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Lecture structure

Lectures

1st: falsification (problem, framework, logics. . . ), by me

2nd: deep learning for falsification (learning, reinforcement
learning, application to falsification. . . ), by David

3rd: advanced techniques in falsification and reinforcement
learning, by David and me

Evaluation

Easy practical assignment (in Python).

Questions?

Ask them during the lesson.

Find me at my desk (Palaceside building).

clovis.eberhart@gmail.com
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Formal method landscape

Kapinski, Deshmukh, Jin, Ito, Butts, Simulation-Based Approaches for

Verification of Embedded Control Systems, IEEE Control Magazine, 2010
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Testing

Testing

Given: a system S, a property ϕ.
Goal: generate a test suite {ti}i∈I .

Characteristics

simple (run tests)

black-box (unknown systems)

versatile (guarantees, explainable failures. . . )

no formal guarantee

too general
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Verification

Verification

Given: a model M, a property ϕ.
Goal: automatically prove that M � ϕ.

Characteristics

complex (design model, use specific techniques, so typically
not used by engineers)

white-box (known systems only)

formal proof (strong guarantee)

ill-suited to CPS (continuous systems)

Theorem proving

Given: a model M, a property ϕ.
Goal: prove that M � ϕ.
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Falsification

Falsification

Given: a system S, a property ϕ.
Goal: generate a counterexample to S � ϕ.

Characteristics

particular case of testing

black-box (unknown systems)

relatively simple

no proof (no formal guarantee)
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Verification versus falsification

Verification:

finds a proof: system verifies property,
finds nothing:

nothing can be said.

Falsification:

finds a counterexample: system violates property,
finds nothing:

nothing can be said.

Interaction:

verification for falsification: constraining state space by
reachability analysis,

falsification for verification: coverage-based falsification
techniques.
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General framework

Reminder

Given: a system S, a property ϕ.
Goal: generate a counterexample to S � ϕ.

Questions

What is a system?  hybrid system

What is a property?  logical formula

What is a counterexample?  an input (and output) signal
to the system that violates the property

Challenges

infinite (and high-dimensional) search space

non-linear dynamics
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The falsification loop

S
ϕϕ

checker generator

σout

ϕ

σout�ϕ

σin

σout2ϕ

σin/(σin,σout)

falsification

falsification
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The falsification algorithm

Input: A system S, a formula ϕ, a satisfaction predicate �,
and a timeout tmax

Output: A signal σin such that S(σin) 2 ϕ
found = false;
while not( found) and t < tmax do

σin = generate();
σout = S(σin);
found = σout 2 ϕ;

end
if found then

return σin
else

return “timeout”
end

13 / 50



Optimisation-based falsification

S

ϕϕ

checker generator

σout

ϕ

ρ(σout,ϕ)≥0

σin

ρ(σout,ϕ)<0

σin/(σin,σout)

falsification

falsification
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The optimisation-based falsification algorithm

Input: A system S, a formula ϕ, a robustness function ρ, and
a timeout tmax

Output: A signal σin such that S(σin) 2 ϕ
found = false;
while not( found) and t < tmax do

σin = search minimum(ρ);
σout = S(σin);
found = ρ(σout, ϕ) < 0;

end
if found then

return σin
else

return “timeout”
end

Required: ρ(σ, ϕ) ≥ 0 ⇐⇒ σ � ϕ
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Hybrid systems

Definition

A hybrid system is a dynamical system that exhibits both
continuous and discrete dynamic behavior – a system that can
both flow (described by a differential equation) and jump
(described by a state machine or automaton).

Wikipedia

Fehnker, Ivančić, Benchmarks for Hybrid Systems Verification, Hybrid Systems:

Computation and Control, pp 326–341
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Hybrid system: definition

Hybrid system

A Hybrid system is a tuple H = (Q,X ,GUARD, JUMP,U,FLOW)
of:

a finite set of modes Q,

a family of continuous state spaces X = {Xq ⊆ Rnq | q ∈ Q},
GUARDq,q′ ⊆ Xq is the set of states in Xq that can transition
to mode q′,

JUMPq,q′ : Xq → Xq′ describes the transition from q to q′,

U is the input space,

FLOWq, is a set of differential equations in Xq and U, seen as
a function Xq × U × R≥0 → Xq,

