
Towards a Unified Method for Termination∗

Akihisa Yamada

National Institute of Informatics, Tokyo, Japan

Abstract
The question of how to ensure programs terminate has been for decades attracting remarkable
attention of computer scientists, resulting in a great number of techniques for proving termination
of term rewriting and other models of computation. Nowadays it has become hard for new-comers
to come up with new termination techniques/tools, since there are so many to learn/implement
before inventing a new one. In this talk, I present my past and on-going work towards unified
method for termination, that allow one to learn/implement a single idea and obtain many well-
known techniques as instances.

1 Preliminaries

An abstract reduction system (ARS), following Klop [10], consists of a set T and a fam-
ily
{
−→
ρ

}
ρ∈R of binary relations over T . Our interest is proving that −→

R
:=

⋃
ρ∈R−→ρ is

terminating, i.e., there is no infinite sequence of form s1 −→R s2 −→R · · · .
Termination can be incrementally proved by a function [[·]] : T → A to a well-founded

ordered set 〈A,%,�〉. Let us define [%()] :=
{
ρ | s −→

ρ
t =⇒ [[s]] %() [[t]]

}
.

I Proposition 1. If R ⊆ [%], then −→
R

is terminating if −−−−→
R\[�]

is. J

In term rewriting, reduction orders are a famous approach for termination, which use
identity [[·]] and impose conditions on orderings so that [�] = �. To minimize definitions, let
us formulate only interpretation-based approach.

I Definition 2 (sorted terms and term rewriting). A sorted signature F consists of a set SF
of sorts and a family {Fτ}τ∈S∗F×SF of function symbols. F is single sorted if SF is singleton.
The arity of f ∈ F~σ,σ is the length of ~σ. Given a family {Vσ}σ∈SF of variables, the set
Tσ(F ,V) of terms of sort σ are defined as usual. A term rewrite system (TRS) is a set R,
where each ρ ∈ R is a pair 〈l, r〉 of (single-sorted) terms with l /∈ V and Var(l) ⊇ Var(r). The
ARSs −→

ρ
, ε−→
ρ

and >ε−→
ρ

, are defined as usual. J

I Definition 3 (algebras). For a sorted signature F , an F-algebra [[·]] assigns each sort
σ ∈ SF a set [[σ]] and each symbol f ∈ F[σ1,...,σn],σ a mapping [[f]] : [[σ1]] × · · · × [[σn]] → [[σ]].
The interpretation [[s]]α ∈ [[σ]] of term s ∈ Tσ(F ,V) under assignment α is defined as usual.
An F-logic is an F-algebra with a special sort bool ∈ SF and standard logic symbols
∧,∨,⇒ ∈ F[bool,bool],bool etc. with expected interpretations. We say φ ∈ Tbool(F ,V) is valid,
written [[φ]], if [[φ]]α = True for any assignment α. J

I Definition 4 (ordered algebras). An ordered F-algebra is a logic [[·]], where the domain is
quasi-ordered and the signature is F extended with logic symbols and ≥,> ∈ F[σ,σ′],bool, all
interpreted as expected. We say [[·]] is

well-founded if > is well-founded,
(weakly) monotone if [[f]] is monotone w.r.t. ≥() in every argument for every f ∈ F , and

∗ The author is supported by ERATO HASUO Metamathematics for Systems Design Project
(No. JPMJER1603), JST.

© Akihisa Yamada;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.13039/501100009024
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Towards a Unified Method for Termination

(weakly) simple if [[f]](a1, . . . , an) ≥() ai for every f ∈ F and i. J

Let us write s [≥()] t :⇐⇒ [[s ≥() t]]. A reduction order can be characterized by [>] of a
well-founded monotone algebra, a simplifiaction order [2] by a simple monotone algebra, and
reduction pair [1] by a well-founded weakly monotone algebra in the same manner.

2 Monotone WPO

Here we present the basic version of the weighted path order (WPO) [14].

