Multi-party HO

A playground for HO

Fibredness 0000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion O

Constructing Fibred Double Categories Towards New Sheaf Models of Programming Languages

Clovis Eberhart and Tom Hirschowitz

GaLoP XI, Eindhoven, April 2-3, 2016

Introduction •00	Multi-party HO 000000	A playground for HO	Fibredness 0000000	Conclusion O
		Playgrounds		

Game semantics: semantics = interaction.

Playgrounds $pseudo double category \longmapsto notion of strategy.$

- Pseudo double category:
 - with extra structure
 - and properties.
- Strategies:
 - sheaf semantics pprox presheaf semantics + innocence

• or concurrent game strategies.

Multi-party HC 000000 A playground for HO

Fibredness

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

Building playgrounds from signatures

- Until now:
 - automatic: playground \mapsto notion of strategy,
 - playground = pseudo double category + properties,
 - problem: prove properties by hand for each language.
- This work:
 - $\bullet \ \ \text{signatures} \rightarrow \text{playgrounds} \rightarrow \text{strategies},$
 - prove properties abstractly,
 - $\bullet \ \rightsquigarrow$ new play ground for HO games.

Introduction
000

Multi-party HC

A playground for HO

Overview

Fibredness 0000000

Conclusion O

Multi-party HO 00000 A playground for HO

Fibredness 0000000

Conclusion O

HO games: notations

Arena = finite forest of "moves".

- Polarity (O or P) of a move = parity of its depth.
- Roots have polarity O.
- Notation:
 - A an arena,
 - *m* a root of *A*,
 - $A \cdot m$ is the forest below m.

Play = *P*-visible, alternated, justified sequence of even length. View = non-empty play such that $\lceil s \rceil = s$.

Multi-party HO 00000 A playground for HO

Fibredness 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

A framework for HO

First: construct a multi-party framework for HO games. Then: organise it into a pseudo double category. Overview:

- Positions
- Generator moves
- Moves
- Plays

Multi-party HO

A playground for HO

Fibredness 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion O

Positions

Position: (kind of) graph:

troduction	Multi-party	HO
00	000000	

A playground for HO

Fibredness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion 0

Positions

Position: (kind of) graph:

troduction	Multi-party HO	A playground for HO	Fibredness	Conclusion
DO	00000		0000000	O
		Positions		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \rightsquigarrow each player has a sequent $A_1, \ldots, A_n \vdash B$ or $A_1, \ldots, A_n \vdash$ of arenas.

ntroduction	Multi-party HO	A playground for HO	Fibredness	Conclusion
000	000€00		0000000	O
		Moves (1)		

Typical move:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Typical move:

Analogy with sequent calculus:

$$\frac{A, B \cdot q \vdash}{A \vdash B} \qquad \qquad \frac{B, C \vdash B \cdot q}{B, C \vdash}$$

イロト 不得 トイヨト イヨト

э.

More generally, embed into any context. Example:

(日)、

э

Multi-party HO

A playground for HO

Fibredness 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

- Sequences of moves?
- Too naive.
- Need expressive morphisms between plays (e.g., Ong-Tsukada).

Solution: retain only causal dependencies between moves. Problem: how to represent this formally?

Multi-party HC

 Fibredness 0000000

. . .

. . .

Conclusion O

Representing positions

Consider the following category \mathbb{C}_1 :

- objects = sequents and arenas,
- morphisms = occurrences of arenas in sequents.

Any position yields a presheaf on \mathbb{C}_1 !

Multi-party HC 000000 A playground for HO

Fibredness 0000000

. . .

. . .

Conclusion O

Representing positions: examples

- A dangling edge labelled with A: the representable presheaf y_A.
- A player on any sequent: the representable presheaf on that sequent.
- The position $\xrightarrow{A} \xrightarrow{B} \xrightarrow{C}$:

Multi-party HO

A playground for HO

Fibredness 0000000

(日)、

э

Conclusion O

Diagram associated to a position

The presheaf representing

is a colimit of

Multi-party HC 000000 A playground for HO

Fibredness 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

Representing moves

- How to represent plays?
- How to represent moves?
- Moves are more than just relations.
- Add objects to \mathbb{C}_1 to represent moves!
- Glue them together to form plays.

Which objects?

Multi-party HC 000000 A playground for HO

Fibredness 0000000 Conclusion O

Adding objects to \mathbb{C}_1 : fill the shell!

New object μ for move:

Add green and red arrows making the diagram commute:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Multi-party H(000000 A playground for HO

Fibredness 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

The augmented base category

Add an object for each instance

$$\frac{\Gamma, B \cdot q \vdash}{\Gamma \vdash B} \qquad \qquad \frac{\Delta_1, B, \Delta_2 \vdash B \cdot q}{\Delta_1, B, \Delta_2 \vdash}$$

with associated morphisms.

Definition

Let $\ensuremath{\mathbb{C}}$ denote the augmented category.

Multi-party HC 000000 A playground for HO

Fibredness 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion O

Initial and final positions

Representable presheaf y_{μ} : shapeless "blob".

Multi-party HC 000000 A playground for HO

Fibredness 0000000

Conclusion O

Initial and final positions

Representable presheaf y_{μ} : shapeless "blob".

Organise it as a cospan $Y
ightarrow \mathsf{y}_{\mu} \leftarrow X!$

roduction	Multi-party HO	A playground for HO	Fibredness	Conclusion
00	000000		0000000	O
		Summary		

For each intended move:

- new object μ in $\mathbb{C},$
- cospan Y
 ightarrow y $_{\mu} \leftarrow X$, the generator move,
- X initial position,
- Y final position.

Next step: want moves to occur inside larger context:

- glue the generator move
- along some stable part
- to some position (the context).