18 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},

Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},

Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},

GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}

GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅

FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: thermostat

q0
dT
dt = −KT
T ≥ T0

q1
dT
dt = K (h−T )

T ≤ T1

T=T0 | ·

T=T1 | ·

Q = {q0, q1},
Xq0 = {T ∈ R | T ≥ T0},
Xq1 = {T ∈ R | T ≤ T1},
GUARDq0,q1 = {m}
GUARDq1,q0 = {M}

JUMPq,q′(T ) = T

U = ∅
FLOWq0 = (dTdt = −KT )

FLOWq1 = (dTdt = K (h−T ))

19 / 50



Example of hybrid system: timed automata

q0 q1 q2

y ≤ 5

y ≤ 8
push?
x := 0
y := 0 x ≥ 1

push?
x := 0

cup!
y = 5

coffee!
y = 8

Q = {q0, q1, q2},
Xq0 = R2,

Xq1 ={
(x , y) ∈ R2

∣∣ y ≤ 5
}

,

GUARDq0,q1 = R2

GUARDq1,q2 = R× {5}
JUMPq0,q1(x , y) = (0, 0)

JUMPq1,q1(x , y) = (0, y)

U = ∅
FLOWq = (dxdt = dy

dt = 1)
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Example of hybrid system: navigation

Q = {(i , j) | i , j ∈ [0..4]}
X :

X(i,j) = [0, 1]× [0, 1]× R× R (i , j ∈ [1..3])
X(0,j) = (−∞, 1]× [0, 1]× R× R (j ∈ [1..3])
X(4,j) = [0,∞)× [0, 1]× R× R (j ∈ [1..3])
X(i,0) = [0, 1]× (−∞, 1]× R× R (i ∈ [1..3])
X(i,4) = [0, 1]× [0,∞)× R× R (i ∈ [1..3])
X(0,0) = (−∞, 1]× (−∞, 1]× R× R
. . .
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Example of hybrid system: navigation

GUARD:

GUARD(i,j),(i−1,j) = {(0, y , vx , vy )}
GUARD(i,j),(i+1,j) = {(1, y , vx , vy )}
GUARD(i,j),(i,j−1) = {(x , 0, vx , vy )}
GUARD(i,j),(i,j+1) = {(x , 1, vx , vy )}

JUMP:

JUMP(i,j),(i−1,j)(x , y , vx , vy ) = (x + 1, y , vx , vy )
JUMP(i,j),(i+1,j)(x , y , vx , vy ) = (x − 1, y , vx , vy )
JUMP(i,j),(i,j−1)(x , y , vx , vy ) = (x , y + 1, vx , vy )
JUMP(i,j),(i,j+1)(x , y , vx , vy ) = (x , y − 1, vx , vy )

22 / 50



Example of hybrid system: navigation

U = ([−0.1, 0.1]R≥0)2

FLOWi ,j :
dx
dt = vx + ux(t),
dy
dt = vy + uy (t),
dvx
dt = 0.1(vy − v

(i,j)
y )− 1.2(vx − v

(i,j)
x ),

dvx
dt = 0.1(vx − v

(i,j)
x )− 1.2(vy − v

(i,j)
y ),

where

(ux , uy ) ∈ U,

v
(i,j)
x and v

(i,j)
y are constants.
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Run of a hybrid automaton

Run

Finite or infinite sequence (q0, x0)→t0 (q1, x1)→t1 . . . such that,
for each i ∈ [1..n − 1]:

yi ∈ GUARD(qi , qi+1),

JUMPqi ,qi+1(yi ) = xi+1,

where yi = FLOWqi (xi , u, ti − ti−1).

((1, 2), x0)→t0 ((2, 2), x1)→t1 ((2, 1), x2)→t2 ((2, 0), x3)

((0, 1), x ′0)→t′0
((0, 0), x ′1)→t′1

((1, 0), x ′2)→t′2
((2, 0), x ′3)
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Runs as signals

It is often more practical to consider runs of a hybrid system as
timed signals.

Signal

A signal on a set of variables {xi | i ∈ [1..n]}, where each xi takes
values in Xi , is a function R≥0 →

∏n
i=1 Xi .

