction hs p k f

Here, find_exponent p bnd just computes an exponent k such that pk > bnd.
It satisfies the following soundness theorem.

Theorem 7 (Berlekamp—Zassenhaus Algorithm)

assumes square._free f

and primitive f

and degree f # 0

and berlekamp_zassenhaus_factorization f = fs
shows f = prod_list fs

and YV f; € set fs. irreducible f;

Putting this together with the square-free factorizaton algorithm presented in
Section {, we now assemble a factorization algorithm for integer polynomials

internal_int_poly_factorization f = let
(¢, gis) = square_free_factorization_int f;
bz = berlekamp_zassenhaus_factorization
in (¢, [(h,1). (g,1) < gis, h + bz g])

and prove its soundness:

Theorem 8 (Factorization of Integer Polynomials)

34 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

assumes internal_int_poly_factorization f = (c, his)
shows square_free_factorization f (c, his)
and ¥ (h,i) € set his. irreducible h

So, we get a factorization algorithm that works for any integer polynomial. But
we can do it even better: Performance improves if we include reciprocal polynomials
when |coeff f 0| < |lc f|, since then the values of Ic f and coeff f 0 are swapped,
and thus the value of bnd in the definition of berlekamp_zassenhaus_factorization
decreases.

The reciprocal polynomial of polynomial f = >"" ax’ is Yo an_izt, and is
defined in Isabelle as reflect_poly f. Reciprocal polynomials satisfy some important
properties that we have proved in Isabelle, among others:

. content (reflect_poly f) = content f

. primitive_part (reflect_poly f) = reflect_poly (primitive_part f)

. ged (reflect_poly f) (reflect_poly g) = normalize (reflect_poly (ged f g))
. coeff f 0 # 0 = irreducible (reflect_poly f) = irreducible f

. [dvd g = (reflect_poly f) dvd (reflect_poly g)

T W N~

Using these properties and some others already present in the library, we prove
that it is possible to factor a polynomial by factoring its reciprocal and then taking
reciprocal of its irreducible factors. To avoid unnecessary computations, we define
a function factorize_int_last_nz_poly of type int poly = int X (int poly X nat) list
to do this step for a polynomial which does not have zero as constant part and
then assemble everything in a function factorize_int_poly of the same type to get
a full factorization of any integer polynomial as follows. It satisfies the soundness
Theorem ﬂ from the introduction.

factorize_int_last_nz_poly f = (let df = degree f
in if df =0 then (coeff f 0,][])
else if df = 1 then (content f, [(primitive_part f,0)])
else if |coeff f 0] < |lc f]
then reflect_factorization (internal_int_poly_factorization (reflect_poly f))
else internal_int_poly_factorization f)

factorize_int_poly f = (case x_split f of (n,g) (x f=2"-g %)
= ifg =0 then (0,[]) else case factorize_int_last_nz_poly g of (a, fs)
= ifn =0 then (a, fs) else (a, (monom 11, n — 1) # fs))

By using Gauss’ lemma we also assembled a factorization algorithm for rational
polynomials which just converts the input polynomial into an integer polynomial
by a scalar multiplication and then invokes factorize_int_poly. The algorithm has
exactly the same soundness statement as Theorem [ll except that the type changes
from integer polynomials to rational polynomials.

Finally, it is worth noting that several of the presented algorithms require polyno-
mial multiplications. However, there is no fast polynomial multiplication algorithm
implemented in Isabelle. Indeed, just the naive one is present in the standard library,
which is O(nQ). Thus, we decided to formalize Karatsuba’s multiplication algorithm,
which is an algorithm of complexity O(n!°®23), to improve the performance of our

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 35

verified version of the Berlekamp—Zassenhaus algorithm. Karatsuba’s algorithm per-
forms multiplication operation by replacing some multiplications with subtraction
and addition operations, which are less costly [L6]. We provide a verified implemen-
tation for type-based polynomials, e.g., integer polynomials, but we also implement
a record-based one for polynomials over GF(p), cf. Section E The type-based for-
malization is valid for arbitrary polynomials over a commutative ring, so we fully
replace Isabelle’s polynomial multiplication algorithm by it.

We also tune the GCD algorithm for integer polynomials, so that it first tests
whether f and g are coprime modulo a few primes. If so, we are immediately done,
otherwise the GCD of the polynomials is computed. Our experiments shows that this
preprocessing is faster than a direct computation of the GCD. Since this heuristic
involves a few small primes, all operations in the heuristic are carried out using 64-bit
integers.

