Hybrid System Falsification and Reinforcement Learning Formal Method for Cyber-Physical Systems

Clovis Eberhart David Sprunger

National Institute of Technology, Japan

SOKENDAI lesson, July 1, 8, and 22

Quick reminder

- Falsification:
 - method to find counterexamples to a property,
 - useful in the world of formal methods,
 - black-box method,
 - relies on optimisation algorithms.
- Hybrid system:
 - continuous and discrete parameters,
 - non-linear behaviour,
 - very expressive.
- Formulas:
 - expressed in a temporal logic,
 - boolean and robustness semantics.

Table of Contents

Refining robustness

Time staging

3 Coverage-based falsification

Refining robustness

Why?

- more expressivity (i.e., finer modelling)
- more techniques (e.g., optimisation techniques work better)

Attention

more expressivity ~> more complex algorithms

Refining robustness

Why?

- more expressivity (i.e., finer modelling)
- more techniques (e.g., optimisation techniques work better)

Attention

 more expressivity → more complex algorithms (here, however, only sliding-window algorithms)

Donzé, A. and Maler O. *Robust satisfaction of temporal logic over real-valued signals.* FORMATS 2010. Until now, robustness is spatial. Problems:

Donzé, A. and Maler O. *Robust satisfaction of temporal logic over real-valued signals.* FORMATS 2010. Until now, robustness is spatial. Problems:

• all these signals verify $\Diamond_{[a,b]} x > 0$ with the same robustness

Donzé, A. and Maler O. *Robust satisfaction of temporal logic over real-valued signals.* FORMATS 2010. Until now, robustness is spatial. Problems:

• all these signals verify $\Diamond_{[a,b]} x > 0$ with the same robustness

 the similarity between these two signals is lost when computing ρ(σ, ◊_[a,b]x > 0)

Donzé, A. and Maler O. *Robust satisfaction of temporal logic over real-valued signals.* FORMATS 2010. Until now, robustness is spatial. Problems:

• all these signals verify $\Diamond_{[a,b]} x > 0$ with the same robustness

 the similarity between these two signals is lost when computing ρ(σ, ◊_[a,b]x > 0)

 \rightsquigarrow missing a temporal component

Adding time

. . .

Assumption: set $P = \{p_1, \ldots, p_n\}$ of atomic propositions. Standard boolean semantics: $\chi(\sigma, \varphi, t)$.

Time robustness

$$\begin{aligned} \theta^{-}(\sigma, p, t) &= \\ \chi(\sigma, p, t) \cdot \max \left\{ d \geq 0 \mid \forall t' \in [t - d, t] . \chi(\sigma, p, t') = \chi(\sigma, p, t) \right\} \\ \theta^{+}(\sigma, p, t) &= \\ \chi(\sigma, p, t) \cdot \max \left\{ d \geq 0 \mid \forall t' \in [t, t + d] . \chi(\sigma, p, t') = \chi(\sigma, p, t) \right\} \\ \theta^{s}(\sigma, \neg \varphi, t) &= -\theta^{s}(\sigma, \varphi, t) \end{aligned}$$

Interpreting θ^+ and θ^-

- $\theta^+(\sigma, \varphi, t) = s > 0$: $\sigma \vDash \varphi$ for at least time s
- $heta^+(\sigma, arphi, t) = s < 0$: $\sigma \nvDash arphi$ for at least time s
- $\theta^-(\sigma, \varphi, t) = s > 0$: $\sigma \vDash \varphi$ since at least time s
- $\theta^-(\sigma, \varphi, t) = s < 0$: $\sigma \nvDash \varphi$ since at least time s

Assumption: atomic propositions are functions (e.g., $x^2 + y^2$). Standard robustness semantics: $\rho(\sigma, \varphi, t)$.

Space-time robustness

For any $c \in \mathbb{R}$: • $\theta_c^+(\sigma, f, t) = \theta^+(\chi_c(\sigma, f, t)),$ • $\theta_c^-(\sigma, f, t) = \theta^-(\chi_c(\sigma, f, t)),$ • $\theta_c^s(\sigma, \neg \varphi, t) = -\theta_c^s(\sigma, \varphi, t).$ • ...

Interpretation:

• $\theta_c^+(\sigma, \varphi, t) = s > 0$: $\rho(\sigma, \varphi, t) > c$ for at least time s, • ...

Assumption: atomic propositions are functions (e.g., $x^2 + y^2$). Standard robustness semantics: $\rho(\sigma, \varphi, t)$.