Translation

In the case where all Xq’s are subspaces of a given X , the following
signal corresponds to the run ρ = (q0, x0)→t0 (q1, x1)→t1 . . . of a
hybrid automaton under input signal u:

σρ : [0,
∑n

i=1 ti ) → Q × X(∑k
i=1 ti

)
+ t 7→ (qk ,FLOWqk (xk , u, t)),

where t < tk+1.
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Signals in practice

Time-boundedness

Since simulation cannot be run for an infinite amount of time, so
all considered signals are time-bounded: they are not functions
R≥0 → U but [0,T )→ U for some T ∈ R.

Finite representation of input signals

We must also stick to classes of signals that can be represented by
finite means, e.g., piecewise constant signals, piecewise affine
signals, spline (piecewise polynomial) signals. . .
Control points (those points between which the function is
interpolated) can be chosen equidistant, or according to other
policies.
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Discretisation of signals

Discretisation of output signals

Output signals may not be finitely representable, so they are
discretised.

Attention

Discretisation of signals can lead to:

false positives: e.g., for formula F ϕ, if σ(ti ) 2 ϕ, but
σ(t) � ϕ for some ti < t < ti+1, the algorithm will return σ
as a (wrong) counterexample,

false negatives: for dual reasons.
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Initial position and signals

Two kinds of falsifications:

falsification on initial position,

falsification on signals.

Differences:

An initial position can be seen as a constant signal, so
falsification on initial positions is easier.

Many falsification methods incrementally modify the shape of
the signal (learning approaches, Monte-Carlo Tree Search. . . ),
so they are ill-suited to falsification on initial positions.
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Signal temporal logic

Syntax

ϕ ::= > | f ∼ 0 | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I = [a,∞) or [a, b] for a < b, f : S → R, and ∼∈ {>,=} is
a comparison operator.

Syntactic sugar

⊥ = ¬>, ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ). . .

f ≥ 0 = f > 0 ∨ f = 0, f ≤ 0 = ¬f > 0. . .

FI ϕ = >UI ϕ, GI ϕ = ¬FI ¬ϕ
U ϕ = U[0,∞) ϕ. . .
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STL examples

To avoid awkward notations, f ∼ 0 is never written as a function,
but as a computation on states. Thus, if
f : (q, x , y , vx , vy ) 7→ x2 + y2 − 1, f < 0 would be written
x2 + y2 − 1 < 0 or x2 + y2 < 1.

Examples

q 6= (3, 1) U q = (1, 3)

G (gear = 2→ ¬F[0,ε] (gear 6= 2 ∧ F[0,τ ] gear = 2))

(q = qi ∧ x ∈ [x−i , x
+
i ]) ∧ F[0,T ] (q = qf ∧ x ∈ [x−f , x

+
f ])

(q = qi ∧ x ∈ [x−i , x
+
i ]) ∧ G[0,T ] ¬(q = qf ∧ x ∈ [x−f , x

+
f ])

G (danger→ F[0,t] ¬danger) with

danger = (q = qd ∧ x ∈ [x−d , x
+
d ])
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Boolean semantics of STL

The semantics of STL formulas is defined over timed signals:

Boolean semantics

σ, t � > ⇐⇒ >
σ, t � f ∼ 0 ⇐⇒ f (σ(t)) ∼ 0

σ, t � ¬ϕ ⇐⇒ σ, t 2 ϕ
σ, t � ϕ ∧ ψ ⇐⇒ σ, t � ϕ and σ, t � ψ

σ, t � ϕU[a,b] ψ ⇐⇒ there is t ′ ∈ [a, b] such that σ, t ′ � ψ

and for all t ′′ ∈ [a, t ′), σ, t ′′ � ϕ

σ � ϕ stands for σ, 0 � ϕ.
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Robustness semantics of STL

We can define a robustness semantics, whose value is not a
boolean, but a real:

Robustness semantics

ρ(σ,>, t) =∞
ρ(σ, f > 0, t) = f (σ(t))

ρ(σ, f = 0, t) = −|f (σ(t))|
ρ(σ,¬ϕ, t) = −ρ(σ, ϕ, t)

ρ(σ, ϕ ∧ ψ, t) = min(ρ(σ, ϕ, t), ρ(σ, ψ, t))

ρ(σ, ϕU[a,b] ψ, t) = sup
t′∈[a,b]

min

(
ρ(σ, ψ, t ′), inf

t′′∈[a,t′)
ρ(σ, ϕ, t ′′)

)
ρ(σ, ϕ) stands for ρ(σ, ϕ, 0).
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Soundness of robustness semantics

Theorem

If ρ(σ, ϕ) > 0, then σ � ϕ.
If ρ(σ, ϕ) < 0, then σ 2 ϕ.