11 Experimental Evaluation

We evaluate the performance of our algorithm in comparison to a modern factoriza-
tion algorithm — here we choose the factorization algorithm of Mathematica 11.2 [B4].
To evaluate the runtime of our algorithm, we use Isabelle’s code generation mech-
anism [12] to extract Haskell code for factorize_int_poly. The code generator is de-
signed for partial correctness, i.e., if an execution of the generated code terminates,
then the answer will be correct, but termination itself is not guaranteed. Another
restriction is that we rely upon soundness of Haskell’s arithmetic operations on inte-
gers, since we map Isabelle’s integer types (uint32, uint64, and integer) to Haskell’s
integer types (Data.Word.Word32, Data.Word.Word64, and Integer). The resulting
code was compiled with GHC version 8.2.1 using the 02 switch to turn on most
optimizations. All experiments have been conducted under macOS Mojave 10.14.1
on an 8-core Intel Xeon W running at 3.2 GHz.

Figure [ll shows the runtimes of our implementation compared to that of Math-
ematica on a logarithmic scale. We also include a comparison between the version
presented in our previous work [[L(] and the new one which includes the optimizations
explained through this paper. The runtimes are given in seconds (including the 0.5
seconds startup time of Mathematica), and the horizontal axis shows the number of
coefficients of the polynomial. The test suite consists of 400 polynomials with degrees
between 100 and 499 and coefficients are chosen at random between —100 and 100.

As these polynomials have been randomly generated, they are typically irre-
ducible. In this case using a fast external factorization algorithm as a preprocessing
step will not improve the performance, as then the preprocessing does not mod-
ify the polynomial. We conjecture that the situation could be alleviated by further
incorporating an efficient irreducibility test.

Besides making a global comparison between the old and the new algorithm,
we also evaluate several different optimizations separately. The results are presented
in Table P, where a row “new without opt” indicates a configuration, where only
optimization opt has been disabled in the new implementation. The time is given
relative to the implementation “new” which includes all optimizations and requires
around 14 minutes to factor all 400 example polynomials. The table does not list all
optimizations of this paper, since some of them could not easily be disabled in the
generated code. In particular, all configurations use the same variant of the binary

36 J. Divasén, S. Joosten, R. Thiemann and A. Yamada

runtime in seconds

50 | 00
. %’g factorize_int_poly (old)

oo Qo %
p 0%0000006%00%9 o
o ° R o R
o0 0% =%) ?” °
10} o Q,D 00 q)o o o
o 3;9&%:,"00@‘;4?6’@ , no "
oo oo "yt nomn o factorize_int_poly (new)
S Spieny” o b AT -int_poly
° o Nn pn "™
na'n :mn n X

R) n ny x 5% XEx
nr.‘arﬁ\““n"h" o fhmxx&x R R FE Mathematica
X x
M))((n"xnn)(,?xxxxxxx?x 1‘}‘::‘“#:);
"’mﬁ%%}(xxx‘}ﬁ“*é&%x Fhe’s £ x
Kon X R X
X XX X

L L L L

L L L L

L L number of coefficients
300 400 500
Fig. 1 Runtimes compared with Mathematica and the version with no improve-
ments

Table 2 Impact of Individual Optimizations

algorithm total runtime
new 100.0 %
new without GCD heuristic +12%
new without reciprocal polynomials + 3.3%
new without dynamic selection of GF(p) implementation +155%
new without balanced multifactor Hensel lifting + 16.7%
new without Karatsuba’s multiplication algorithm + 26.7%

Hensel lifting algorithm, which considerably differs from the binary Hensel lifting of
the old implementation. The results show, that in particular the dynamic selection
of the GF(p) implementation, the balancing of multifactor Hensel lifting, and the
improved polynomial multiplication algorithm are significant improvements.

Profiling revealed that for the 400 random example polynomials, most of the
time is spent in the Berlekamp factorization, i.e., in step fj of Algorithm [ll, or more
precisely in Step E of Algorithm P, the computation of the basis via Gauss-Jordan
elimination. Interestingly, the exponential reconstruction algorithm in step g does
not have any significance on these random polynomials, cf. Table §.

