A comparison between two approaches to concurrent game semantics

Clovis Eberhart and Tom Hirschowitz

LAMA, CNRS, Université Savoie Mont Blanc

CALCO 2017, Ljubljana, June 14-16, 2017

Game semantics (Hyland-Ong '00, Nickau '94):

- Types \rightarrow games
- Programs → strategies

Game semantics for concurrent languages via sheaves:

- Hirschowitz et al.: CCS, π -calculus
- Tsukada and Ong: non-deterministic λ -calculus

Sheaf-theoretic approaches to game semantics

Both approaches

Innocent strategies = sheaves for a Grothendieck topology induced by the embedding of views into plays

Different notions of plays:

- Hirschowitz et al.: string diagrams
- Tsukada and Ong: justified sequences

This work

- Design a string diagrammatic model of HON games
- Show a strong relationship between plays in both models
- Deduce equivalence of both notions of innocent strategies

$$\mathbb{V}_{A,B} \stackrel{\mathsf{i}_{HON}}{\longrightarrow} \mathbb{P}_{A,B}$$

$$\mathbb{E}^{\mathbb{V}}(A \vdash B) \xrightarrow{:} \mathbb{E}(A \vdash B)$$

justified sequences:

string diagrams:

The level of plays

The square

$$\mathbb{V}_{A,B} \stackrel{\mathsf{I}_{HON}}{\longleftarrow} \mathbb{P}_{A,B}$$

$$\downarrow^{F^{\mathbb{V}}} \qquad \qquad \downarrow^{F}$$

$$\mathbb{E}^{\mathbb{V}}(A \vdash B) \stackrel{\mathsf{I}}{\longleftarrow} \mathbb{E}(A \vdash B)$$

is exact (Guitart, 1980), so

$$\widehat{\mathbb{V}_{A,B}} \hookrightarrow \widehat{\mathbb{I}_{i_{HON}}} \longrightarrow \widehat{\mathbb{P}_{A,B}}$$

$$\Delta_{F^{\mathbb{V}}} \uparrow \qquad \qquad \uparrow \Delta_{F}$$

$$\mathbb{E}^{\mathbb{V}}(A \vdash B) \hookrightarrow \widehat{\mathbb{I}_{i}} \longrightarrow \widehat{\mathbb{E}}(A \vdash B)$$

commutes up to isomorphism.

The level of plays

2 The level of strategies

The level of plays

The level of strategies

1 The level of plays

HON game semantics is based on arenas.

Arena = forest of moves

Example: boolean arena \mathbb{B} :

Residual of an arena $A \cdot m$: forest below m

• Play on (A, B) = justified sequence of moves in A or B Example on (\mathbb{B}, \mathbb{B}) :

• View on (A, B) = particular kind of play (inductive definition)

- Position ≈ set of players,
 - positive \circ (labelled by a positive sequent of arenas $(\Gamma \vdash)$) or
 - negative (labelled by a negative sequent of arenas $(\Gamma \vdash A)$)

Plays as string diagrams

- Position \approx set of players,
 - positive \circ (labelled by a positive sequent of arenas $(\Gamma \vdash)$) or
 - negative (labelled by a negative sequent of arenas $(\Gamma \vdash A)$)
- Two kinds of moves:

Plays as string diagrams

- Position \approx set of players,
 - positive \circ (labelled by a positive sequent of arenas $(\Gamma \vdash)$) or
 - negative (labelled by a negative sequent of arenas $(\Gamma \vdash A)$)
- Two kinds of moves:

Play = vertical pasting of moves

The big picture

The big picture

P-view trees

Justified sequence \rightarrow tree whose branches are views Example:

$$q_r \hat{q_1} t_1 f_r f_1 t_r$$

$$\begin{pmatrix}
f_r & t_r \\
t_l & f_l \\
q_l & q_r
\end{pmatrix}$$

P-view trees

Justified sequence \rightarrow tree whose branches are views Example:

$$q_r \hat{q_1} t_1 f_r f_1 t_r$$

Justified sequence \rightarrow tree whose branches are views Example:

$$\begin{array}{cccc}
f_r & t_r \\
\downarrow & \downarrow \\
f_l & f_l
\end{array}$$

Partial trees for:

$$\frac{\text{CIGHT}}{\prod_{i \in A} \Gamma_{i} \Gamma_{i} A \cdot m(i) \vdash \dots (\forall i \in n)}{\Gamma_{i} \vdash A} \qquad \frac{\prod_{i \in FT} \Gamma_{i} \Gamma_{i} A_{i} \triangle \vdash A \cdot m}{\Gamma_{i} \Gamma_{i} A_{i} \triangle \vdash A}$$

Example:

$$\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}\,\mathsf{f}_{r}\quad\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}\,\mathsf{t}_{r}}\,\mathsf{t}_{r}\\\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash}{\mathbb{B}_{I}}\,\mathsf{g}_{I}}\,\mathsf{g}_{I}$$

P-view trees versus proof trees

$$\begin{array}{ccc}
f_r & t_r \\
\downarrow & \downarrow \\
t_l & f_l \\
q_l \\
q_r
\end{array}$$

$$\frac{\begin{cases} f_r & t_r \\ t_l & f_l \\ g_l & f_l \end{cases}}{q_r} \qquad \frac{\frac{\mathbb{B}_{l}, \{t, f\}_r, \varnothing_l \vdash \varnothing_r}{\mathbb{B}_{l}, \{t, f\}_r, \varnothing_l \vdash} f_r}{\frac{\mathbb{B}_{l}, \{t, f\}_r, \varnothing_l \vdash}{\mathbb{B}_{l}, \{t, f\}_r, \varnothing_l \vdash} t_l} \frac{\mathbb{B}_{l}, \{t, f\}_r, \varnothing_l \vdash \varnothing_r}{\mathbb{B}_{l}, \{t, f\}_r \vdash} q_l}$$

