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Abstract9

In this paper, we develop an Isabelle/HOL library of order-theoretic concepts, such as various10

completeness conditions and fixed-point theorems. We keep our formalization as general as possible:11

we reprove several well-known results about complete orders, often without any property of ordering,12

thus complete non-orders. In particular, we generalize the Knaster–Tarski theorem so that we ensure13

the existence of a quasi-fixed point of monotone maps over complete non-orders, and show that14

the set of quasi-fixed points is complete under a mild condition—attractivity—which is implied by15

either antisymmetry or transitivity. This result generalizes and strengthens a result by Stauti and16

Maaden. Finally, we recover Kleene’s fixed-point theorem for omega-complete non-orders, again17

using attractivity to prove that Kleene’s fixed points are least quasi-fixed points.18
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1 Introduction27

The main driving force towards mechanizing mathematics using proof assistants has been28

the reliability they offer, exemplified prominently by [10], [12], [14], etc. In this work, we29

utilize another aspect of proof assistants: they are also engineering tools for developing30

mathematical theories. In particular, we choose Isabelle/JEdit [22], a very smart environment31

for developing theories in Isabelle/HOL [17]. There, the proofs we write are checked “as you32

type”, so that one can easily refine proofs or even theorem statements by just changing a33

part of it and see if Isabelle complains or not. Sledgehammer [7] can often automatically34

fill relatively small gaps in proofs so that we can concentrate on more important aspects.35

Isabelle’s counterexample finders [3, 6] should also be highly appreciated, considering the36

amount of time one would spend trying in vain to prove a false claim.37

In this paper, we formalize order-theoretic concepts and results in Isabelle/HOL. Here we38

adopt an as-general-as-possible approach: most results concerning order-theoretic complete-39

ness and fixed-point theorems are proved without assuming the underlying relations to be40

orders (non-orders). In particular, we provide the following:41

Various completeness results that generalize known theorems in order theory: Actu-42

ally most relationships and duality of completeness conditions are proved without any43

properties of the underlying relations.44
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13:2 Complete Non-Orders and Fixed Points

Existence of fixed points: We show that a relation-preserving mapping f : A → A45

over a complete non-order 〈A,v〉 admits a quasi-fixed point f(x) ∼ x, meaning x v46

f(x) ∧ f(x) v x. Clearly if v is antisymmetric then this implies the existence of fixed47

points f(x) = x.48

Completeness of the set of fixed points: We further show that if v satisfies a mild condition,49

which we call attractivity and which is implied by either transitivity or antisymmetry,50

then the set of quasi-fixed points is complete. Furthermore, we also show that if v is51

antisymmetric, then the set of strict fixed points f(x) = x is complete.52

Kleene-style fixed-point theorems: For an ω-complete non-order 〈A,v〉 with a bottom53

element ⊥ ∈ A (not necessarily unique) and for every ω-continuous map f : A → A,54

a supremum exists for the set {fn(⊥) | n ∈ N}, and it is a quasi-fixed point. If v is55

attractive, then the quasi-fixed points obtained this way are precisely the least quasi-fixed56

points.57

We remark that all these results would have required much more effort than we spent (if58

possible at all), if we were not with the aforementioned smart assistance by Isabelle. Our59

workflow was often the following: first we formalize existing proofs, try relaxing assumptions,60

see where proof breaks, and at some point ask for a counterexample.61

The formalization is available in the Archive of Formal Proofs.62

Related Work63

Many attempts have been made to generalize the notion of completeness for lattices, conducted64

in different directions: by relaxing the notion of order itself, removing transitivity (pseudo-65

orders [19]); by relaxing the notion of lattice, considering minimal upper bounds instead of66

least upper bounds (χ-posets [15]); by relaxing the notion of completeness, requiring the67

existence of least upper bounds for restricted classes of subsets (e.g., directed complete and68

ω-complete, see [8] for a textbook). Considering those generalizations, it was natural to69

prove new versions of classical fixed-point theorems for maps preserving those structures, e.g.,70

existence of least fixed points for monotone maps on (weak chain) complete pseudo-orders71

[5, 20], construction of least fixed points for ω-continuous functions for ω-complete lattices72

[16], (weak chain) completeness of the set of fixed points for monotone functions on (weak73

chain) complete pseudo-orders [18].74

Concerning Isabelle formalization, one can easily find several formalizations of complete75

partial orders or lattices in Isabelle’s standard library. They are, however, defined on partial76

orders, either in form of classes or locales, and thus not directly reusable for non-orders.77

Nevertheless we tried to make our formalization compatible with the existing ones, and78

various correspondences are ensured in the Isabelle source.79

2 Preliminaries80

This work is based on Isabelle 2019. In Isabelle/HOL, R :: ’a ⇒ ’a ⇒ bool means a binary81

predicate R, by which we represent a binary relation R ⊆ A×A. Here A is the universe of82

the type variable ’a, in Isabelle’s syntax, UNIV :: ’a set. Type annotations “:: _” are omitted83

unless they are necessary. We call the pair 〈A,v〉 of a set A and a binary relation (v) over84