Space-time robustness

For any $c \in \mathbb{R}$: • $\theta_c^+(\sigma, f, t) = \theta^+(\chi_c(\sigma, f, t)),$ • $\theta_c^-(\sigma, f, t) = \theta^-(\chi_c(\sigma, f, t)),$ • $\theta_c^s(\sigma, \neg \varphi, t) = -\theta_c^s(\sigma, \varphi, t).$ • ...

Interpretation:

• $\theta_c^+(\sigma, \varphi, t) = s > 0$: $\rho(\sigma, \varphi, t) > c$ for at least time s, • ...

Remarks:

- hopefully more efficient
- how to choose c?
- not more expressive

More flexibility

Akazaki T. and Hasuo I. *Time robustness in MTL and expressivity in hybrid system falsification*. CAV 2015.

• Spatial robustness:

• Temporal robustness:

AvSTL

Syntax

$$\mathsf{AP} = x < r \mid x \le r \mid x > r \mid x \ge r$$

 $\varphi = \top \mid \perp \mid \mathsf{AP} \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \varphi \mid \varphi \mathsf{R}_{\mathsf{I}} \varphi \mid \varphi \overline{\mathsf{U}_{\mathsf{I}}} \varphi \mid \varphi \overline{\mathsf{R}_{\mathsf{I}}} \varphi \mid \varphi$

Semantics

•
$$\rho^+(\sigma, x < r, t) = \max\{0, r - \sigma(x)(t)\}$$

•
$$\rho^{-}(\sigma, x < r, t) = \min\{0, r - \sigma(x)(t)\}$$

•
$$\rho^+(\sigma, \neg \varphi, t) = \rho^-(\sigma, \varphi, t)$$

• $\rho^+(\sigma, \varphi \overline{\mathsf{U}_{[a,b]}} \psi, t) = \frac{1}{b-a} \int_a^b \rho(\sigma, \varphi \,\mathsf{U}_{[a,b] \cap [0,\tau]} \psi, t) d\tau$

Example

Robustnesses: ρ^+ , ρ^-

•
$$\varphi = x \ge 0$$
:

Consequences:

- temporal aspects
- spatial aspects

Expressivity

• persistence: $G_{[0,a]} \varphi \wedge \overline{G_{[a,b]}} \varphi$

Experimental results

Problem 1	11	T = 2	0	1		T = 3	n	1	T	- 40	
Specification	Succ	I — Z	U Ті	me Si	nee	I = 0	∐ Time	Suc		Iter	Time
to be falsified	/100	(Succ.)	(Suc	c.) /1	100	(Succ.)	(Succ.)/10	0 (Si	ucc.)	(Succ.)
$\boxed{\diamondsuit_{[0,T]}(\omega \ge 2000)}$	100	128.8	2	0.2	81	440.9	82.5	5 3	2 8	34.3	162.9
		128.8	20	0.2		309.7	59.0)	4	82.2	94.4
$\overline{\Diamond}_{[0,T]}(\omega \ge 2000)$	100	123.9	2	2.9	-98	249.8	46.1	8	1 5	39.6	110.9
		123.9	2	2.9		234.5	43.4	L I	4	31.6	89.2
Problem 3	1	T = 4		1	2	T = 4.	5	1	T	= 5	
Specification	Succ.	Iter.	Tin	ne Su	cc.	Iter.	Time	Succ		Iter.	Time
to be falsified	/20(Succ.)	(Succ	:.) /2	20	(Succ.)	(Succ.)	/20) (Su	icc.)	Succ.)
$\Box_{[0,T]} \neg gear_4$	0	1000	166	.9	11	742.8	122.9	18	3 4	19.0	71.8
		_		-		532.3	87.5		38	87.7	61.9
$\Box_{[0,T]} \neg gear_4$	17	570.1	94	.0	20	250.5	40.3	20) 10	07.5	17.6
$\wedge \overline{\Box}_{[T,10]} \neg \texttt{gear}_4$		494.2	81	.8		250.5	40.3		10	07.5	17.6
Problem 5 (ε =	= 0.04)		1	T = 0	.8	1	T = 1			T =	2
Specification			Succ.	Iter.	. Ti	ime Succ.	Iter.	Time	Succ.	Iter	: Time
to be falsified				(Succ.)) (Su	cc.) /20	(Succ.)	(Succ.)	/20	(Succ.) (Succ.)
$\bigwedge_{i=1,\ldots,4} \Box \Big(\big(\neg gear_i \land \diamond_{[0,\varepsilon]} gear_i \big)$				972.5	40	02.5 19	356.8	155.6	20	27.4	4 11.8
$\rightarrow (\square_{[\varepsilon, T+\varepsilon]} g$		724.5	29	7.8	322.9	140.9		27.4	4 11.8		
$\bigwedge_{i=1,,4} \Box ((\neg gear_i)$	12	561.1	34	9.1 20	93.1	57.8	20	42.1	7 26.9		
$\to \big(\Box_{[\varepsilon,T+\varepsilon]} \mathrm{gear}_i \wedge \overline{\Box}$		268.5	6 16	57.3	93.1	57.8		42.1	7 26.9		