Proof.

Structural induction.

Remark

If ρ(σ, ϕ) = 0, nothing can be said: if σ(x)(0) = x0 for
ϕ = (x = x0):

ρ(σ, ϕ) = ρ(σ,¬ϕ) = 0, but

σ � ϕ, σ 2 ¬ϕ.

Advantage: if functions f are continuous or smooth, we can use
optimisation techniques to find the minimal robustness.
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Computing the robustness semantics

Computing ρ

Given: piecewise-constant σ (because discretised).
Goal: compute ρ(σ, ϕ).

Naive idea: compute ρ(σ, ϕ, t) inductively.

Problem

Complexity to compute ρ(σ, ϕU[a,b] ψ,−) is
O(number of control points×number of control points in [a, b])
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Efficiently computing ρ(σ, ϕ,−)

First step: get rid of UI :

ϕU[a,b] ψ ≡ F[a,b] ϕ ∧ G[0,a] (ϕU ψ)

ϕU[a,∞) ψ ≡ G[0,a] (ϕU ψ)

Goal

The function t 7→ ρ(σ, ϕ, t) is a signal R≥0 → R denoted
ρ(σ, ϕ,−). Our goal is to compute it from ρ(σ, ψ,−) for
subformulas ψ of ϕ.

Need to know how to recursively compute signals for >, f ∼ 0,
¬ϕ, ϕ ∨ ψ, ϕU ψ, and F[a,b] ϕ in O(number of control points).
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Computing ρ(σ, ϕU ψ,−)

Without loss of generality, signals y and y ′ representing ρ(σ, ϕ,−)
and ρ(σ, ψ,−) have the same control points ti (otherwise, take the
union of control points).
Let z be the signal corresponding to ρ(σ, ϕU ψ,−), then:

z(ti ) = sup
t∈[ti ,∞)

min{y ′(t), inf
[ti ,t)

y}

= max{min{y ′(ti ), y(ti )}, sup
t∈[ti+1,∞)

min{y ′(t), inf
[ti ,t)

y}}

= max{min{y ′(ti ), y(ti )},min{y(ti ), sup
t∈[ti+1,∞)

min{y ′(t), inf
[ti+1,t)

y}}}

= min{y(ti ),max{y ′(ti ), z(ti+1)}}

Thus, there is an algorithm to compute ρ(σ, ϕU ψ,−) from
ρ(σ, ϕ,−) and ρ(σ, ϕ,−) whose complexity is linear in the number
of control points.
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Computing ρ(σ, F[a,b] ϕ,−)

We need to compute z(t) = supt+[a,b] y = maxti∈t+[a,b]{y(ti )}.

Idea

Compute M such that i ∈ M iff ti ∈ t + [a, b] and for all
tj ∈ t + [a, b], y(tj) < y(ti ).

Thus: y(tminM) = maxti∈t+[a,b]{y(ti )}.

Alexandre Donzé, Thomas Ferrère, Oded Maler, Efficient Robust Monitoring

for STL, International Conference on Computer Aided Verification 2013
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Analysis

M can be implemented to have all operations in O(1)
(doubly-linked list),

all control points are popped at most once,

in total, the number of comparisons (done when searching for
elements to pop) is at most 2n,

therefore, computing ρ(σ, F[a,b] ϕ,−) can be done in time linear
with respect to the number of control points.

Overall complexity

The number of control points is at most dh(ϕ)|σ|, so the whole
complexity is O(|ϕ|dh(ϕ)|σ|).

Generalisation

The same argument (but more complex) applies to more general
signals (say, piecewise affine).
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Optimisation techniques

Falsification is based on a number of optimisation techniques:

ant colony,

CMA-ES,

cross-entropy,

gradient descent,

hill-climbing,

Nelder-Mead,

simulated annealing,

. . .
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Gradient descent

Goal: find a local minimum to a function f .
1 i = 0;
2 while continue do
3 xi+1 = xi − γi · ∇(f )(xi );
4 best = xi+1;
5 if f (xi+1) > f (xi ) then
6 continue = false;
7 best = xi ;

end
8 i + +;

end
9 return best

Finds a local minimum: may be useful in certain cases.
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Hill climbing
Goal: find a local maximum to a function f .

