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Quick reminder

Falsification:

method to find counterexamples to a property,
useful in the world of formal methods,
black-box method,
relies on optimisation algorithms.

Hybrid system:

continuous and discrete parameters,
non-linear behaviour,
very expressive.

Formulas:

expressed in a temporal logic,
boolean and robustness semantics.
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Refining robustness

Why?

more expressivity (i.e., finer modelling)

more techniques (e.g., optimisation techniques work better)

Attention

more expressivity ; more complex algorithms

(here, however,
only sliding-window algorithms)
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Space-time robustness

Donzé, A. and Maler O. Robust satisfaction of temporal logic over real-valued

signals. FORMATS 2010.

Until now, robustness is spatial.
Problems:

all these signals verify 3[a,b]x > 0 with the same robustness

the similarity between these two signals is lost when
computing ρ(σ,3[a,b]x > 0)

; missing a temporal component
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Donzé, A. and Maler O. Robust satisfaction of temporal logic over real-valued

signals. FORMATS 2010.

Until now, robustness is spatial.
Problems:

all these signals verify 3[a,b]x > 0 with the same robustness

the similarity between these two signals is lost when
computing ρ(σ,3[a,b]x > 0)

; missing a temporal component

6 / 31



Space-time robustness
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Adding time
Assumption: set P = {p1, . . . , pn} of atomic propositions.
Standard boolean semantics: χ(σ, ϕ, t).

Time robustness

θ−(σ, p, t) =
χ(σ, p, t) ·max {d ≥ 0 | ∀t ′ ∈ [t − d , t].χ(σ, p, t ′) = χ(σ, p, t)}
θ+(σ, p, t) =
χ(σ, p, t) ·max {d ≥ 0 | ∀t ′ ∈ [t, t + d ].χ(σ, p, t ′) = χ(σ, p, t)}
θs(σ,¬ϕ, t) = −θs(σ, ϕ, t)
. . .
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Interpreting θ+ and θ−

θ+(σ, ϕ, t) = s > 0: σ � ϕ for at least time s

θ+(σ, ϕ, t) = s < 0: σ 2 ϕ for at least time s

θ−(σ, ϕ, t) = s > 0: σ � ϕ since at least time s

θ−(σ, ϕ, t) = s < 0: σ 2 ϕ since at least time s
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Space-time Robustness
Assumption: atomic propositions are functions (e.g., x2 + y2).
Standard robustness semantics: ρ(σ, ϕ, t).

Space-time robustness

For any c ∈ R:

θ+c (σ, f , t) = θ+(χc(σ, f , t)),

θ−c (σ, f , t) = θ−(χc(σ, f , t)),

θsc(σ,¬ϕ, t) = −θsc(σ, ϕ, t).

. . .

Interpretation:

θ+c (σ, ϕ, t) = s > 0: ρ(σ, ϕ, t) > c for at least time s,

. . .

Remarks:

hopefully more efficient

how to choose c?

not more expressive
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More flexibility

Akazaki T. and Hasuo I. Time robustness in MTL and expressivity in hybrid

system falsification. CAV 2015.

Spatial robustness:

Temporal robustness:
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AvSTL

Syntax

AP = x < r | x ≤ r | x > r | x ≥ r

ϕ = > | ⊥ | AP | ¬ϕ | ϕ∨ϕ | ϕ∧ϕ | ϕUI ϕ | ϕRI ϕ | ϕUI ϕ | ϕRI ϕ

Semantics

ρ+(σ, x < r , t) = max{0, r − σ(x)(t)}
ρ−(σ, x < r , t) = min{0, r − σ(x)(t)}
. . .