A a related set. One could also call it a graph or an abstract reduction system, but then some85

terminology like “complete” become incompatible.86

To make our library as general as possible, we avoid using the order symbol ≤, which87

is fixed by the class mechanism of Isabelle/HOL. Instead we make the relation of concern88

explicit as an argument, sometimes called the dictionary-passing style [11]. On one hand89

https://www.isa-afp.org/entries/Complete_Non_Orders.html
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this design choice adds a notational burden, but on the other hand it allows instantiating90

obtained results to arbitrary relations over a type, for which the class mechanism fixes one91

ordering. In the formalization we also import our results into the class hierarchy.92

A map f : I → A over related sets from 〈I,�〉 to 〈A,v〉 is relation preserving, or93

monotone, if i � j implies f(i) v f(j). For this property there already exists a definition in94

the standard Isabelle library:95

monotone (�) (v) f ←→ (∀ i j. i � j −→ f i v f j)96

Hereafter, in our Isabelle code, we use symbols (v) denoting a variable of type ’a ⇒ ’a ⇒97

bool, and (�) denoting a variable of type ’i ⇒ ’i ⇒ bool. More precisely, statements and98

definitions using these symbols are made in a context such as99

context fixes less_eq :: “’a ⇒ ’a ⇒ bool” (infix “v” 50)100

For clarity, we present definitions, e.g., of predicates for being upper/lower bounds and101

greatest/least elements, as102

definition “bound (v) X b ≡ ∀x ∈ X. x v b”103

definition “extreme (v) X e ≡ e ∈ X ∧ (∀x ∈ X. x v e)”104

making the relation (v) of concern as an explicit parameter. Note that we chose such105

constant names that do not suggest which side is greater or lower. The least upper bounds106

(suprema) and greatest lower bounds (infima) are thus uniformly defined as follows.107

abbreviation “extreme_bound (v) X ≡ extreme (w) {b. bound (v) X b}”108

Hereafter, we write (w) for (v)−, which is also an abbreviation:109

abbreviation “(v)− x y ≡ y v x”110

We can already prove some useful lemmas. For instance, if f : I → A is relation preserving111

and C ⊆ I has a greatest element e ∈ C, then f(e) is a supremum of the image f(C). Note112

here that no assumption is imposed on the relations � and v.113

lemma monotone_extreme_imp_extreme_bound:114

assumes “monotone (�) (v) f” and “extreme (�) C e”115

shows “extreme_bound (v) (f ‘ C) (f e)”116

2.1 Locale Hierarchy of Relations117

We now define basic properties of binary relations, in form of locales [13, 2]. Isabelle’s locale118

mechanism allows us to conveniently manage notations, assumptions and facts. For instance,119

we introduce the following locale to fix a relation parameter and use infix notation.120

locale less_eq_syntax = fixes less_eq :: “’a ⇒ ’a ⇒ bool” (infix “v” 50)121

The most important feature of locales is that we can give assumptions on parameters.122

For instance, we define a locale for reflexive relations as follows.123

locale reflexive = less_eq_syntax + assumes refl[iff]: “x v x”124

This declaration defines a new predicate “reflexive”, with the following defining equation:125

theorem reflexive_def: “reflexive (v) ≡ ∀x. x v x”126
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13:4 Complete Non-Orders and Fixed Points

One may doubt that such a simple assumption deserves a locale not just the definition.127

Nevertheless, we have some useful lemmas already, for instance:128

lemma (in reflexive) extreme_singleton[simp]: “extreme (v) {a} b ←→ a = b”129

lemma (in reflexive) extreme_bound_singleton[iff]: “extreme_bound (v) {a} a”130

Similarly we define transitivity and antisymmetry:131

locale transitive = less_eq_syntax + assumes trans[trans]: “x v y =⇒ y v z =⇒ x v z”132

locale antisymmetric = less_eq_syntax +133

assumes antisym[dest]: “a v b =⇒ b v a =⇒ a = b”134

It is straightforward to have locales that combine the above assumptions. Some famous135

combinations are quasi-orders for reflexive and transitive relations and partial orders for136

antisymmetric quasi-order.137

locale quasi_order = reflexive + transitive138

locale partial_order = quasi_order + antisymmetric139

Less known, but still a convenient assumption is being a pseudo-order, coined by Skala [19]140

for reflexive and antisymmetric relations. There, the supremum of a singleton set {x} uniquely141

exists—x itself.142

locale pseudo_order = reflexive + antisymmetric143

lemma (in pseudo_order) extreme_bound_singleton_eq[simp]:144

“extreme_bound (v) {x} y ←→ x = y” by auto145

It is clear that a partial order is also a pseudo-order, which is stated by the following146

sublocale declaration. Afterwards facts proved in pseudo_order will be automatically available147

in partial_order.148

sublocale partial_order ⊆ pseudo_order..149

Although these combinations are sufficient for the rest of this paper, we also present all150

locales combining these basic properties and their relationships in Fig. 1.151

3 Completeness of Non-Orders152

Here we formalize various order-theoretic completeness conditions in Isabelle. Order-theoretic153

