The directed homotopy hypothesis

CSL, Marseille

Jérémie Dubut (LSV, ENS Cachan, France)

Eric Goubault (LIX, Ecole Polytechnique, France)

Jean Goubault-Larrecq (LSV, ENS Cachan, France)

29th August, 2016
I. Directed algebraic topology
Objective

Compare spaces with a notion of direction of time up to continuous deformation that preserves this direction

Problem coming from:

- geometric semantics of truly concurrent systems
 - PV-programs [Dijkstra 68]
 - scan/update [Afek et al. 90]
 - higher dimensional automata [Pratt 91]
- theory of relativity [Dodson, Poston 97]
Non directed case : algebraic topology

Compare spaces with a notion of direction of time up to continuous deformation that preserves this direction.
Dihomotopies

Directed space = topological space X with a collection of specified paths (continuous functions from $[0, 1]$ to X), called **dipaths**

2 dipaths are **dihomotopic** = you can deform continuously one into the other while staying a dipath

![Diagram showing dihomotopic and non-dihomotopic dipaths](image)

(di)homotopic non (di)homotopic
Homotopy vs dihomotopy

Fahrenberg’s matchbox [Fahrenberg 04]
Homotopy vs dihomotopy

homotopic...
Homotopy vs dihomotopy

... but not dihomotopic
Purposes of our paper

- give algebraic representatives of directed spaces up to continuous deformation that preserves direction
- explicit what we mean by continuous deformation that preserves direction (through the notion of directed deformation retract)
- define a algebraic gadget (via a notion of “weak” enriched categories) that reflects directed phenomena

Theorem:
If two directed spaces are dihomotopy equivalent then their induced partially enriched categories are weakly equivalent.
II.

Grothendieck’s homotopy hypothesis
Homotopy hypothesis: the motto

« Topological spaces are the same as ∞-groupoids. »
Topological spaces as ∞-groupoids

∞-category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + ...

objects = points
1-cells = paths (= 0-homotopies)
2-cells = (1-)homotopies
...
n-cells = (n-1)-homotopies

∞-groupoid = ∞-category whose n-cells are invertible up-to (n+1)-cells

Here: n-homotopies are invertible up-to (n+1)-homotopies

Ex: a path γ has \(t \mapsto \gamma(1 - t) \) as inverse up-to homotopy
But what are exactly ∞-groupoids?

Many ways to « model » ∞-groupoids

∞-groupoids \equiv Kan complexes

n-cells \equiv n-simplices

n-cells have inverse up-to (n+1)-cells \equiv n-horns have (n+1)-fillers

Singular simplicial complex $\text{Sing} : \text{Top} \longrightarrow \text{Kan} (\subseteq \text{Simp})$

\[
\begin{array}{c}
\text{x} \\
\gamma \\
\text{c_x} \\
\text{x}
\end{array}
\]
But what are exactly ∞-groupoids?

Many ways to « model » ∞-groupoids

∞-groupoids $=$ Kan complexes
n-cells $=$ n-simplices
n-cells have inverse up-to (n+1)-cells $=$ n-horns have (n+1)-fillers

Singular simplicial complex $Sing : Top \longrightarrow Kan \ (\subseteq Simp)$

![Diagram of a singular simplicial complex]
A formal statement of the homotopy hypothesis

Theorem [Quillen 67]:

The Quillen-Serre model structure on topological spaces is Quillen-equivalent to the Kan-Quillen model structure on simplicial sets.

A few consequences:

- A topological space is weakly homotopy equivalent to the geometric realization of its singular simplicial complex (and so to a CW-complex).
- Two topological spaces are weakly homotopy equivalent iff the geometric realization of their singular simplicial complex are weakly homotopy equivalent.
A formal statement of the homotopy hypothesis

Theorem [Quillen 67]:

The Quillen-Serre model structure on topological spaces is Quillen-equivalent to the Kan-Quillen model structure on simplicial sets.

A few consequences:

- a topological space is weakly homotopy equivalent to the geometric realization of its singular simplicial complex (and so to a CW-complex)
- two topological spaces are weakly homotopy equivalent iff the geometric realization of their singular simplicial complex are weakly homotopy equivalent

« If two topological spaces are equivalent up-continuous deformation then their induced ∞-groupoids are equivalent (up-to weak equivalence in the suitable model structure) »
III.

