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Abstract
The question of how to ensure programs terminate has been for decades attracting remarkable
attention of computer scientists, resulting in a great number of techniques for proving termination
of term rewriting and other models of computation. Nowadays it has become hard for new-comers
to come up with new termination techniques/tools, since there are so many to learn/implement
before inventing a new one. In this talk, I present my past and on-going work towards unified
method for termination, that allow one to learn/implement a single idea and obtain many well-
known techniques as instances.

1 Preliminaries

An abstract reduction system (ARS), following Klop [10], consists of a set T and a fam-
ily
{
−→
ρ

}
ρ∈R of binary relations over T . Our interest is proving that −→

R
:=

⋃
ρ∈R−→ρ is

terminating, i.e., there is no infinite sequence of form s1 −→R s2 −→R · · · .
Termination can be incrementally proved by a function [[·]] : T → A to a well-founded

ordered set 〈A,%,�〉. Let us define [ %( )] :=
{
ρ | s −→

ρ
t =⇒ [[s]] %( ) [[t]]

}
.

I Proposition 1. If R ⊆ [%], then −→
R

is terminating if −−−−→
R\[�]

is. J

In term rewriting, reduction orders are a famous approach for termination, which use
identity [[·]] and impose conditions on orderings so that [�] = �. To minimize definitions, let
us formulate only interpretation-based approach.

I Definition 2 (sorted terms and term rewriting). A sorted signature F consists of a set SF
of sorts and a family {Fτ}τ∈S∗F×SF of function symbols. F is single sorted if SF is singleton.
The arity of f ∈ F~σ,σ is the length of ~σ. Given a family {Vσ}σ∈SF of variables, the set
Tσ(F ,V) of terms of sort σ are defined as usual. A term rewrite system (TRS) is a set R,
where each ρ ∈ R is a pair 〈l, r〉 of (single-sorted) terms with l /∈ V and Var(l) ⊇ Var(r). The
ARSs −→

ρ
, ε−→
ρ

and >ε−→
ρ

, are defined as usual. J

I Definition 3 (algebras). For a sorted signature F , an F-algebra [[·]] assigns each sort
σ ∈ SF a set [[σ]] and each symbol f ∈ F[σ1,...,σn],σ a mapping [[f ]] : [[σ1]] × · · · × [[σn]] → [[σ]].
The interpretation [[s]]α ∈ [[σ]] of term s ∈ Tσ(F ,V) under assignment α is defined as usual.
An F-logic is an F-algebra with a special sort bool ∈ SF and standard logic symbols
∧,∨,⇒ ∈ F[bool,bool],bool etc. with expected interpretations. We say φ ∈ Tbool(F ,V) is valid,
written [[φ]], if [[φ]]α = True for any assignment α. J

I Definition 4 (ordered algebras). An ordered F-algebra is a logic [[·]], where the domain is
quasi-ordered and the signature is F extended with logic symbols and ≥,> ∈ F[σ,σ′],bool, all
interpreted as expected. We say [[·]] is

well-founded if > is well-founded,
(weakly) monotone if [[f ]] is monotone w.r.t. ≥( ) in every argument for every f ∈ F , and
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(weakly) simple if [[f ]](a1, . . . , an) ≥( ) ai for every f ∈ F and i. J

Let us write s [ ≥( )] t :⇐⇒ [[s ≥( ) t]]. A reduction order can be characterized by [>] of a
well-founded monotone algebra, a simplifiaction order [2] by a simple monotone algebra, and
reduction pair [1] by a well-founded weakly monotone algebra in the same manner.

2 Monotone WPO

Here we present the basic version of the weighted path order (WPO) [14].

I Definition 5 (monotone WPO). Let [[·]] be a well-founded F -algebra, and % a well-founded
quasi-order on F . We define relations %( )WPO as follows: s = f(s1, . . . , sn) %( )WPO t iff
1. [[s > t]], or
2. [[s ≥ t]] and

a. ∃i ∈ {1, . . . , n}. si %WPO t, or
b. t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s �WPO tj and either

i. f � g or
ii. f ∼ g and 〈s1, . . . , sn〉 %( )

lex
WPO 〈t1, . . . , tm〉. J

I Theorem 6. WPO is a simplification order if [[·]] is weakly monotone and weakly simple. J

Dropping lines 1 and 2 results in LPO. The same effect can be achieved by choosing a trivial
(singleton-carrier) algebra as [[·]] or by interpretation [[f ]](a1, . . . , an) = max {a1, . . . , an}
on a usual carrier like N. Hence, WPO subsumes LPO.
Dropping lines a and b results in GKBO, but for the resulting order to be well-founded,
it is required to strengthen the weak simplicity condition to strict simplicity. When this
condition is satisfied, WPO coincides with GKBO.
The definition of KBO has a similar structure as Definition 5, with a particular condition
in a (which can in fact be simplified). Similar to GKBO, KBO requires the “admissibility”
condition on [[·]], and under this condition, WPO coincides with KBO. For a general and
detailed account, see [13, Chapter 3].
As a reduction (simplification) order, WPO also subsumes monotone interpretations over
totally ordered carrier, in the sense that [>] ⊆ �WPO. The side condition of Theorem 6 is
known to be satisfied [15]. Further, WPO can be seen as a stretch of [16, Proposition 12],
which indicates that a weakly simple and weakly monotone well-founded algebra can be
extended to a simplification order.