completeness demands certain subsets of elements to admit suprema or infima. The strongest154

completeness requires that any subset of elements has suprema and infima.155

locale complete = less_eq_syntax + assumes “Ex (extreme_bound (v) X)”156

The above assumption only requires suprema (if the right-hand side of v is seen greater)157

but not infima, in Isabelle, “Ex (extreme_bound (w) X)”. This is a well-known consequence158

in complete lattices, and luckily the proof does not rely on any property of orders. Hence we159

can declare the following sublocale:160

sublocale complete ⊆ dual: complete “(w)”161

proof162

fix X :: “’a set”163

obtain s where “extreme_bound (v) {b. bound (w) X b} s” using complete by auto164

then show “Ex (extreme_bound (w) X)” by (intro exI[of _s] extreme_boundI, auto)165

qed166
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transitive

reflexive

irreflexive

symmetric antisymmetric

near_order

asymmetric

pseudo_order

partial_orderquasi_order

strict_order

equivalence

partial_equivalence

∅

tolerance

¬tolerance

Figure 1 Combinations of basic properties. The black dot around the center represents arbitrary
binary relations, and the five outgoing arrows indicate atomic assumptions. We do not present the
combination of reflexive and irreflexive, which is empty, and one of symmetric and antisymmetric,
which is a subset of equality. Node “¬tolerance” indicates the negated relation is tolerance, and “∅”
is the empty relation.

Afterwards, a theorem named xxx proved in locale complete will be available in its dual form167

as dual.xxx.168

Let us mention another strong completeness condition: every nonempty subset of elements169

has a supremum. This condition is called semicompleteness, cf. [4, Chapter 6].170

locale semicomplete = less_eq_syntax +171

assumes “X 6= {} =⇒ Ex (extreme_bound (v) X)”172

However, semicompleteness fails to be self-dual. Instead, duality holds for a slightly weaker,173

but highly important completeness condition, conditional completeness or Dedekind com-174

pleteness, asserting that any nonempty bounded set has a supremum.175

locale conditionally_complete = less_eq_syntax +176

assumes “Ex (bound (v) X) =⇒ X 6= {} =⇒ Ex (extreme_bound (v) X)”177

sublocale conditionally_complete ⊆ dual: conditionally_complete “(w)”178

Let us also mention a very weak form of completeness. A related set 〈A,v〉 is called179

bounded if there is a “top” element > ∈ A, a greatest element in A. Note that there might180

be multiple tops if (v) is not antisymmetric.181

locale bounded = less_eq_syntax + assumes “∃t. ∀x. x v t”182

This notion can be also seen as a completeness condition, since it is equivalent to saying that183

the universe has a supremum.184

lemma bounded_iff_UNIV_complete: “bounded (v) ←→ Ex (extreme_bound (v) UNIV)”185

Since a top element is a bound of any subset of elements, a conditionally complete relation is186

semicomplete if (and only if) it is bounded.187

proposition semicomplete_iff_conditionally_complete_bounded:188

shows “semicomplete (v) ←→ conditionally_complete (v) ∧ bounded (v)”189
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13:6 Complete Non-Orders and Fixed Points

The dual notion of bounded is called pointed. There, a least element is called a “bottom”190

element, and serves as a supremum of the emptyset. The dual form of the above proposition,191

together with the duality of conditional completeness means that, (w) is semicomplete if192

and only if (v) is pointed conditionally complete. The latter means that every bounded set,193

including the empty set, has a supremum—the notion known as “bounded complete”.194

proposition bounded_complete_iff_dual_semicomplete:195

“bounded_complete (v) ←→ semicomplete (w)”196

3.1 Lattice-Like Completeness197

One of the most well-studied notion of completeness would be the semilattice condition:198

every pair of elements x and y has a supremum xty (not necessarily unique if the underlying199

relation is not antisymmetric).200

locale pair_complete = less_eq_syntax + assumes “Ex (extreme_bound (v) {x,y})”201

It is well known that in a semilattice, i.e., a pair-complete partial order, every finite202

nonempty subset of elements has a supremum. We prove the result assuming transitivity,203

but only that.204

locale finite_complete = less_eq_syntax +205

assumes “finite X =⇒ X 6= {} =⇒ Ex (extreme_bound (v) X)”206

207

locale trans_semilattice = transitive + pair_complete208

209

sublocale trans_semilattice ⊆ finite_complete210

Proof. The proof is an easy induction on the finite set X. Only a care is taken for the case211

where X is singleton {x}; then x may fail to be a supremum of itself, as we do not have212

reflexivity. Instead we find a supremum via that of the pair of x and x. J213

3.2 Directed Completeness214

Directed completeness is an important notion in domain theory [1], asserting that every215

nonempty directed set has a supremum. Here, a set X is directed if any pair of two elements216

in X has a bound in X.217

definition “directed (v) X ≡ ∀x ∈ X. ∀y ∈ X. ∃z ∈ X. x v z ∧ y v z”218

locale directed_complete = less_eq_syntax +219

assumes “directed (v) X =⇒ X 6= {} =⇒ Ex (extreme_bound (v) X)”220

The image of a relation-preserving map preserves directed sets.221

lemma monotone_directed_image:222

assumes “monotone (�) (v) f” and “directed (�) D” shows “directed (v) (f ‘ D)”223