A first proposal of directed homotopy hypothesis
Topological spaces as ∞-groupoids

∞-category $=$ objects $+$ 1-cells ($=$ morphisms between objects) $+$ 2-cells ($=$ morphisms between 1-cells) $+$ \ldots

- objects $=$ points
- 1-cells $=$ paths ($=$ 0-homotopies)
- 2-cells $=$ (1-)homotopies
 \vdots
- n-cells $=$ (n-1)-homotopies

∞-groupoid $=$ ∞-category whose n-cells are invertible up-to (n+1)-cells

Here $:$ n-homotopies are invertible up-to (n+1)-homotopies

Ex $:$ a path γ has $t \mapsto \gamma(1 - t)$ as inverse up-to homotopy
Directed topological spaces as ∞-groupoids

∞-category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + ...

objects = points
1-cells = dipaths (= 0-dihomotopies)
2-cells = (1-)dihomotopies
...
n-cells = (n-1)-dihomotopies

∞-groupoid = ∞-category whose n-cells are invertible up-to (n+1)-cells

Here: n-dihomotopies are invertible up-to (n+1)-dihomotopies
Directed topological spaces as ∞-groupoids

∞-category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + ...

- objects = points
- 1-cells = dipaths (= 0-dihomotopies)
- 2-cells = (1-)dihomotopies
- ...
- n-cells = (n-1)-dihomotopies

∞-groupoid = ∞-category whose n-cells are invertible up-to (n+1)-cells

Here: n-dihomotopies are invertible up-to (n+1)-dihomotopies

True for \(n \geq 1 \), but dipaths are not invertible up-to dihomotopy!
Directed topological spaces as \((\infty,1)\)-categories

\(\infty\)-category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + \ldots

- objects = points
- 1-cells = dipaths (= 0-dihomotopies)
- 2-cells = (1-)dihomotopies
 \[\vdots \]
- n-cells = (n-1)-dihomotopies

\((\infty,1)\)-category = \(\infty\)-category whose n-cells are invertible up-to (n+1)-cells for \(n \geq 1\)

Here : n-dihomotopies are invertible up-to (n+1)-dihomotopies for \(n \geq 1\)
Directed homotopy hypothesis: the motto?

« Directed topological spaces are the same as \((\infty, 1)\)-categories. »
But what are exactly \((\infty, 1)\)-categories?

Many ways to « model » \((\infty, 1)\)-categories:
- quasi-categories \((=\) weak Kan complexes) [Joyal]
- enriched categories in Kan complexes [Bergner]
- ...

\((\infty, 1)\)-categories
\begin{align*}
\text{objects} & = \text{objects} \\
\text{n-cells} & = (n-1)\text{-simplices of Hom-objects} \\
\text{n-cells have inverse} & = (n-1)\text{-horns of Hom-objects} \\
\text{up-to (n+1)-cells for } n \geq 1 & = \text{have n-fillers for } n \geq 1
\end{align*}
One direction of a directed homotopy hypothesis?

Singular trace category $\mathbb{T} : dTop \longrightarrow KanCat \subseteq SimpCat$ [Porter]

$\mathbb{T}(X)$ = simplicially enriched category such that:

- objects = points of X

- Hom-object from x to y = singular simplicial complex of $\mathbb{T}(X)(x, y)$ (space of dipaths from x to y up-to increasing reparametrization)

« Can we compare (weak) dihomotopy types of directed spaces by their singular trace categories (up-to weak equivalence) ? »
Yes and no : the case of the directed segment

In many equivalences, \overrightarrow{I} is equivalent to a point \ast

$\mathbb{T}(\overrightarrow{I})$ and $\mathbb{T}(\ast)$ are not weakly equivalent.
Two problems

- Specify what we mean by equivalence directed spaces up-to continuous deformations which preserves directedness.
 - the match box not equivalent to a point
 - the directed segment equivalent to a point
 - few algebraic constructions are invariant (directed components [Goubault, Haucourt 07], natural homology [DGG 15])

- Fix the directed homotopy hypothesis.
III.