3 Weakly Monotone WPO

The dependency pair method [1] reduces the termination of −→
R

to the finiteness of DP problem
〈DP(R),R〉, i.e., the termination of ARS1

{ ε−→
ρ
◦ >ε−→
R
∗}
ρ∈DP(R), where DP(R) := { 〈l, r〉 |

〈l, C[r]〉 ∈ R, root(r) ∈ D} for D consisting of the root symbols of the left-hand sides of R.
A big merit of this reduction is that the monotonicity of reduction orders can be relaxed:

I Theorem 7 ([7, 5]). Let 〈%,�〉 be a reduction pair such that R∪P ⊆ %. Then ε−→
P
◦ >ε−→
R
∗

is terminating if ε−−−→
P\�

◦ >ε−→
R
∗ is. J

1 More precisely, ε−→
ρ

here is restricted to >ε−−→
R

-terminating terms.
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Although WPO is a simplification order, its well-foundedness is directly proved by an
inductive argument inspired by Jouannaud and Rubio [9]. There, the key is to ensure [[s ≥ si]]
for those si’s that are used in recursive comparison in lines a and ii. In fact, WPO is still
well-founded if we restrict these recursively compared arguments to those which [[s ≥ si]] is
ensured. This has a similar effect as argument filtering, but we can additionally take the
weights of dropped arguments into account.

I Definition 8 (weakly monotone WPO). Let π be a mapping that assigns each n-ary
symbol f ∈ F a subset π(f) ⊆ {1, . . . , n} of its argument positions. Abusing notation,
we see π(f) also as an index-filtering operation over lists. We refine WPO as follows:
s = f(s1, . . . , sn) %( )WPO t iff
1. [[s > t]], or
2. [[s ≥ t]] and

a. ∃i ∈ π(f). si %WPO t, or
b. t = g(t1, . . . , tm), ∀j ∈ π(g). s �WPO tj and either

i. f � g or
ii. f ∼ g and π(f)[s1, . . . , sn] %( )

lex
WPO π(g)[t1, . . . , tm]. J

Since now some arguments may be dropped in the comparison of line ii, �WPO is not
closed under context anymore, but it is no problem in the DP framework.

I Theorem 9 ([14]). WPO forms a reduction pair if [[·]] is weakly monotone and π-simple:
[[f ]](a1, . . . , an) ≥ ai whenever i ∈ π(f). J

With some small refinements [14, Section 4.2], one can get [≥] ⊆ %WPO and [>] ⊆ �WPO
by setting π(f) := ∅ and % := F × F . In this sense, weakly monotone WPO subsumes
weakly monotone interpretations.

4 Non-Monotone WPO

Now we further generalize WPO so that non-monotone algebras can be used. Such algebras
are still useful for proving innermost termination [6], and probably full termination [3].

I Definition 10. Let µ be a mapping that assigns each n-ary symbol f and i ∈ {1, . . . , n}
a subset of {≥,≤}. We say an ordered algebra [[·]] is µ-monotone if ai ≥ a′i implies
[[f ]](. . . , ai, . . . ) A [[f ]](. . . , a′i, . . . ) whenever A ∈ µ(f, i). For a TRS R, we define set
UR,µ(s) of pairs of terms so that UR,µ(f(s1, . . . , sn)) is a superset of
1. {〈l, r〉} ∪ UR,µ(r) for every 〈l, r〉 ∈ R with root(l) = f ,
2. UR,µ(si) if @ /∈ µ(f, i), and
3. UR,µ(si)−1 if A /∈ µ(f, i).

I Theorem 11 ([6]). Let [[·]] be a well-founded µ-monotone algebra such that P ∪(⋃
〈l,r〉∈P UR,µ(r)

)
⊆ [≥]. Then2 ε−→

P
◦ >ε−→
R

! is terminating if ε−−−→
P\[>]

◦ >ε−→
R

! is. J

WPO is already applicable to µ-monotone algebras, in the following sense:

I Theorem 12. WPO forms a well-founded µ-monotone term algebra, if
1. [[·]] is µ-monotone and π-simple, and

2 More precisely, ε−→
ρ

here is restricted to >ε−−→
R

-normal forms.
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2. µ(f, i) = {≥} for every f ∈ F and i ∈ π(f).