Gierz et al. [9] showed that a directed complete partial order is semicomplete if and only224

if it is also a semilattice. We generalize the claim so that the underlying relation is only225

transitive.226

proposition (in transitive) semicomplete_iff_directed_complete_pair_complete:227

shows “semicomplete (v) ←→ directed_complete (v) ∧ pair_complete (v)”228



A. Yamada and J. Dubut 13:7

Proof. The −→ direction is trivial. For the other direction, consider a nonempty set X. We229

collect all suprema of every nonempty finite subset Y of X into a set S:230

S = {x. ∃Y ⊆ X. finite Y ∧ Y 6= {} ∧ extreme_bound (v) Y x}231

Then S is nonempty since there exists x ∈ X and a supremum for {x} is in S. Next we show232

that S is directed as follows. Any y, z ∈ S are suprema of corresponding finite sets Y ⊆ X233

and Z ⊆ X. Since Y ∪ Z is finite we get a supremum w of Y ∪ Z in S. It is easy to show234

that w is an upper bound of y and z.235

Since (v) is directed complete, we obtain a supremum s for S. Then s is a supremum of236

X; here we only show that s is a bound of X. For any x ∈ X we have a supremum x′ of {x}237

in S, and thus we have x′ v s. As x v x′ by transitivity we conclude x v s. J238

The last argument in the above proof requires transitivity, but if we had reflexivity then239

x itself is a supremum of {x} (see lemma extreme_bound_singleton) and so x v s would be240

immediate. Thus we can replace transitivity by reflexivity, but then pair-completeness does241

not imply finite completeness. We obtain the following result.242

proposition (in reflexive) semicomplete_iff_directed_complete_finite_complete:243

shows “semicomplete (v) ←→ directed_complete (v) ∧ finite_complete (v)”244

We also tried to strengthen the above result by replacing finite completeness by pair245

completeness, but at the time of writing, the question is left open. We remark that, at least,246

Nitpick did not find a counterexample.247

4 Knaster–Tarski-Style Fixed-Point Theorems248

Given a monotone map f : A → A on a complete lattice 〈A,v〉, the Knaster–Tarski249

theorem [21] states that250

1. f has a fixed point in A, and251

2. the set of fixed points forms a complete lattice.252

Stauti and Maaden [20] generalized statement (1) where 〈A,v〉 is a complete trellis—a253

complete pseudo-order—relaxing transitivity. They also proved a restricted version of (2),254

namely there exists a least (and by duality a greatest) fixed point in A.255

In the following Section 4.1 we further generalize claim (1) so that any complete relation256

admits a quasi-fixed point f(x) ∼ x, that is, f(x) v x and x v f(x). Quasi-fixed points257

are fixed points for antisymmetric relations; hence the Stauti–Maaden theorem is further258

generalized by relaxing reflexivity.259

In Section 4.2 we also generalize claim (2) so that only a mild condition, which we call260

attractivity, is assumed. In this attractive setting quasi-fixed points are complete. Since261

attractivity is implied by either of transitivity or antisymmetry, in particular fixed points are262

complete in complete trellis, thus completing Stauti and Maaden’s result.263

In Section 4.3 we further generalize the result, proving that antisymmetry is sufficient for264

strict fixed points f(x) = x to be complete.265

4.1 Existence of Quasi-Fixed Points266

First, we generalize the existence of fixed points so that nothing besides completeness is267

assumed on the relation. Fortunately, Quickcheck [3] quickly refutes the existence of strict268

fixed point f(x) = x for an arbitrary complete relation.269
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13:8 Complete Non-Orders and Fixed Points

I Example 1 (by Quickcheck). Let A = {a1, a2}, (v) = A×A, f(a1) = a2, and f(a2) = a1.270

Trivially f is monotone but f(x) 6= x for either x ∈ A.271

Hence, we instead show the existence of a quasi-fixed point f(x) ∼ x. For reusability272

of proofs for the completeness results later on, we start with a stronger statement, namely:273

there exists a quasi-fixed point in any set of elements that is closed under f and complete for274

(v). Completeness restricted to a subset of elements is formalized as follows:275

definition “complete_in S ≡ ∀X ⊆ S. Ex (extreme_bound_in S X)”276

where predicate extreme_bound_in indicates the least elements among the bounds restricted277

to a given subset.278

abbreviation “extreme_bound_in S X ≡ extreme (w) {b ∈ S. bound (v) X b}”279

For convenience we construct a proof within the following context.280

context281

fixes f and S282

assumes “monotone (v) (v) f” and “f ‘ S ⊆ S” and “complete_in (v) S”283

Inspired by Stauti and Maaden [20], we start the proof by considering the set of subsets284

of S that are closed under f and themselves “complete”:285

definition AA where “AA ≡286

{A. A ⊆ S ∧ f ‘ A ⊆ A ∧ (∀B ⊆ A. ∀b. extreme_bound_in (v) S B b −→ b ∈ A)}”287

Note here that by a “complete” subset A ⊆ S we mean that any suprema with respect to S288