The need for equivalences in directed algebraic topology
Reminder on classical algebraic topology

A (strong) deformation retract of X on a subspace A is a continuous map

$$H : X \longrightarrow P(X) = [[0, 1] \rightarrow X]$$

such that:

- for every $x \in X$, $H(x)(0) = x$;
- for every $a \in A$, $t \in [0, 1]$, $H(a)(t) = a$;
- for every $x \in X$, $H(x)(1) \in A$.

Theorem:

Two topological spaces are homotopy equivalent iff there is a span of deformation retracts between them.
Definition in directed algebraic topology

A future deformation retract of X on a sub-dspace A is a continuous map

$$H : X \longrightarrow \overrightarrow{P}(X)$$

such that:

- for every $x \in X$, $H(x)(0) = x$;
- for every $a \in A$, $t \in [0, 1]$, $H(a)(t) = a$;
- for every $x \in X$, $H(x)(1) \in A$;
- for every $t \in [0, 1]$, the map $H_t : x \mapsto H(x)(t)$ is a dmap;
- for every δ of A from z to $H_1(x)$ there is a dipath γ of X from y to x with $H_1(y) = z$ and $H_1 \circ \gamma$ dihomotopic to δ.

Definition:

Two dspaces are dihomotopy equivalent iff there is a zigzag of future and past deformation retracts between them.
Something’s wrong, isn’t it?

There is a future deformation retract from the matchbox to its upper face (and so to its upper corner)!
Something’s wrong, isn’t it?

There is a future deformation retract from the matchbox to its upper face (and so to its upper corner)!

Problem: the dipaths along which we deform do not preserve the fact that dipaths are not dihomotopic.
Inessential dipaths

Idea from [Fajstrup, Goubault, Haucourt, Raussen] for category of components.

The set $\mathcal{I}(X)$ of inessential dipaths of X is the largest set of dipaths such that:

- it is closed under concatenation and dihomotopy;
- for every $\gamma \in \mathcal{I}(X)$ from x to y, for every $z \in X$ such that $\overrightarrow{P}(X)(z, x)$, the map $\gamma \star _ : \overrightarrow{P}(X)(z, x) \rightarrow \overrightarrow{P}(X)(z, y)$ $\delta \mapsto \gamma \star \delta$ is a homotopy equivalence;
- symmetrically for $_ \star \gamma$;
- $\mathcal{I}(X)$ has the right and left Ore condition modulo dihomotopy:

Ex : ϵ is not inessential in the matchbox
Better definition in directed algebraic topology

A future deformation retract of X on a sub-dspace A is a continuous map

$$H : X \rightarrow J(X)$$

such that:

- for every $x \in X$, $H(x)(0) = x$;
- for every $a \in A$, $t \in [0, 1]$, $H(a)(t) = a$;
- for every $x \in X$, $H(x)(1) \in A$;
- for every $t \in [0, 1]$, the map $H_t : x \mapsto H(x)(t)$ is a dmap;
- for every δ of A from z to $H_1(x)$ there is a dipath γ of X from y to x with $H_1(y) = z$ and $H_1 \circ \gamma$ dihomotopic to δ.

Definition:

Two dspaces are dihomotopy equivalent iff there is a zigzag of future and past deformation retracts between them.
First results

- the directed segment is dihomotopy equivalent to a point
- the matchbox is not dihomotopy equivalent to a point
- if two dspaces are dihomotopy equivalent then they have the same directed components and their natural homology are bisimilar
IV.

A new proposal of directed homotopy hypothesis
Fixation of the directed homotopy hypothesis

- replacing enriched categories by partially enriched categories (which encode accessibility)
- changing weak equivalences
- proving the following:

Theorem:

If two directed spaces are dihomotopy equivalent then their induced partially enriched categories are weakly equivalent.
Fixation of the directed homotopy hypothesis

- replacing enriched categories by partially enriched categories (which encode accessibility)
- changing weak equivalences
- proving the following:

Theorem:
If two directed spaces are dihomotopy equivalent then their induced partially enriched categories are weakly equivalent.