1 i = 0;
2 while continue do
3 for x ′ ∈ neighbours(xi ) do
4 if f (x ′) > f (xi ) then
5 xi+1 = x ′;
6 break;

end

end
7 continue = xi+1 6= xi ;
8 i + +;

end
9 return xi−1

Finds a local maximum: may be useful in certain cases.

Simpler than gradient descent (no derivatives to compute),
but less efficient.
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CMA-ES
CMA-ES: Covariance Matrix Adaptation Evolution Strategy

Goal: find the maximum of a function f on a space X .

1 while continue do
2 x1, . . . , xn = sample-multivariate-normal(m,σ2C );
3 x1, . . . , xn = sort(x1, . . . , xn,f );
4 m, σ,C = update(x1, . . . , xn,m,σ,C );

end
5 return m

Wikipedia
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CMA-ES for falsification

Characteristics

evolutionary algorithm (the parameters evolve towards a
better sampler)

sampling-based  no need to compute derivatives

Adaptation

Take X to be the space of signals σ and f to be −ρ(σ, ϕ).

Remark

This is a way to adapt sampling-based optimisation to falsification,
so it works for other such algorithms, such as the cross-entropy
method.
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Nelder-Mead method
Goal: find the maximum of a function f on a space X of
dimension n.

1 x1, . . . , xn+1 = simplex();
2 while continue do
3 xi = worst-vertex(x1, . . . , xn+1,f );
4 x ′i = reflect(xi ,(xj)j 6=i );

end
5 return best-vertex(f )

1: the structure is just a simplex.

3: when reflecting a vertex, if the new value is much better
than the previous one, we keep stretching, otherwise, we
shrink.

Adaptation to falsification

Take X a subspace of signals of finite dimension (e.g., fix a shape
and control points), and f = −ρ(σ, ϕ).
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Ant colony
Goal: find a path in a graph that maximises performance.

1 while continue do
2 foreach “ant” i in colony do
3 pi = construct-solution(i);
4 local-update-pheromones(i ,f );

end
5 global-update-pheromones();
6 p = argmax(pi ,f )

end
7 return p

3: ants walk randomly on the graph, choosing neighbours
with more pheromone more often.

4: ants put pheromone on their chosen edge, making it more
attractive; the better the ant’s solution (i.e., the smaller
f (pi )), the more pheromone she puts.

5: pheromone gets put on all edges taken by the best solution.

47 / 50



Ant colony for falsification

Adaptation

Take G to be the graph:

whose vertices are input signals σ,

there is an edge between σ and τ when they are “close
enough”, say, ‖σ − τ‖∞ < C , i.e., for all t < tmax and
component x of U, |σ(t)(x)− τ(t)(x)| < C ,

and f (σ1 . . . σn) to be −ρ(σn, ϕ).

The ant colony algorithm tries to find a path that maximises f ,
i.e., minimises ρ(σ, ϕ).

Remark

This is a way to adapt optimisation of a function on a graph to
falsification, so it works for other optimisation algorithms that
work on graphs, such as simulated annealing.
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Simulated annealing

Goal: find a global maximum of a function f on a space X .

T = T0;
i = 0;
while T (i) > 0 do

xi+1 = neighbour(xi );
if E (xi+1) < E (xi ) and rand() < P(E (xi+1),E (xi ),T ))
then

xi+1 = xi ;
end
i + +;

end
return xi−1

Avoids local minima by “cooling” the system down
progressively.

Many parameters  adaptative, but tricky.
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Conclusion

Falsification:

method to find counterexamples to a property,
useful in the world of formal methods,
black-box method,
relies on optimisation algorithms.

Hybrid system:

continuous and discrete parameters,
non-linear behaviour,
very expressive.

Formulas:

expressed in a temporal logic,
boolean and robustness semantics.

50 / 50


	Formal methods landscape
	Framework
	Hybrid systems
	Formulas
	Optimisation
	Conclusion