I Definition 5 (monotone WPO). Let [[·]] be a well-founded F -algebra, and % a well-founded
quasi-order on F . We define relations %()WPO as follows: s = f(s1, . . . , sn) %()WPO t iff
1. [[s > t]], or
2. [[s ≥ t]] and

a. ∃i ∈ {1, . . . , n}. si %WPO t, or
b. t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s �WPO tj and either

i. f � g or
ii. f ∼ g and 〈s1, . . . , sn〉 %()

lex
WPO 〈t1, . . . , tm〉. J

I Theorem 6. WPO is a simplification order if [[·]] is weakly monotone and weakly simple. J

Dropping lines 1 and 2 results in LPO. The same effect can be achieved by choosing a trivial
(singleton-carrier) algebra as [[·]] or by interpretation [[f]](a1, . . . , an) = max {a1, . . . , an}
on a usual carrier like N. Hence, WPO subsumes LPO.
Dropping lines a and b results in GKBO, but for the resulting order to be well-founded,
it is required to strengthen the weak simplicity condition to strict simplicity. When this
condition is satisfied, WPO coincides with GKBO.
The definition of KBO has a similar structure as Definition 5, with a particular condition
in a (which can in fact be simplified). Similar to GKBO, KBO requires the “admissibility”
condition on [[·]], and under this condition, WPO coincides with KBO. For a general and
detailed account, see [13, Chapter 3].
As a reduction (simplification) order, WPO also subsumes monotone interpretations over
totally ordered carrier, in the sense that [>] ⊆ �WPO. The side condition of Theorem 6 is
known to be satisfied [15]. Further, WPO can be seen as a stretch of [16, Proposition 12],
which indicates that a weakly simple and weakly monotone well-founded algebra can be
extended to a simplification order.

3 Weakly Monotone WPO

The dependency pair method [1] reduces the termination of −→
R

to the finiteness of DP problem
〈DP(R),R〉, i.e., the termination of ARS1

{ ε−→
ρ
◦ >ε−→
R
∗}
ρ∈DP(R), where DP(R) := { 〈l, r〉 |

〈l, C[r]〉 ∈ R, root(r) ∈ D} for D consisting of the root symbols of the left-hand sides of R.
A big merit of this reduction is that the monotonicity of reduction orders can be relaxed:

I Theorem 7 ([7, 5]). Let 〈%,�〉 be a reduction pair such that R∪P ⊆ %. Then ε−→
P
◦ >ε−→
R
∗

is terminating if ε−−−→
P\�

◦ >ε−→
R
∗ is. J

1 More precisely, ε−→
ρ

here is restricted to >ε−−→
R

-terminating terms.

A. Yamada 3

Although WPO is a simplification order, its well-foundedness is directly proved by an
inductive argument inspired by Jouannaud and Rubio [9]. There, the key is to ensure [[s ≥ si]]
for those si’s that are used in recursive comparison in lines a and ii. In fact, WPO is still
well-founded if we restrict these recursively compared arguments to those which [[s ≥ si]] is
ensured. This has a similar effect as argument filtering, but we can additionally take the
weights of dropped arguments into account.

I Definition 8 (weakly monotone WPO). Let π be a mapping that assigns each n-ary
symbol f ∈ F a subset π(f) ⊆ {1, . . . , n} of its argument positions. Abusing notation,
we see π(f) also as an index-filtering operation over lists. We refine WPO as follows:
s = f(s1, . . . , sn) %()WPO t iff
1. [[s > t]], or
2. [[s ≥ t]] and

a. ∃i ∈ π(f). si %WPO t, or
b. t = g(t1, . . . , tm), ∀j ∈ π(g). s �WPO tj and either

i. f � g or
ii. f ∼ g and π(f)[s1, . . . , sn] %()

lex
WPO π(g)[t1, . . . , tm]. J

Since now some arguments may be dropped in the comparison of line ii, �WPO is not
closed under context anymore, but it is no problem in the DP framework.

I Theorem 9 ([14]). WPO forms a reduction pair if [[·]] is weakly monotone and π-simple:
[[f]](a1, . . . , an) ≥ ai whenever i ∈ π(f). J

With some small refinements [14, Section 4.2], one can get [≥] ⊆ %WPO and [>] ⊆ �WPO
by setting π(f) := ∅ and % := F × F . In this sense, weakly monotone WPO subsumes
weakly monotone interpretations.

4 Non-Monotone WPO

Now we further generalize WPO so that non-monotone algebras can be used. Such algebras
are still useful for proving innermost termination [6], and probably full termination [3].