« One can compare directed spaces by comparing their partially enriched category (up-to weak equivalence). »
Conclusion

Summary:
- We have defined a dihomotopy equivalence, which behaves well on examples and for which natural homology is an invariant.
- We have defined a new structure, closed to $(\infty, 1)$-categories, and designed its weak equivalence, for which it is an invariant of dihomotopy equivalence.

Many open questions:
- Are there two weakly equivalent dspaces that are not dihomotopy equivalent?
- Are there model structures on dspaces (or partially enriched categories) for which the weak equivalence is dihomotopy equivalence (or weak equivalence)?
- Do we have a kind of geometric realization from partially enriched categories to dspaces in order to formulate a complete directed homotopy equivalence?
- Are the partially enriched categories (in Top or Simp) a nice model of $(\infty, 1)$-categories?
A new proposal of directed homotopy hypothesis
The symptomatic case of the directed segment

\[\begin{array}{c}
0 \\
\downarrow \\
1
\end{array} \quad \xrightarrow{\rightarrow}
\]

In any reasonable equivalence, \(\rightarrow \) is equivalent to a point \(* \)

\(\mathbb{T}(\rightarrow) \) and \(\mathbb{T}(*) \) are not weakly equivalent:

- for \(x < y \), \(\mathbb{T}(\rightarrow)(y, x) \) is empty while \(\mathbb{T}(*)(*,*) \) is not
- their category of components are not equivalent (one has empty Hom-sets while the other has not)
The symptomatic case of the directed segment

\[\xymatrix{ 0 \ar[r] & 1 \ar@<0.5ex>[r]^{\vec{1}} } \]

In any reasonable equivalence, \(\vec{1} \) is equivalent to a point \(* \)

\(\mathbb{T}(\vec{1}) \) and \(\mathbb{T}(*) \) are not weakly equivalent:

- for \(x < y \), \(\overrightarrow{T}(\vec{1})(y, x) \) is empty while \(\overrightarrow{T}(*)(*, *) \) is not
- their category of components are not equivalent (one has empty Hom-sets while the other has not)

Empty path spaces have a particular behavior that must be studied with care
Reminder on enriched categories and functors

Let \((V, U, \otimes)\) be a monoidal category.
A (small) enriched category \(C \) on \(V \) consists in the following data :

- a set of objects \(Ob(C) \)
- for every pair of objects \(A, B \), an object \(C(A, B) \) of \(V \)
- for every triple of objects \(A, B, C \), a morphism in \(V \)

\[\circ_{A,B,C} : C(A, B) \otimes C(B, C) \rightarrow C(A, C) \]

- for every object \(A \), a morphism in \(V \)

\[u_A : U \rightarrow C(A, A) \]

satisfying some coherence diagrams (associativity, unity).

An enriched functor \(F : C \rightarrow D \) on \(V \) consists in the following data :

- a function \(F : Ob(C) \rightarrow Ob(D) \);
- for every pair of objects \(A, B \) of \(C \), a morphism in \(V \)

\[F_{A,B} : C(A, B) \rightarrow D(F(A), F(B)) \]

satisfying some coherence diagrams (composition, unity).
A better definition to handle emptiness

Let \((V, U, \otimes)\) be a monoidal category.

A (small) partially enriched category \(\mathcal{C}\) on \(V\) consists in the following data:

- a preordered set of objects \(\text{Ob}(\mathcal{C}), \leq\)
- for every pair of objects \(A \leq B\), an object \(\mathcal{C}(A, B)\) of \(V\)
- for every triple of objects \(A \leq B \leq C\), a morphism in \(V\)

\[\circ_{A, B, C} : \mathcal{C}(A, B) \otimes \mathcal{C}(B, C) \to \mathcal{C}(A, C)\]

- for every object \(A\), a morphism in \(V\)

\[u_A : U \to \mathcal{C}(A, A)\]

satisfying some coherence diagrams (associativity, unity), compatible with \(\leq\).