Differences:

- Presence of pointers
- Labelling

From proof trees to string diagrams (part 1)

$$\frac{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}\mathsf{f}_{r}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}}\mathsf{t}_{I},\mathsf{f}_{I}}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash}q_{I}}}$$

arbitrarily branching tree binary tree

n-ary node comb

$$\frac{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash} \mathsf{f}_{r} \frac{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash} \mathsf{t}_{r} \mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}} \mathsf{f}_{I}} \mathsf{f}_{I}$$

$$\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash} q_{I}} \mathbb{B}_{I}\vdash\mathbb{B}_{r}} \mathsf{g}_{I}$$

$$\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash} \mathbb{B}_{r}$$

From proof trees to string diagrams (part 1)

$$\frac{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}\mathsf{f}_{r}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}}\mathsf{t}_{I},\mathsf{f}_{I}}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash}q_{I}}}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash}{\mathbb{B}_{I}\vdash\mathbb{B}_{r}}}q_{I}}}$$

arbitrarily branching tree binary tree

n-ary node comb

$$\frac{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash} \mathsf{f}_{r} \frac{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash} \mathsf{t}_{r} \mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}} \mathsf{t}_{I}} \frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash} \mathsf{q}_{I}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash}{\mathbb{B}_{I}}} \mathsf{q}_{I}} \frac{\mathbb{B}_{I}\vdash\mathbb{B}_{r}}{\mathbb{B}_{I}\vdash\mathbb{B}_{r}} \mathsf{q}_{r}}$$

From proof trees to string diagrams (part 2)

$$\frac{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r},\varnothing_{I}\vdash}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash}}}{q_{I}}}}{\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\}_{r}\vdash\{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I}\vdash\mathbb{B}_{r}}}}{\mathbb{B}_{I}\vdash\mathbb{B}_{r}}}}$$

From proof trees to string diagrams (part 2)

$$\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\} \underset{r}{\triangleright} \varnothing_{I} \vdash \varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\} \underset{r}{\triangleright} \varnothing_{I} \vdash} \mathsf{f}_{r} \frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\} \underset{r}{\triangleright} \varnothing_{I} \vdash \varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\} \underset{r}{\triangleright} \vdash \{\mathsf{t},\mathsf{f}\}_{I}} \mathsf{t}_{r} \mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\} \underset{r}{\triangleright} \vdash \{\mathsf{t},\mathsf{f}\}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\} \underset{r}{\triangleright} \vdash \{\mathsf{t},\mathsf{f}\}_{I}} \mathsf{t}_{I}} \mathsf{f}_{I}$$

$$\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\varphi_{I}\vdash}\mathsf{f}_{r}}\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\varnothing_{I}\vdash\varnothing_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\varphi_{I}\vdash}\mathsf{t}_{r}}\,\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\varphi_{I}\vdash}\mathsf{f}_{r}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\varphi_{I}\vdash}\mathsf{f}_{I}}\,\mathsf{f}_{I}}$$

$$\frac{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\{\mathsf{t},\mathsf{f}\},\varphi_{I}\vdash}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\mathsf{f}\vdash}\mathsf{g}_{I}}\,\mathsf{g}_{I}}{\mathbb{B}_{I},\{\mathsf{t},\mathsf{f}\},\mathsf{f}\vdash}\,\mathsf{g}_{I}}\,\mathsf{g}_{I}}$$

From proof trees to string diagrams (part 2)

1 The level of plays

2 The level of strategies

Deterministic strategies

Two notions of strategies

- Behaviours = prefix-closed set of views = $[\mathbb{V}^{op}, 2]$
- Innocent strategies = prefix-closed set of plays + innocence = some functors $[\mathbb{P}^{op}, 2]$

Problem

Milner's coffee machines

accept the same traces: ε , a, ab, and ac.

Non-deterministic strategies

Solution

Accept trace or not \rightarrow set of possible states after accepting trace

- Behaviours = $[\mathbb{V}^{op}, \mathsf{Set}] = \widehat{\mathbb{V}}$
- Innocent strategies = some functors $[\mathbb{P}^{op}, Set]$ = some presheaves in $\widehat{\mathbb{P}}$: essential image of \prod_i

$$\begin{array}{ccc}
a & & & \\
x \cdot & & & \cdot \\
b \downarrow & & \downarrow c \\
\vdots & & & \cdot
\end{array}$$

$$S(a) = \{x, x'\}$$

Categories of innocent strategies

The square

$$\widehat{\mathbb{V}_{A,B}} \stackrel{\prod_{i_{HON}}}{\longrightarrow} \widehat{\mathbb{P}_{A,B}}$$

$$\stackrel{\Delta_{F^{\mathbb{V}}} \uparrow}{\longrightarrow} \widehat{\mathbb{E}(A \vdash B)} \stackrel{\uparrow}{\longrightarrow} \widehat{\mathbb{E}(A \vdash B)}$$

commutes up to isomorphism:

- Behaviours are equivalent
- Innocent strategies are equivalent
- compatible with innocentisation
- (Non-innocent strategies are not)

Conclusion

Done: link between two models of game semantics:

- At the level of plays:
 - Full embedding of justified sequences into string diagrams
 - · Equivalence of categories of views
- At the level of strategies:
 - Equivalent categories of behaviours and innocent strategies
 - Compatible with innocentisation

To do: composition of strategies in our setting.