ρ+(σ,¬ϕ, t) = ρ−(σ, ϕ, t)

ρ+(σ, ϕU[a,b] ψ, t) = 1
b−a

∫ b
a ρ(σ, ϕU[a,b]∩[0,τ ] ψ, t)dτ

. . .
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Example

Robustnesses: ρ+, ρ−

ϕ = x ≥ 0:

ϕ = FI (x ≥ 0):

Consequences:

temporal aspects

spatial aspects
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Expressivity

expeditiousness: F[0,a] ϕ

deadline: F[0,a] ϕ ∨ F[a,b] ϕ

persistence: G[0,a] ϕ ∧ G[a,b] ϕ
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Experimental results
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Time staging

Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., and Hasuo, I. Two-Layered

Falsification of Hybrid Systems Guided by Monte Carlo Tree Search. EMSOFT

2018.

Ernst, G., Sedwards, S., Zhang, Z., and Hasuo, I. Fast Falsification of Hybrid

Systems using Probabilistically Adaptive Input. QEST 2019.

Idea

σout causally dependent on σin

optimisation methods blind to this dependence

; modify the algorithm to take it into account
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A picture is worth a thousand words

17 / 31



High-Level Algorithm

Alternate between:

Monte-Carlo Tree Search to find a good zone,

hill-climbing to find a good point in the zone.
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Monte-Carlo Tree Search

Each node equipped with:

robustness estimate,

number of visits.

To choose a node, balance between:

an exploitation score (bigger with smaller robustness
estimates),

an exploration score (bigger with fewer visits to the node).
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Robustness estimates

To get robustness estimates: complete the signal by pure
hill-climbing.
For example, for a newly-expanded node:
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Experimental results

Interpretation: MTCS explores more, so:

better results on hard problems

slower on simple problems
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Adaptive Las Vegas Tree Search

To build signal σ incrementally:

randomly choose a level l of “granularity” (initially, low
granularity is favoured),

choose σ′ = Dl(σ), where Dl chooses “finer” signals for large
l (shorter time, more precise value),

adapt Dl according to ρ(σσ′, ϕ, t).
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Experimental results

Interpretation:

falsifying signals are often coarse, or slight variations of such,
so explored very fast by this algorithm,

robustness scores that concern discrete variables are hard to
manipulate for optimisation algorithm (not continuous)
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Idea

Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., and Jin, X. Classification

and coverage-based falsification for embedded control systems. CAV 2017.

Trade-off between:

define a coverage metric of the input space,

alternate between:

a global search to classify the search space into zones,
local searches on the promising zones to converge to a
minimum.
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High-level algorithm

Input: tmax

Output: a u such that M(u) 2 ϕ
S = sample N points at random;
R = zones( S );
while t < tmax do

subdivide( R );
S += biased-sampling( R );
S += singularity-sampling( R );
S += local-search( R );

end
for u in S do

if ρ(u) < 0 then
return u

end

end
return None
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Subdivision

Goal: divide the search space into rectangles with different average
robustnesses.
Input: R a list of rectangles, S a list of sampled points, K a

threshold
Output: a list of subdivided rectangles
for r in R do

pop(R, r);
if |S ∩ r | > K then

H = argmin(ΓH(R,S), H hyperplane);
push(R,r ∩ H−,r ∩ H+);

end

end

Γ(d ,r ,p)(R, S) =
∑

x∈S∩R e(d ,r ,p)(x)
e(d ,r ,p)(x) = max{p(ρ(x)− µ)(xd − r), 0}

27 / 31



Samplings

Biased sampling

Goal: increase coverage and decrease robustness.
Idea: sample according to a weighted sum of two distributions:

P i
c : proportional to the numbers of unoccupied cells in

rectangle Ri ,

P i
r : takes into consideration how the robustness of sampled

points varies from the average.

Singularity sampling

Goal: sample more in rectangles with “singular” samples
(robustness much lower than average in rectangle).
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Local search

Goal: converge to a minimum faster by using local search with a
good seed.
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Experimental results

Interpretation: other methods got caught in local minima.
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Conclusion

different notions of robustness:

can be more expressive
can make algorithms more efficient

time staging:

explores more
hence can resolve harder problems

coverage-based falsification:

theoretical result (if there exists an ε-robust counterexample,
there is a grid size such that will find it)
coverage helps falsification by exploring more, thus avoiding
local minima
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