Table of Contents

Time staging

Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., and Hasuo, I. *Two-Layered Falsification of Hybrid Systems Guided by Monte Carlo Tree Search*. EMSOFT 2018.

Ernst, G., Sedwards, S., Zhang, Z., and Hasuo, I. *Fast Falsification of Hybrid Systems using Probabilistically Adaptive Input.* QEST 2019.

Idea

- $\sigma_{\rm out}$ causally dependent on $\sigma_{\rm in}$
- optimisation methods blind to this dependence
- \rightsquigarrow modify the algorithm to take it into account

A picture is worth a thousand words

High-Level Algorithm

Alternate between:

- Monte-Carlo Tree Search to find a good zone,
- hill-climbing to find a good point in the zone.

Monte-Carlo Tree Search

Each node equipped with:

- robustness estimate,
- number of visits.

To choose a node, balance between:

- an exploitation score (bigger with smaller robustness estimates),
- an exploration score (bigger with fewer visits to the node).

Robustness estimates

To get robustness estimates: complete the signal by pure hill-climbing.

For example, for a newly-expanded node:

Playout by hill-climbing optimization

Experimental results

_	Parameters AT model				nodel						AFC model			FFR model						
					S	1	S	2	S	3	5	64	S	5	Sba	asic	Ssta	able	Sti	rap
A	gorithm	M_b	TOpo	c	succ.	time	succ.	time	succ.	time	succ.	time	succ.	time	succ.	time	succ.	time	succ.	time
F	andom				10/10	108.9	10/10	289.1	1/10	301.1	0/10	-	0/10	-	6/10	278.7	10/10	242.6	4/10	409.3
ES	Breach				10/10	21.9	6/10	30.3	10/10	193.9	4/10	208.8	3/10	75.5	10/10	111.7	3/10	256.3	10/10	119.8
Ż	Basic	40	15	0.20	10/10	15.8	10/10	108.5	10/10	697.1	7/10	786.8	9/10	384.4	10/10	182.0	7/10	336.9	10/10	338.0
S	P.W.	40	15	0.20	10/10	10.8	10/10	65.7	10/10	728.6	7/10	767.8	10/10	648.1	10/10	177.1	8/10	272.9	10/10	473.9
7	Breach				10/10	5.4	10/10	151.4	0/10	-	0/10	-	0/10	-	10/10	171.4	0/10	-	0/10	-
Z	Basic	20	5	0.20	10/10	12.4	10/10	162.3	10/10	185.6	7/10	261.9	7/10	163.7	10/10	227.1	2/10	378.5	10/10	162.2
9	P.W.	20	5	0.05	10/10	60.8	9/10	110.7	8/10	211.2	8/10	313.0	10/10	178.7	10/10	252.0	6/10	153.2	6/10	197.4
	Breach				10/10	160.1	0/10	-	3/10	383.7	0/10	-	3/10	80.4	0/10	-	6/10	307.0	3/10	92.8
SA	Basic	20	15	0.05	10/10	264.8	9/10	236.1	8/10	385.6	8/10	505.3	7/10	341.2	5/10	391.3	8/10	273.8	10/10	273.2
	P.W.	40	15	0.20	10/10	208.7	10/10	377.6	8/10	666.0	7/10	795.4	10/10	624.2	8/10	665.7	6/10	293.7	10/10	390.9

Interpretation: MTCS explores more, so:

- better results on hard problems
- slower on simple problems

Adaptive Las Vegas Tree Search

To build signal σ incrementally:

- randomly choose a level *l* of "granularity" (initially, low granularity is favoured),
- choose $\sigma' = D_I(\sigma)$, where D_I chooses "finer" signals for large I (shorter time, more precise value),

• adapt
$$\mathcal{D}_l$$
 according to $\rho(\sigma\sigma', \varphi, t)$.