are in A, since suprema are not necessarily unique. We denote the intersection of all those289

subsets by C, and show that C contains a quasi-fixed point.290

definition C where “C ≡
⋂

AA”291

lemma quasi_fixed_point_in_C: “∃c ∈ C. f c ∼ c”292

Proof. We prove that any supremum c of C in S, which exists due to the completeness of S,293

is a quasi-fixed point of f . First, observe that C ∈ AA. Indeed:294

C ⊆ S: since S is closed under f and complete, S ∈ AA.295

f(C) ⊆ C: for every A ∈ AA, we have f(C) ⊆ f(A) ⊆ A. So f(C) ⊆ (
⋂

AA) = C.296

completeness: given B ⊆ C and its supremum b in S, we prove b ∈ C, that is, b ∈ A′ for297

every A′ ∈ AA. Indeed, we have B ⊆ C ⊆ A′ and the definition of AA ensures b ∈ A′.298

This implies that c ∈ C. Moreover, since f(C) ⊆ C, we have f(c) ∈ C, and since c is a299

supremum of C, we get f(c) v c. It remains to prove the converse orientation c v f(c). To300

this end we consider the following set D:301

define D where “D ≡ {x ∈ C. x v f c}”302

We conclude by proving that D ∈ AA, since this implies C ⊆ D and in particular c ∈ D, which303

means c v f(c).304

D ⊆ S: because D ⊆ C ⊆ S.305

f(D) ⊆ D: Let d ∈ D. So d ∈ C, and since c is a supremum of C, we have d v c. With306

the monotonicity of f we get f(d) v f(c) and thus f(d) ∈ D.307

completeness: Given E ⊆ D and its supremum b in S, we prove that b ∈ D. Since E ⊆ D,308

f(c) is a bound of E, and as b is a least of such, b v f(c), that is b ∈ D. J309



A. Yamada and J. Dubut 13:9

By taking S = UNIV in the above lemma, we obtain:310

theorem (in complete) monotone_imp_ex_quasi_fixed_point:311

assumes “monotone (v) (v) f” shows “∃s. f s ∼ s”312

It is easy to see that this result indicates the existence of a strict fixed point if the relation v313

is antisymmetric, recovering statement (1) in the context of Stauti and Maaden [20], but314

without requiring reflexivity.315

locale complete_antisymmetric = complete + antisymmetric316

corollary (in complete_antisymmetric) monotone_imp_ex_fixed_point:317

assumes “monotone (v) (v) f” shows “∃s. f s = s”318

4.2 Completeness of Quasi-Fixed Points319

Next, we tacle the completeness of quasi-fixed points, generalizing statement (2). It was a320

surprise to us that, this time Nitpick [6] found a counterexample for this claim.321

I Example 2 (by Nitpick). We claimed (in complete) assumes “monotone (v) (v) f” shows322

“complete_in (v) {s. f s ∼ s}” and typed nitpick. In seconds it found a counterexample:323

f = (λx. _) (a1 := a3, a2 := a3, a3 := a3, a4 := a1)324

(v) =325

(λx. _)326

(a1 := (λx. _) (a1 := False, a2 := True, a3 := True, a4 := True),327

a2 := (λx. _) (a1 := True, a2 := True, a3 := True, a4 := True),328

a3 := (λx. _) (a1 := True, a2 := False, a3 := True, a4 := False),329

a4 := (λx. _) (a1 := True, a2 := True, a3 := True, a4 := False))330

Below we depict the relation v (left) and the mapping f (right).331

a1

a3

a4

a2

a1

a3

a4

a2332

On the left, arrow ai → aj means ai v aj , and arrow ai ↔ aj means ai ∼ aj . On the333

right, an arrow ai 99K aj means f(ai) = aj . In this example, indeed v is complete and f is334

monotone. The quasi-fixed points are a1, a3, a4; however, none of them are least, because335

a1 6v a1, a3 6v a4 and a4 6v a4.336

After analysing the counterexample and existing proofs for lattices and trellises, we found337

a mild requirement on the relation v, that we call (semi)attractivity:338

locale semiattractive = less_eq_syntax +339

assumes attract: “x v y =⇒ y v x =⇒ x v z =⇒ y v z”340

locale attractive = semiattractive + dual: semiattractive “(w)”341

The intuition of this assumption is dipicted in Fig. 2. Attractivity is so mild that it is implied342

by either of antisymmetry and transitivity:343

sublocale transitive ⊆ attractive by (unfold_locales, auto dest: trans)344

sublocale antisymmetric ⊆ attractive by (unfold_locales, auto)345
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z x y x y z

Figure 2 Attractivity: If two elements are similar, then arrows coming to one of them is also
“attracted” to the other.