Multi-party HC 000000 A playground for HO

Fibredness 0000000

イロト 不得 トイヨト イヨト

э.

Conclusion O

Stable part of a generator move

Any position I equipped with morphisms making

commute.

Introduction	Multi-party HO	A playground for HO	Fibredness	Conclusion
000	000000		0000000	O
		Move		

Gluing of a generator move to some context Z:

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

(levelwise pushout).

- 4 日 > 4 個 > 4 画 > 4 画 > - 画 - の Q (

Definition

$Play = finite composite of moves in Cospan(\widehat{\mathbb{C}}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Multi-party HC

A playground for HO

Fibredness 0000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion O

A (pseudo) double category

- Objects:
- Horizontal morphisms:
- Vertical morphisms:
- Cells:

Multi-party HC

A playground for HO

Fibredness 0000000

Conclusion O

A (pseudo) double category

- Objects: positions.
- Horizontal morphisms: morphisms between positions.
- Vertical morphisms: plays.
- Cells: morphisms / making the diagram commute.

roduction	Multi-party HO	A playground for HO	Fibredness	Conclusion
	000000	○○○○○○○○○○○○●○○○	0000000	O
		Composition		

- Horizontal compositions: straightforward.
- Vertical composition: by pushout.
- Vertical composition of cells: by universal property of pushout.

Interchange law:

Multi-party H

A playground for HO

Fibredness 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion O

Comparison with Ong-Tsukada

Ong-Tsukada		playgrounds
views	=	views
plays	\leftrightarrow	plays
no players, no positions	\leftrightarrow	players, positions
time, sequential	\leftrightarrow	no time, causal
P-view	\leftrightarrow	Ø
P-visibility	\leftrightarrow	Ø
composition, hiding	\leftrightarrow	hopeless

- For Ong-Tsukada: V_{A,B} = category of views on A → B (ordered by prefix).
- In our sense: views are some (ad-hoc) non-empty plays on
 A ⊢ B, E^V_{A⊢B} = category of views on A ⊢ B, where morphisms are "temporal inclusion".

Lemma

 $\mathbb{V}_{A,B}$ and $\mathbb{E}_{A\vdash B}^{\mathbb{V}}$ are equivalent.

Introduction	Multi-party HO	A playground for HO	Fibredness	Conclusion
000	000000		0000000	O
		Plays		

Wilder notion of play in our setting. However:

Conjecture

Innocent strategies in our sense are equivalent to innocent strategies in the sense of Ong-Tsukada.

Idea: prove that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is an exact square. Enough to prove: $\mathbb{P}_{A,B} \to \mathbb{E}_{A \vdash B}$ fully faithful.

Multi-party HO

A playground for HO

Fibredness

Conclusion O

Behaviours

Important construction of playgrounds: \mathbb{E} . Innocent strategies \approx sheaves over \mathbb{E} .

\mathbb{E}

- objects: $U: Y \rightarrow X$,
- morphisms $(U: Y \rightarrow X) \rightarrow (U': Y' \rightarrow X')$:

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Multi-party HO

A playground for HO

Fibredness

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conclusion O

Composition in \mathbb{E}

By pasting

where γ is a cartesian lifting of W' along I.

Multi-party HC 000000 A playground for HO

Fibredness

Conclusion O

Crucial property: fibredness

Fibredness

A pseudo double category $\mathbb D$ is fibred if its "vertical codomain" functor cod is a fibration.

Multi-party HC 000000 A playground for HO

Fibredness

Conclusion O

Crucial property: fibredness

Fibredness

A pseudo double category $\mathbb D$ is fibred if its "vertical codomain" functor cod is a fibration.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Factorisation systems

 $(\mathcal{L},\mathcal{R})$ two classes of morphisms of $\mathbb C$ such that:

- every morphism of \mathbb{C} can be decomposed as $r \circ l$, for some $l \in \mathcal{L}$ and $r \in \mathcal{R}$,
- $\mathcal{L} \perp \mathcal{R}$, i.e., for all $l \in \mathcal{L}$, $r \in \mathcal{R}$:

Properties:

- $\bullet \ \mathcal{L}$ and \mathcal{R} contain all isos, are stable under composition,
- \mathcal{L} is stable under pushouts,

• . . .

Multi-party HC 000000 A playground for HO

Fibredness

Conclusion O

Cofibrant generation

 $\mathcal{M}^{\perp} =$ class of morphisms g such that for all f of \mathcal{M} , $f \perp g$. $^{\perp}\mathcal{M} =$ idem.

Small object argument (Bousfield)

For any set J of morphisms of \mathbb{C} , $(J^{\perp}, {}^{\perp}(J^{\perp}))$ is a factorisation system.

Cofibrantly generated factorisation system on $\text{Cospan}(\widehat{\mathbb{C}})$: J set of $X \to y_{\mu}$ for $Y \to y_{\mu} \leftarrow X$ generator move.

 Conclusion O

Construction of the candidate lifting

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへの

Introd	uction
000	

Multi-party HO

A playground for HO

Fibredness

イロト 不得 トイヨト イヨト

э.

Conclusion 0

Proof of fibration

U" → U' by the lifting property of factorisation systems,
Y" → Y' by universal property of pullback.

oduction	Multi-party HO	A playground for HO	Fibredness	Conclusion
O	000000		0000000	•
		Conclusion		

Done:

- general construction of playgrounds,
- better understanding of the link between playgrounds and classical game semantics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Work to do:

- prove full faithfulness of $\mathbb{P}_{A,B} \to \mathbb{E}_{A \vdash B}$,
- influence of space,
- influence of time,
- get the "right" views back,
- make hiding work.