Nevertheless we remark that this situation can dramatically change on non-
random polynomials, e.g., on polynomials constructed via algebraic numbers. For
instance when computing the minimal integer polynomial that has Z?:l Vi as
root, 87.3% of the overall time is spent in the reconstruction algorithm; and for
21'7:1 /i we had to abort the computation within the reconstruction phase. Note
that even Mathematica does not finish the computation of the latter minimal poly-
nomial within a day. As a possible optimization, the exponential reconstruction

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 37

Table 3 Profiling Results

step amount of total runtime
Berlekamp factorization 75.45 %
Hensel lifting 22.79 %
square-free factorization 0.65%
find suitable prime 0.63 %
determine factor bound 0.38%
remaining parts 0.09%

phase can be replaced by van Hoeij’s fast reconstruction algorithm based on lattice-
reduction [14], which is implemented in Maple 2017.3 [25]. Although Maple is only
20 % faster than Mathematica when factoring the 400 random polynomials, it can
compute the minimal polynomial within a second, in contrast to the timeout of
Mathematica. However, a soundness proof of van Hoeij’s algorithm is much more
involved.

12 Summary

We formalized the Berlekamp-Zassenhaus algorithm for factoring univariate integer
polynomials. To this end we switched between different representations of finite fields
and quotient rings with the help of locales, the transfer package and local type
definitions. The generated code can factor large polynomials within seconds. The
whole formalization consists of 21320 lines of Isabelle and took about 17 person
months of Isabelle experts. As far as we know, this is the first formalization of an
efficient polynomial factorization algorithm in a theorem prover.

Most of the improvements mentioned as potential future work in our previous
conference paper [L0] have now been formalized and are integrated in the develop-
ment, but there still remain some possibilities to extend the current formalization for
optimizing the factorization algorithm even further. For instance, one can consider
using the Cantor—Zassenhaus algorithm [§] for finite-field factorization, although its
formalization would be more intricate (indeed, it is a probabilistic algorithm).

Acknowledgments

We thank Florian Haftmann for integrating our changes in the polynomial library
into the Isabelle distribution; we thank Manuel Eberl for discussions on factorial
rings in Isabelle; and we thank the anonymous reviewers for their helpful remarks,
which led us to include many of their suggestions into the current article.

References

1. J. Abbott. Bounds on factors in Z[z]. Journal of Symbolic Computation, 50:532—
563, March 2013.

2. S. J. Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics.
Springer, 1997.

38

J. Divasén, S. Joosten, R. Thiemann and A. Yamada

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

C. Ballarin. Locales: A module system for mathematical theories. Journal of
Automated Reasoning, 52(2):123-153, February 2014.

G. Barthe, B. Grégoire, S. Heraud, F. Olmedo, and S. Z. Béguelin. Verified
indifferentiable hashing into elliptic curves. In P. Degano and J. D. Guttman,
editors, Principles of Security and Trust. POST 2012, volume 7215 of LNCS,
pages 209-228. Springer, 2012.

E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Technical
Journal, 46(8):1853-1859, October 1967.

J. C. Blanchette, F. Meier, A. Popescu, and D. Traytel. Foundational nonuniform
(co)datatypes for higher-order logic. In ACM/IEEE Symposium on Logic in
Computer Science, LICS 32, pages 1-12. IEEE Computer Society, 2017. Cross-
type induction is explained in appendix D of the extended report version at
http://matryoshka.gforge.inria.fr/pubs/nonuniform_report.pdf.

R. Bottesch, M. W. Haslbeck, and R. Thiemann. A verified efficient imple-
mentation of the LLL basis reduction algorithm. In G. Barthe, G. Sutcliffe, and
M. Veanes, editors, Logic for Programming, Artificial Intelligence and Reasoning.
LPAR 22, volume 57 of EPiC Series in Computing, pages 164—-180. EasyChair,
2018.

D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials
over finite fields. Mathematics of Computation, 36(154):587-592, April 1981.

L. Cerlienco, M. Mignotte, and F. Piras. Computing the measure of a polynomial.
Journal of Symbolic Computation, 4(1):21-33, August 1987.

J. Divasén, S. J. C. Joosten, R. Thiemann, and A. Yamada. A formaliza-
tion of the Berlekamp—Zassenhaus factorization algorithm. In Y. Bertot and
V. Vafeiadis, editors, Certified Programs and Proofs. CPP 2017, pages 17-29.
ACM, 2017.

J. Divasén, S. J. C. Joosten, R. Thiemann, and A. Yamada. A formalization
of the LLL basis reduction algorithm. In J. Avigad and A. Mahboubi, editors,
Interactive Theorem Proving. ITP 2018, volume 10895 of LNCS, pages 160-177.
Springer, 2018.

F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems.
In M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic Pro-
gramming. FLOPS 2010, volume 6009 of LNCS, pages 103-117. Springer, 2010.
J. Harrison. The HOL light theory of Euclidean space. Journal of Automated
Reasoning, 50(2):173-190, February 2013.