Assuming attractivity and completeness, we prove that the set of quasi-fixed points of a346

relation-preserving map f are complete. We start with a lemma saying that any complete347

subset S closed under f has a least quasi-fixed point:348

lemma ex_extreme_quasi_fixed_point:349

assumes “monotone (v) (v) f” and “f ‘ S ⊆ S” and “complete_in (v) S”350

and attract: “∀q x. f q ∼ q −→ x v f q −→ x v q”351

shows “Ex (extreme (w) {q ∈ S. f q ∼ q})”352

end353

Proof. We start by defining the set of lower bounds of the quasi-fixed points in S.354

define A where “A ≡ {a ∈ S. ∀s ∈ S. f s ∼ s −→ a v s}”355

Let us first show that A ∈ AA, using the notation from the previous section.356

A ⊆ S: By definition.357

f(A) ⊆ A: Let a ∈ A. For any quasi-fixed point s ∈ S, we have that a v s and by358

monotonicity, f(a) v f(s). Since f(s) ∼ s, by attract we get f(a) v s, and thus f(a) ∈ A.359

Completeness: Given B ⊆ A, we show that any supremum b of B in S is in A. Since every360

quasi-fixed point s in S is a bound of A, s is a bound of B. As b is a least of such, we get361

b v s and thus b ∈ A.362

This implies C ⊆ A, and with lemma quasi_fixed_point_in_C we obtain a quasi-fixed point in363

C ⊆ A ⊆ S. This is a least one by the definition of A. J364

Finally, we prove that the set of quasi-fixed points of f is complete.365

locale complete_attractive = complete + attractive366

theorem (in complete_attractive) monotone_imp_quasi_fixed_points_complete:367

assumes “monotone (v) (v) f” shows “complete_in (v) {s. f s ∼ s}”368

Proof. Given a subset A of quasi-fixed points, we prove that A has a supremum inside the369

set of quasi-fixed points. Define S the set of bounds of A.370

define S where “S ≡ {s. ∀a ∈ A. a v s}”371

We prove that S satisfies the assumptions of ex_extreme_quasi_fixed_point:372

f(S) ⊆ S: Let s ∈ S. By the definition of S, for any a ∈ A we have a v s, and with373

monotonicity f(a) v f(s). Then by dual.attract with f(a) ∼ a, we get a v f(s), and thus374

f(s) ∈ S.375

Completeness: Due to the duality of completeness, it suffices to prove that every subset376

B of S has an infimum in S. As the universe is complete, B has an infimum b in UNIV.377

By the definition of S, every a ∈ A is a lower bound of S and so of B. As b is a greatest378

of such, we get a v b, concluding b ∈ S.379
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Consequently, by ex_extreme_quasi_fixed_point, we find a least quasi-fixed point q in S.380

We conclude the proof by showing that q is a least bound of A, restricted to the set of381

quasi-fixed points:382

q is a quasi-fixed point: by construction.383

q is a bound of A: by construction, q is in S.384

q is least: Let p be another quasi-fixed point which is also a bound of A. Then p is a385

quasi-fixed point in S, and by construction of q, q v p. J386

The second result of Stauti and Maaden [20] states that, for a monotone map in a387

complete trellis, there exists a least fixed point. We have already obtained a stronger result:388

the set of fixed points are complete in complete trellises, since quasi-fixed points are precisely389

fixed points in pseudo-orders. Nevertheless, holding the as-general-as-possible manifesto in390

mind, we further generalize the result to show that antisymmetry alone is sufficient for the391

set of fixed points to be complete.392

4.3 Completeness of Fixed Points in Antisymmetry393

Now we prove that the set of strict fixed points is complete, only assuming antisymmetry.394

Observe first that this is not an immediate consequence of the completeness of quasi-fixed395

points, since when reflexivity is not available, there can be more fixed points than quasi-fixed396

points. So we have to show that there is no fixed points below the least quasi-fixed point we397

have found.398

The proof relies on the following technical lemma, stating that given two sets A and B399

of strict fixed points, such that every element of A is below every element of B, there is a400

quasi-fixed point in-between.401

lemma qfp_interpolant:402

assumes “complete (v)” and “monotone (v) (v) f”403

and “∀a ∈ A. ∀b ∈ B. a v b”404

and “∀a ∈ A. f a = a”405

and “∀b ∈ B. f b = b”406

shows “∃t. (f t ∼ t) ∧ (∀a ∈ A. a v t) ∧ (∀b ∈ B. t v b)”407

Proof. We first define the set T of elements in between A and B:408

define T where “T ≡ {t. (∀a ∈ A. a v t) ∧ (∀b ∈ B. t v b)}”409

It is enough to prove that T satisfies the assumptions of lemma quasi_fixed_point_in_C:410

f(T) ⊆ T: Let t ∈ T. Then for every a ∈ A, a v t and by monotonicity f(a) v f(t).411