• <i>A</i> ₀ •	• •	• • • • •	• • • • • • • • •	•····•
			• • • A3 •	$\cdot \mathcal{A}_4 \cdot \cdot \cdot$
	$\bullet \mathcal{A}_1$	• • • A ₂ •	• • • •	• • • •
			: . :	
• •	• •	• • • • • •	•••••••••	•••••••••••••••••••••••••••••••••••••••

Experimental results

	R	andor	n	B C	reach MA-E	: s	FALSTAR: aLVTS			
	succ.	ite	r.	succ.	iter.		succ.	it	er.	
Formula	/50	М	SD	/50	М	SD	/50	М	SD	
AT1	43	106.6	83.9	50	39.7	23.6	50	8.5	6.7	
AT2 $(i = 3)$	50	41.0	36.7	50	13.2	9.1	50	33.4	27.5	
AT2 $(i = 4)$	49	67.0	60.8	6	17.8	15.9	50	23.4	22.5	
AT3	19	151.1	98.1	50	145.2	63.0	50	86.3	52.1	
AT4 (a)	36	117.3	71.8	50	97.0	47.7	50	22.8	10.6	
AT4 (b)	2	117.7	9.2	49	46.7	58.0	50	47.6	23.5	
Summary AT	199	95.3	47.9	255	42.8	29.0	300	29.2	19.4	
AFC27	15	129.1	90.8	41	121.0	49.3	50	3.9	4.3	

Interpretation:

- falsifying signals are often coarse, or slight variations of such, so explored very fast by this algorithm,
- robustness scores that concern discrete variables are hard to manipulate for optimisation algorithm (not continuous)

Table of Contents

Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., and Jin, X. *Classification and coverage-based falsification for embedded control systems*. CAV 2017. Trade-off between:

- define a coverage metric of the input space,
- alternate between:
 - a global search to classify the search space into zones,
 - local searches on the promising zones to converge to a minimum.

High-level algorithm

```
Input: t<sub>max</sub>
Output: a u such that \mathcal{M}(u) \nvDash \varphi
S = sample N points at random;
R = zones(S);
while t < t_{max} do
   subdivide(R);
   S += biased-sampling( R);
   S += singularity-sampling(R);
   S += local-search( R );
end
for u in S do
   if \rho(u) < 0 then
    i return u
   end
end
return None
```

Subdivision

Goal: divide the search space into rectangles with different average robustnesses.

```
Input: R a list of rectangles, S a list of sampled points, K a threshold
```

Output: a list of subdivided rectangles

```
for r in R do
```

```
pop(R, r);

if |S \cap r| > K then

| H = \operatorname{argmin}(\Gamma_H(R, S), H \text{ hyperplane});

push(R, r \cap H^-, r \cap H^+);

end
```

end

Samplings

Biased sampling

Goal: increase coverage and decrease robustness.

Idea: sample according to a weighted sum of two distributions:

- P_c^i : proportional to the numbers of unoccupied cells in rectangle R_i ,
- P_r^i : takes into consideration how the robustness of sampled points varies from the average.

Singularity sampling

Goal: sample more in rectangles with "singular" samples (robustness much lower than average in rectangle).

Local search

Goal: converge to a minimum faster by using local search with a good seed.

Experimental results

Solver	Seed	Computa	tion time (secs)	Falsification		
		PTC	Aut. Trans	PTC	Aut. Trans	
Hyperplane	0	2891	996	1	1	
classification +	5000	2364	1382	√	1	
CMA-ES-Breach	10000	2101	1720	1	1	
	15000	2271	1355	√	1	
CMA-ES-Breach	0	T.O. (5000)	T.O. (2000)			
	5000	T.O. (5000)	1302		1	
	10000	T.O. (5000)	T.O. (2000)			
	15000	T.O. (5000)	1325		1	
Grid based	0	T.O. (5000)	T.O. (2000)			
random sampling	5000	T.O. (5000)	T.O. (2000)			
	10000	3766	T.O. (2000)	√		
	15000	268	T.O. (2000)	1		
S-TaLiRo (Simula	ted Annealing)	4481	T.O. (3000)	1		
S-TaLiRo (Simulated Annealing)		4481	Default stopping (3300)	1		

Interpretation: other methods got caught in local minima.

Conclusion

- different notions of robustness:
 - can be more expressive
 - can make algorithms more efficient
- time staging:
 - explores more
 - hence can resolve harder problems
- coverage-based falsification:
 - theoretical result (if there exists an ε-robust counterexample, there is a grid size such that will find it)
 - coverage helps falsification by exploring more, thus avoiding local minima