M. van Hoeij. Factoring polynomials and the knapsack problem. Journal of
Number Theory, 95(2):167-189, August 2002.

B. Huffman and O. Kuncar. Lifting and transfer: A modular design for quotients
in Isabelle/HOL. In Certified Programs and Proofs. CPP 2013, volume 8307 of
LNCS, pages 131-146. Springer, 2013.

A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
Soviet Physics Doklady, 7(7):595-596, January 1963.

B. Kirkels. Irreducibility certificates for polynomials with integer coefficients.
Master’s thesis, Radboud Universiteit Nijmegen, August 2004.

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd Edition. Addison-Wesley, 1998.

H. Kobayashi, H. Suzuki, and Y. Ono. Formalization of Hensel’s lemma. In
J. Hurd, E. Smith, and A. Darbari, editors, Theorem Proving in Higher Order
Logics: Emerging Trends Proceedings, pages 114-118. Oxford University Com-

http://matryoshka.gforge.inria.fr/pubs/nonuniform_report.pdf

A Verified Implementation of the Berlekamp—Zassenhaus Factorization Algorithm 39

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

puting Laboratory, 2005.

A. Krauss. Recursive definitions of monadic functions. In A. Bove, E. Komen-
dantskaya, and M. Niqui, editors, Partiality and Recursion in Interactive The-
orem Provers. PAR 2010, volume 43 of EPTCS, pages 1-13, 2010.

O. Kuncar and A. Popescu. From types to sets by local type definition in higher-
order logic. Journal of Automated Reasoning, 62(2):237-260, 2019.

H. Lee. Vector spaces. Archive of Formal Proofs, Aug. 2014. http://isa-afp.
org/entries/VectorSpace.html, Formal proof development.

A. K. Lenstra, H. W. Lenstra, and L. Lovéisz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515-534, 1982.

A. Lochbihler. Fast machine words in Isabelle/HOL. In J. Avigad and A. Mah-
boubi, editors, Interactive Theorem Proving. ITP 2018, volume 10895 of LNCS,
pages 388—410. Springer, 2018.

Maplesoft, a division of Waterloo Maple Inc. Maple 2017.3. Waterloo, Ontario,
September 2017.

E. Martin-Dorel, G. Hanrot, M. Mayero, and L. Théry. Formally verified certifi-
cate checkers for hardest-to-round computation. Journal of Automated Reason-
ing, 54(1):1-29, January 2015.

M. Mignotte. An inequality about factors of polynomials. Mathematics of Com-
putation, 28(128):1153-1157, October 1974.

A. Miola and D. Y. Yun. Computational aspects of Hensel-type univariate poly-
nomial greatest common divisor algorithms. ACM SIGSAM Bulletin, 8(3):46-54,
August 1974.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

R. Thiemann. Computing N-th roots using the babylonian method. Archive of
Formal Proofs, Jan. 2013. http://isa-afp.org/entries/Sqrt_Babylonian.
html, Formal proof development.

R. Thiemann and A. Yamada. Algebraic numbers in Isabelle/HOL. In
J. Blanchette and S. Merz, editors, Interactive Theorem Proving. ITP 2016,
volume 9807 of LNCS, pages 391-408. Springer, 2016.

R. Thiemann and A. Yamada. Formalizing Jordan normal forms in Is-
abelle/HOL. In J. Avigad and A. Chlipala, editors, Certified Programs and
Proofs. CPP 2016, pages 88-99. ACM, 2016.

J. von zur Gathen and J. Gerhard. Modern computer algebra (3rd ed.). Cam-
bridge University Press, 2013.

Wolfram Research, Inc. Mathematica Version 11.2. Champaign, Illinois, Septem-
ber 2017.

D. Y. Yun. On square-free decomposition algorithms. In Symbolic and Algebraic
Computation. SYMSAC 1976, pages 26-35. ACM, 1976.

H. Zassenhaus. On Hensel factorization, I. Journal of Number Theory, 1(3):291-
311, July 1969.

http://isa-afp.org/entries/VectorSpace.html
http://isa-afp.org/entries/VectorSpace.html
http://isa-afp.org/entries/Sqrt_Babylonian.html
http://isa-afp.org/entries/Sqrt_Babylonian.html

	Introduction
	Preliminaries
	Formalizing Prime Fields
	Square-Free Factorization of Integer Polynomials
	Square-Free Polynomials in GF(p)
	Berlekamp's Algorithm
	Mignotte's Factor Bound
	Hensel Lifting
	Reconstructing True Factors
	Assembled Factorization Algorithm
	Experimental Evaluation
	Summary