Proof Sketch. Only µ-monotonicity has to be proved. The interesting case is ≤ ∈ µ(f, i).
Then si %WPO s′i implies [[f(. . . , si, . . . ) ≤ f(. . . , s′i, . . . )]]. If this is not “strict”, then it is
easy to see that case ii is applied, and compared argument lists are identical. J

It is tempting to exploit anti-monotonicity by comparing some arguments in line ii in
reverse direction. Then µ-monotonicity will still be preserved, but unfortunately, it turns
out that well-foundedness and even non-inifinitesimality [6] will be broken.

5 Constrained WPO

WPO combines the syntactic termination argument of path orders and the semantic termi-
nation argument of algebraic interpretations. Hence, we expect WPO to be useful for term
rewriting combined with algebraic semantics [4, 12].

I Definition 13. Let F be a signature, partitioned into B, C, and D. We fix the semantics
of B by a B-logic [[·]]B, and assume a terminating B-TRS S such that3 〈l, r〉 ∈ S implies
[[l]]B = [[r]]B. A constrained TRS R is a set where each ρ ∈ R is a triple 〈l, φ, r〉, such that4
l, r ∈ T (F ,V), φ ∈ Tbool(B,V), root(l) ∈ D and Var(l) ∪ Var(φ) ⊇ Var(r). The relation ε−→

ρ

is characterized by lθ ε−→
ρ
rθ where φθ ∈ Tbool(B, ∅) is valid, and extended to >ε−→

ρ
and −→

ρ
as

usual. The termination problem is a relative termination problem: −→
R
/−→
S
. J

Kop [11] imported the dependency pair method to (logically) constrained TRSs.

I Theorem 14. Constrained TRS R is terminating if S is non-duplicating and ε−−−−→
DP(R)

◦ >ε−−−→
R∪S

∗ is terminating, where DP(R) := { 〈l, φ, r〉 | 〈l, φ, C[r]〉 ∈ R, root(r) ∈ D }.

Proof. Let R := {〈lθ, rθ〉 | 〈l, φ, r〉 ∈ R, [[φθ]]B}. We have >ε−→
R

= >ε−→
R

and ε−−−−→
DP(R)

= ε−−−−→
DP(R)

.

Iborra et al. [8] shows that −→
R
/−→
S

is terminating if ε−−−−→
DP(R)

◦ >ε−−−→
S∪R

∗ is. J

The key ingredient of constrained TRSs is, obviously, constraints. Hence it is of essential
importance to exploit information from constraints.

I Definition 15 (constrained WPO). For φ ∈ Tbool(B,V), we define relations %( )WPO [φ] as
follows: s = f(s1, . . . , sn) %( )WPO [φ] t iff
1. [[φ⇒ s > t]], or
2. [[φ⇒ s ≥ t]] and

a. ∃i ∈ π(f). si %WPO [φ] t, or
b. t = g(t1, . . . , tm), ∀j ∈ π(g). s �WPO [φ] tj and either

i. f � g or
ii. f ∼ g and π(f)[s1, . . . , sn] %( )

lex
WPO [φ] π(g)[t1, . . . , tm]. J

As one naturally expects, [[·]] used above should respect [[·]]B used for inducing rewrite
relation, i.e., [[s]] = [[s]]B for any s ∈ T (B,V). Under this assumption, we may write
[ %( )WPO] :=

{
〈l, φ, r〉 | l %( )WPO [φ] r

}
; this notation, corresponding to the notation in Propo-

sition 1, is justified by the following fact:

3 Kop and Nishida [12] assumes B to contain all values of [[·]]B, and fixes S to be the calculation step. For
the purpose of this talk, we do not need these assumptions.

4 Here we ignore the sensible assumption that l and r should be of the same sort.
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I Lemma 16. If [[·]] respects [[·]]B, then 〈l, φ, r〉 ∈ [ %( )WPO] implies ε−−−−→
〈l,φ,r〉

⊆ %( )WPO.

Proof Sketch. Consider lθ ε−−−−→
〈l,φ,r〉

rθ, so [[φθ]]B. Let us assume that l �WPO [φ] r is derived
from case 1. Then we have [[φ⇒ l > r]], hence [[φθ⇒ lθ > rθ]]. Since [[φθ]] = [[φθ]]B = True,
we get [[lθ > rθ]], deriving lθ �WPO rθ. Other cases go as well. J

Since [[·]]B is often the integer arithmetic, which is not monotone, we cannot assume
(weak) monotonicity on [[·]]. So we now restrict our interest to innermost termination. We
extend UR,µ(P) for constrained TRSs by replacing item 1 of Definition 10 with
1. {〈l, φ, r〉} ∪ UR,µ(r) for every 〈l, φ, r〉 ∈ R with root(l) = f .

I Theorem 17. Let [[·]] respect [[·]]B, and P ∪
(⋃
〈l,φ,r〉∈P UR∪S,µ(r)

)
⊆ [%WPO]. Then

ε−→
P
◦ >ε−−−→
R∪S

! is terminating if ε−−−−−−→
P\[�WPO]

◦ >ε−−−→
R∪S

! is.

Proof Sketch. We take the same approach as Theorem 14 to reduce to Theorem 11. J
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