An enriched functor \(F : \mathcal{C} \to \mathcal{D}\) on \(V\) consists in the following data:

- a monotonic function \(F : \text{Ob}(\mathcal{C}) \to \text{Ob}(\mathcal{D})\);
- for every pair of objects \(A \leq B\) of \(\mathcal{C}\), a morphism in \(V\)

\[F_{A, B} : \mathcal{C}(A, B) \to \mathcal{D}(F(A), F(B))\]

satisfying some coherence diagrams (composition, unity), compatible with \(\leq\).
From dTop to PeCat(HoTop) : the dipath category

\(\mathbb{P}(X) = \text{partially enriched category on } HoTop : \)
- objects = points of \(X \);
- \(x \leq y \) iff \(\overrightarrow{P}(X)(x, y) \neq \emptyset \);
- for \(x \leq y \), \(\mathbb{P}(X)(x, y) = \overrightarrow{P}(X)(x, y) \);
- composition = concatenation up-to homotopy;
- unit = constant path.

We can have defined it with value in \(HoSimp \) or \(Ab \) by composing with singular simplicial complex or homology.

We recover the fundamental category \(\pi_1(X) \) by composing with the connected components functor.
What about the category of components?

For \textbf{[Bergner]}, it is just $\pi_1(X)$.
What about the category of components?

For [Bergner], it is just $\pi_1(X)$.

No good for directed segment.
Already known since [Fajstrup, Goubault, Haucourt, Raussen].
What about the category of components?

For [Bergner], it is just $\pi_1(X)$.

No good for directed segment. Already known since [Fajstrup, Goubault, Haucourt, Raussen].

We have to define a category of « directed » components.
Yoneda morphisms, category of directed components

A slight modification of [Fajstrup, Goubault, Haucourt, Raussen]

The set $\mathcal{Y}(C)$ of Yoneda morphisms of a category C is the largest set of morphisms such that:

- it is closed under concatenation;
- for every $f : c \to c' \in \mathcal{Y}(C)$, for every object c'' of C such that $C(c', c'') \neq \emptyset$, the function $_ \circ f : C(c', c'') \to C(c, c'')$ $g \mapsto g \circ f$ is a bijection;
- symmetrically for $f \circ _$;
- it has right and left Ore conditions

\[\pi_0(C) = C[\mathcal{Y}(C)^{-1}] = C\] in which we inverse the morphisms in $\mathcal{Y}(C)$

\[\pi_0(X) = \pi_0(\pi_1(X))\]
Example: the directed segment

\[\begin{array}{c}
\vdots \\
0 \\
\end{array} \longrightarrow \quad \begin{array}{c}
\vdots \\
1 \\
\end{array} \]

\(\mathbb{P}(I) \) is such that:
- \(x \leq y \) is the usual ordering on \(I \);
- for every \(x \leq y \), \(\mathbb{P}(I)(x, y) \) is contractible.

The fundamental category \(\pi_1(I) \) is the poset \((I, \leq) \).

The category of components \(\pi_0(I) \) is the preordered set \((I, I \times I) \), which is equivalent to the category with one object and one morphism.
Weak dihomotopy equivalence

We say that a dmap \(f : X \to Y \) is a weak dihomotopy equivalence iff

- it induces an equivalence between the categories of \textit{directed} components
- it induces a fully-faithful enriched functor between dipath categories i.e. for \(x \leq_X x' \), the map

\[
P(f)_{x,x'} : P(X)(x,x') \to P(Y)(f(x), f(x'))
\]

which maps \(\gamma \) to \(f \circ \gamma \) is a homotopy equivalence.

We say that two dspaces are weakly dihomotopy equivalent iff there is zigzag of weak dihomotopy equivalence between them.
Examples

$\vec{1}$ is weakly equivalent to a point.

$\mathbb{P}(s, t)$ is homotopy equivalent to a two point space, so the match box cannot be weakly equivalent to a point.
Invariance

Theorem:

If two dspaces are dihomotopy equivalent, then they are weakly dihomotopy equivalent.
Invariance

Theorem:
If two dspaces are dihomotopy equivalent, then they are weakly dihomotopy equivalent.

« One can compare dspaces by comparing their dipath category (up-to weak equivalence). »
Theorem:
If two dspaces are dihomotopy equivalent, then they are weakly dihomotopy equivalent.

« One can compare dspaces by comparing their dipath category (up-to weak equivalence). »

« Are dspaces the same as partially enriched categories in HoTop (or HoSimp)? »