Since a is a fixed point, we have a = f(a) v f(t). Similarly, we have f(t) v b for every412

b ∈ B, and thus f(t) ∈ T.413

completeness: Let C ⊆ T and let us prove that C has a supremum in T. By the414

completeness of (v), we find a supremum c of C ∪A in UNIV. Let us prove that this is a415

supremum of C in T:416

c ∈ T: By construction, c is a bound of A. Since C ⊆ T, every b ∈ B is a bound of C,417

and as c is least of such, c v b. Consequently, c ∈ T.418

c is a bound of C: by construction.419

c is least: Let d ∈ T be another bound of C. By the definition of T, d is also a bound420

of A, and so of C ∪A. As c is least of such, we conclude c v d. J421

From this lemma, we deduce that the set of strict fixed points is complete.422
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theorem (in complete_antisymmetric) monotone_imp_fixed_points_complete:423

assumes mono: “monotone (v) (v) f” shows “complete_in (v) {s. f s = s}”424

Proof. Let A be a subset of strict fixed points. Similarly to the proof of attract_imp_qfp_425

complete, define the set S of bounds of A. This set S still satisfies the assumptions of426

ex_extreme_quasi_fixed_point, so it has a least quasi-fixed point q. We prove that this is a427

supremum of A with respect to the set of (strict) fixed points.428

q is a fixed point: by antisymmetry and the fact that q is a quasi-fixed point.429

q is a bound of A: because q ∈ S.430

q is least: Let p be a fixed point and at the same time a bound of A. Let B = {q, p}.431

Then A and B satisfy the assumption of monotone_imp_interpolant_quasi_fixed_point. So432

there is a quasi-fixed point t between A and B. In particular, t v q and t v p. Since t433

is a bound of A, we know t ∈ S. Since q is a least quasi-fixed point in S, we get q v t.434

With t v q and antisymmetry we get q = t, and since t v p, we conclude q v p. J435

5 Kleene-Style Fixed-Point Theorems436

Kleene’s fixed-point theorem states that, for a pointed directed complete partial order 〈A,v〉437

and a Scott-continous map f : A → A, the supremum of {fn(⊥) | n ∈ N} exists in A and438

is a least fixed point. Mashburn [16] generalized the result so that 〈A,v〉 is a ω-complete439

partial order and f is ω-continuous.440

In this section we further generalize the result and show that for ω-complete relation441

〈A,v〉 and for every bottom element ⊥ ∈ A, the set {fn(⊥) | n ∈ N} has suprema (not442

necessarily unique, of course) and, they are quasi-fixed points. Moreover, if (v) is attractive,443

then the suprema are precisely the least quasi-fixed points.444

5.1 Scott Continuity, ω-Completeness, ω-Continuity445

A related set 〈A,v〉 is ω-complete if every ω-chain—a countable set in which any two elements446

are related—has a supremum. In order to characterize ω-chains in Isabelle (without going447

into ordinals), we model an ω-chain as the range of a relation-preserving map c : N→ A.448

locale omega_complete = less_eq_syntax +449

assumes “
∧

c :: nat ⇒ ’a. monotone (≤) (v) c =⇒ Ex (extreme_bound (v) (range c))”450

A map f : A→ A is Scott-continuous with respect to (v) ⊆ A×A if for every directed451

subset D ⊆ A with a supremum s, f(s) is a supremum of the image f(D).452

definition “scott_continuous f ≡453

∀D s. directed (v) D −→ extreme_bound (v) D s −→ extreme_bound (v) (f ‘ D) (f s)”454

The notion of ω-continuity relaxes Scott-continuity by considering only ω-chain as D.455

definition “omega_continuous f ≡ ∀c :: nat ⇒ ’a. ∀s.456

monotone (≤) (v) c −→457

extreme_bound (v) (range c) s −→ extreme_bound (v) (f ‘ range c) (f s)”458

As 〈N,≤〉 is total, and thus directed, we can easily verify that Scott-continuity implies459

ω-continuity using the fact that the image of a monotone map over a directed set is directed.460

lemma scott_continous_imp_omega_continous:461

assumes “scott_continuous f” shows “omega_continuous f”462
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For the later development we also prove that every ω-continuous function is nearly463

monotone, in the sense that it preserves relation x v y when x and y are reflexive elements.464

Note that near monotonicity coincides with monotonicity if the underlying relation is reflexive.465

lemma omega_continous_imp_mono_refl:466

assumes “omega_continuous f” and “x v y” and “x v x” and “y v y”467

shows “f x v f y”468

Proof. The proof consists in observing that under the assumptions, function c :: nat ⇒ ’a469

defined by “c i ≡ if i = 0 then x else y” is monotone. Furthermore, y is a supremum of470

the image of c, i.e., {x, y}, so ω-continuity ensures that f(y) is a supremum of {f(x), f(y)},471

which in particular means that f(x) v f(y). J472

5.2 Kleene’s Fixed-Point Theorem473

The first part of Kleene’s theorem demands to prove that the set {fn(⊥) | n ∈ N} has a474

supremum and that all such are quasi-fixed points. We prove this claim without assuming475

anything on the relation v besides ω-completeness and one bottom element.476

context477

fixes f and bot (“⊥”)478

assumes “omega_complete (v)” and “omega_continuous (v) f” and “∀x. ⊥ v x”479

begin480

Just for convenience we abbreviate the set {fn(⊥) | n ∈ N} as Fn in Isabelle:481

abbreviation(input) fn where “fn n ≡ (f ^^ n) ⊥”482

abbreviation(input) “Fn ≡ range fn”483

theorem kleene_quasi_fixed_point:484

shows “∃p. extreme_bound (v) Fn p” and “extreme_bound (v) Fn p =⇒ f p ∼ p”485

Proof. First note that fn is a relation-preserving map from 〈N,≤〉 to 〈A,v〉: this is reduced486