I Definition 10. Let µ be a mapping that assigns each n-ary symbol f and i ∈ {1, . . . , n}
a subset of {≥,≤}. We say an ordered algebra [[·]] is µ-monotone if ai ≥ a′i implies
[[f]](. . . , ai, . . .) A [[f]](. . . , a′i, . . .) whenever A ∈ µ(f, i). For a TRS R, we define set
UR,µ(s) of pairs of terms so that UR,µ(f(s1, . . . , sn)) is a superset of
1. {〈l, r〉} ∪ UR,µ(r) for every 〈l, r〉 ∈ R with root(l) = f ,
2. UR,µ(si) if @ /∈ µ(f, i), and
3. UR,µ(si)−1 if A /∈ µ(f, i).

I Theorem 11 ([6]). Let [[·]] be a well-founded µ-monotone algebra such that P ∪(⋃
〈l,r〉∈P UR,µ(r)

)
⊆ [≥]. Then2 ε−→

P
◦ >ε−→
R

! is terminating if ε−−−→
P\[>]

◦ >ε−→
R

! is. J

WPO is already applicable to µ-monotone algebras, in the following sense:

I Theorem 12. WPO forms a well-founded µ-monotone term algebra, if
1. [[·]] is µ-monotone and π-simple, and

2 More precisely, ε−→
ρ

here is restricted to >ε−−→
R

-normal forms.

4 Towards a Unified Method for Termination

2. µ(f, i) = {≥} for every f ∈ F and i ∈ π(f).

Proof Sketch. Only µ-monotonicity has to be proved. The interesting case is ≤ ∈ µ(f, i).
Then si %WPO s′i implies [[f(. . . , si, . . .) ≤ f(. . . , s′i, . . .)]]. If this is not “strict”, then it is
easy to see that case ii is applied, and compared argument lists are identical. J

It is tempting to exploit anti-monotonicity by comparing some arguments in line ii in
reverse direction. Then µ-monotonicity will still be preserved, but unfortunately, it turns
out that well-foundedness and even non-inifinitesimality [6] will be broken.

5 Constrained WPO

WPO combines the syntactic termination argument of path orders and the semantic termi-
nation argument of algebraic interpretations. Hence, we expect WPO to be useful for term
rewriting combined with algebraic semantics [4, 12].

I Definition 13. Let F be a signature, partitioned into B, C, and D. We fix the semantics
of B by a B-logic [[·]]B, and assume a terminating B-TRS S such that3 〈l, r〉 ∈ S implies
[[l]]B = [[r]]B. A constrained TRS R is a set where each ρ ∈ R is a triple 〈l, φ, r〉, such that4
l, r ∈ T (F ,V), φ ∈ Tbool(B,V), root(l) ∈ D and Var(l) ∪ Var(φ) ⊇ Var(r). The relation ε−→

ρ

is characterized by lθ ε−→
ρ
rθ where φθ ∈ Tbool(B, ∅) is valid, and extended to >ε−→

ρ
and −→

ρ
as

usual. The termination problem is a relative termination problem: −→
R
/−→
S
. J

Kop [11] imported the dependency pair method to (logically) constrained TRSs.

I Theorem 14. Constrained TRS R is terminating if S is non-duplicating and ε−−−−→
DP(R)

◦ >ε−−−→
R∪S

∗ is terminating, where DP(R) := { 〈l, φ, r〉 | 〈l, φ, C[r]〉 ∈ R, root(r) ∈ D }.

Proof. Let R := {〈lθ, rθ〉 | 〈l, φ, r〉 ∈ R, [[φθ]]B}. We have >ε−→
R

= >ε−→
R

and ε−−−−→
DP(R)

= ε−−−−→
DP(R)

.

Iborra et al. [8] shows that −→
R
/−→
S

is terminating if ε−−−−→
DP(R)

◦ >ε−−−→
S∪R

∗ is. J

The key ingredient of constrained TRSs is, obviously, constraints. Hence it is of essential
importance to exploit information from constraints.

I Definition 15 (constrained WPO). For φ ∈ Tbool(B,V), we define relations %()WPO [φ] as
follows: s = f(s1, . . . , sn) %()WPO [φ] t iff
1. [[φ⇒ s > t]], or
2. [[φ⇒ s ≥ t]] and

a. ∃i ∈ π(f). si %WPO [φ] t, or
b. t = g(t1, . . . , tm), ∀j ∈ π(g). s �WPO [φ] tj and either

i. f � g or
ii. f ∼ g and π(f)[s1, . . . , sn] %()

lex
WPO [φ] π(g)[t1, . . . , tm]. J

As one naturally expects, [[·]] used above should respect [[·]]B used for inducing rewrite
relation, i.e., [[s]] = [[s]]B for any s ∈ T (B,V). Under this assumption, we may write
[%()WPO] :=

{
〈l, φ, r〉 | l %()WPO [φ] r

}
; this notation, corresponding to the notation in Propo-

sition 1, is justified by the following fact:

3 Kop and Nishida [12] assumes B to contain all values of [[·]]B, and fixes S to be the calculation step. For
the purpose of this talk, we do not need these assumptions.