to fn(⊥) v fn+k(⊥) for any n and k, which is easily proved by induction on n. Thus Fn =487

range fn is an ω-chain, and ω-completness gives a supremum, say p, for Fn. Now let us prove488

that p is a quasi-fixed point.489

Since p is a supremum of Fn, the ω-continuity of f ensures that f(p) is a supremum490

of f(Fn). As p is a bound of Fn, it is also a bound of f(Fn) due to the definition of Fn.491

Consequently, f(p) v p.492

It remains to show the other orientation p v f(p). Since p is least in the bounds of Fn, it493

suffices to show that f(p) is a bound of Fn, that is, fn(⊥) v f(p) for every n. We prove this494

by induction on n. The base case is by the assumption of ⊥. For inductive case, assume495

fn(⊥) v p. By the “near” monotonicity we conclude fn+1(⊥) v f(p), but to this end we496

need fn(⊥) v fn(⊥) for every n, which would be trivial if we had reflexivity. Instead we497

prove this fact by induction on n, also using omega_continous_imp_mono_refl. J498

Now the first part of Kleene’s theorem is reproved without any order assumption: for an499

ω-complete set 〈A,v〉 with a bottom element ⊥ and ω-continuous map f : A → A, there500

exists a supremum for {fn(⊥) | n ∈ N} and it is a quasi-fixed point.501

Kleene’s theorem also states that the quasi-fixed point found this way is a least one.502

Hence naturally we consider proving this claim for arbitrary relations, but again Nitpick503

saved us this hopeless effort.504
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I Example 3 (by Nitpick). Our conjecture is now “extreme_bound (v) Fn q =⇒ extreme (w)505

{s. f s ∼ s} q”. Following is a counterexample found by Nitpick:506

⊥ = a1507

f = (λx. _) (a1 := a3, a2 := a1, a3 := a3)508

(v) =509

(λx. _)510

(a1 := (λx. _) (a1 := True, a2 := True, a3 := True),511

a2 := (λx. _) (a1 := True, a2 := False, a3 := True),512

a3 := (λx. _) (a1 := True, a2 := False, a3 := True))513

q = a3514

a1

a3a2

a1

a3a2

515

In this example, indeed a1 is a bottom element, v is (ω-)complete, and f is ω-continuous.516

The set of quasi-fixed points is {a1, a2, a3}, and a3 is an extreme bound of {fn(⊥) | n ∈ N} =517

{a1, a3}. However, a3 is not a least quasi-fixed point because a3 6v a2.518

Now again, attractivity turns out to be the key. We prove that the set of suprema of Fn519

coincides with the set of least quasi-fixed points, if the underlying relation is attractive.520

corollary (in attractive) kleene_fixed_point_dual_extreme:521

shows “extreme_bound (v) Fn = extreme (w) {s. f s ∼ s}”522

Proof. Let q be a supremum of Fn. By kleene_quasi_fixed_point, we already know that523

this is a quasi-fixed point. So to prove that q is a least quasi-fixed point, it is enough to524

show that any other quasi-fixed point s is a bound of Fn = {fn(⊥) | n ∈ N}. This is done525

by induction on n. The base case ⊥ v s is trivial by assumption. For the inductive case,526

assuming fn(⊥) v s we get fn+1(⊥) v f(s) by the same argument as in the previous proof.527

Since f(s) ∼ s, attractivity concludes fn+1(⊥) v s.528

Conversely, consider a least quasi-fixed point s. We show that s is a supremum of Fn.529

Since s is a quasi-fixed point, and as we have just proved above, s is a bound of Fn. It530

remains to prove that s is least in bounds of Fn.531

By kleene_quasi_fixed_point, Fn has a supremum, say k, and is a quasi-fixed point. As s532

is a least quasi-fixed point, we have s v k. On the other hand, as s is a bound of Fn and k is533

a least of such, we see k v s. Consequently, s ∼ k.534

Now let x be a bound of Fn. We know k v x, and with s ∼ k, we conclude s v x due to535

attractivity. J536

6 Conclusion537

In this paper, we developed an Isabelle/HOL formalization for order-theoretic concepts such as538

various completeness conditions and fixed-point theorems. We adopt an as-general-as-possible539

approach, so that many results previously known only for partial orders or pseudo-orders are540

generalized. In particular the generalizations of the Knaster–Tarski theorem and Kleene’s541

fixed-point theorems would deserve some attention. These achievement become reachable to542

us largely due to the great assistance by the smart Isabelle 2018 environment.543
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For future work, it is tempting to further formalize and hopefully generalize other results544

about completeness and fixed points, which are listed as related work in the introduction.545

We also plan to extend the library with convergence arguments, which were actually our546

original motivation for formalizing these order-theoretic concepts.547
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