4 Here we ignore the sensible assumption that l and r should be of the same sort.

REFERENCES 5

I Lemma 16. If [[·]] respects [[·]]B, then 〈l, φ, r〉 ∈ [%()WPO] implies ε−−−−→
〈l,φ,r〉

⊆ %()WPO.

Proof Sketch. Consider lθ ε−−−−→
〈l,φ,r〉

rθ, so [[φθ]]B. Let us assume that l �WPO [φ] r is derived
from case 1. Then we have [[φ⇒ l > r]], hence [[φθ⇒ lθ > rθ]]. Since [[φθ]] = [[φθ]]B = True,
we get [[lθ > rθ]], deriving lθ �WPO rθ. Other cases go as well. J

Since [[·]]B is often the integer arithmetic, which is not monotone, we cannot assume
(weak) monotonicity on [[·]]. So we now restrict our interest to innermost termination. We
extend UR,µ(P) for constrained TRSs by replacing item 1 of Definition 10 with
1. {〈l, φ, r〉} ∪ UR,µ(r) for every 〈l, φ, r〉 ∈ R with root(l) = f .

I Theorem 17. Let [[·]] respect [[·]]B, and P ∪
(⋃
〈l,φ,r〉∈P UR∪S,µ(r)

)
⊆ [%WPO]. Then

ε−→
P
◦ >ε−−−→
R∪S

! is terminating if ε−−−−−−→
P\[�WPO]

◦ >ε−−−→
R∪S

! is.

Proof Sketch. We take the same approach as Theorem 14 to reduce to Theorem 11. J

References

1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor.
Compt. Sci., 236(1-2):133–178, 2000.

2 N. Dershowitz. Orderings for term-rewriting systems. Theor. Compt. Sci., 17(3):279–301,
1982.

3 C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
Maximal termination. In RTA 2008, volume 5117 of LNCS, pages 110–125, 2008.

4 Y. Furuichi, N. Nishida, M. Sakai, K. Kusakari, and T. Sakabe. Approach to procedural-
program verification based on implicit induction of constrained term rewriting systems.
IPSJ Transactions on Programming, 1(2):100–121, 2008.

5 J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of
higher-order functions. In FroCoS 2005, volume 3717 of LNAI, pages 216–231, 2005.

6 J. Giesl, R. Thiemann, S. Swiderski, and P. Schneider-Kamp. Proving termination by
bounded increase. In CADE-21, pages 443–459, 2007.

7 N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Inf. Comput.,
199(1,2):172–199, 2005.

8 J. Iborra, N. Nishida, G. Vidal, and A. Yamada. Relative termination via dependency
pairs. J. Autom. Reasoning, 58(3):391–411, 2017.

9 J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In LICS 1999,
pages 402–411, 1999.

10 J.W. Klop. Term rewriting systems, volume 2 of Handbook of Logic in Computer Science.
Oxford University Press, 1992.

11 C. Kop. Termination of LCTRSs. In WST 2013, pages 59–63, 2013.
12 C. Kop and N. Nishida. Term rewriting with logical constraints. In FroCoS 2013, pages

343–358, 2013.
13 A. Yamada. The weighted path order for termination of term rewriting. PhD thesis,

Nagoya University, 2014.
14 A. Yamada, K. Kusakari, and T. Sakabe. A unified order for termination proving. Sci.

Comput. Program., 111:110–134, 2015.
15 H. Zantema. Termination of term rewriting: interpretation and type elimination. J.

Symb. Comput., 17(1):23–50, 1994.
16 H. Zantema. The termination hierarchy for term rewriting. Appl. Algebr. Eng. Comm.

Compt., 12:3–19, 2001.

	Preliminaries
	Monotone WPO
	Weakly Monotone WPO
	Non-Monotone WPO
	Constrained WPO

