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1 Introduction

A large field of research in computer science deals with programming languages and their se-
mantics. In that field, it is common to study a given language to prove programs written in
it cannot “go wrong”, that is, for example, that they will not crash, or will only crash in a
predictable and recoverable way... It is also common to study the semantics of a programming
language to show, for example, that it is preserved by compilation. However, the techniques
used to prove these properties vary with languages, making the study of each new language a
potentially complex one involving new techniques. Rather than techniques, it would be useful
to have a theory, i.e. a general framework and general tools to study languages, which would
allow the study of languages without having to find new techniques or adapt existing ones to
each new language. For example, we would like to have a general theorem that says that a
morphism from a language L to a language L′ that respects some given properties will preserve
and reflect a particular observational equivalence.

To solve this problem, a sufficiently broad approach of the semantics of programming lan-
guages is needed. Category theory is a mathematical tool that has proved its worth in being
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general. It is general enough to describe properties in many fields of mathematics, such as alge-
braic topology, foundations of mathematics, logics, and semantics of programs, among others.
Moreover, it has already produced some results in this field with game semantics and presheaf
semantics. Therefore, it looks like an approach based on category theory could yield some
interesting results.

Several possible approaches have been suggested to develop general tools to study the seman-
tics of programming languages. One of them, bialgebraic semantics, developed by Marcelo Fiore,
Gordon Plotkin, and Daniele Turi, is an algebraic version of operational semantics. Another
approach, the Tile Model, developed by Ugo Montanari et al., is based on double categories.
Tom Hirschowitz has also developed a 2-categorical approach to higher-order rewriting. How-
ever, none of the approaches mentioned above are used in practice, probably because they are
too demanding on a mathematical level compared to the results they have produced, and, for
most of them, there is no notion of morphism.

Tom Hirschowitz has also started developing a theory of programming languages based on
an algebraic notion called playgrounds to study programming languages and their semantics.
Playgrounds are an algebraic gadget that describe the “rule of the game” of some operational
semantics and produce process terms and strategies corresponding to it. Currently, the only
known example of playground is CCS [?]. In a work in progress, the π-calculus is shown to
also be an instance of playground. The initial goal of the internship was to show that the
join-calculus is another instance of playground. Though that goal wasn’t achieved during the
internship, we have constructed the double category of plays (or candidate playground), which
is a crucial step in the construction of a playground, and we have shown that it satisfies most
of the playground axioms. Moreover, several playground axioms have been proved not only for
the join-calculus, but for a general class of languages, which greatly generalizes the approach.

In a first part, we briefly discuss the categorical notions that are needed to work on play-
grounds.

In the next two sections, we discuss two examples of categories of plays. The first example
is that of MLL interaction nets, and is more of a toy example that is meant to be simple enough
(yet interesting) for the reader to understand how the formal definitions indeed describe plays.
The second one is a more involved example, that of the join-calculus.

In a last part, we will discuss one of the most important achievements of this internship,
which is a correctness criterion that had already been formulated for the π-calculus and that is
now general enough to encompass a large range of calculi.

2 Categorical Prerequisites

We will assume that the reader is familiar with basic notions of category theory (roughly up
to Chapter 5 of [?]) such as functors, natural transformations, Yoneda embedding, limits and
colimits, etc.

2.1 Limits and Colimits of Presheaves

We will use presheaves to define positions and plays, so we state here a well-known theorem
that we will use a lot.

Definition 1 (Presheaf). A (set-valued) presheaf on a category C is a functor U : Cop → Set.

We will denote Ĉ = [Cop,Set] the cateogry of presheaves over C.
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Theorem 1. In a presheaf category, limits and colimits are computed pointwise.

This theorem states that limits and colimits of presheaves “behave well”, that is, have the
same behavior as limits and colimits in Set. It comes from the following classical result [?]
that expresses the fact that limits in functor categories are computed pointwise, provided the
pointwise limits exist (and its dual for colimits):

Theorem 2. If S : J → XP (where XP is the category of functors from P to X) is such
that for every object p ∈ P the composite EpS : J → X (where Ep : XP → X is the functor
“evaluate at p”: EpH = Hp for H functor from P to X, Epσ = σp : Hp → Hp′ for σ : H →· H ′
natural transformation between H and H ′) has a limit Lp with a limiting cone τp : Lp →· EpS,
then there is a unique functor L : P → X with object function p 7→ Lp such that p 7→ τp is a
natural transformation τ : ∆L →· S (where ∆ : X → XJ); moreover, this τ is a limiting cone
from the vertex L ∈ XP to the base S : J → XP .

2.2 Finitely Presentable Presheaves

More precisely, we are interested in “finite” presheaves (because we are especially interested
in finite plays on finite positions). A general notion of finiteness in category theory is that of
finitely presentable object, and we state and prove here a characterization of finitely presentable
presheaves in the case we are interested in.

Definition 2 (Filtered Category). A category I is filtered if it is non-empty and:

• for any x, y ∈ I, there exists z ∈ I and arrows f : x→ z and g : y → z;

• for any pair of parallel arrows f, g : x⇒ y in I, there exists an object z and a morphism
h : y → z such that hf = hg.

A filtered diagram in a category C is a diagram F : I → C from a small filtered category; a
colimit of such a diagram, when it exists, is called a filtered colimit.

Definition 3 (Finitely Presentable Object). An object X of a category C is finitely presentable
if its hom-functor C(X,−) : C → Set preserves filtered colimits.

This exactly means that, if we are given a filtered diagram F : I → C together with a
colimiting cone (fi : F (i)→ Z)i∈I , then:

• every morphism k : X → Z into the colimit Z factors through one of the injections:

X
k→ Z = X

h→ F (i)
fi→ Z for some i ∈ I

• this factorization is essentially unique, that is, if we also have:

X
k→ Z = X

h′→ F (i)
fi→ Z

then there is an object j ∈ I and an arrow g : i→ j such that:

X
h→ F (i)

F (g)→ F (j) = X
h′→ F (i)

F (g)→ F (j)

The intuition behind finitely presentable objects is that they represent “finite” objects, e.g.:

• in Set, finitely presentable objects are exactly the finite sets;
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• in Grp (respectively Rng and R−Mod), finitely presentable objects are exactly the
groups (respectively rings and modules over R) that can be presented using only finitely
many generators and finitely many relations between them.

In our case, we will only work with finitely presentable presheaves on graded categories
(though some of the results still hold for arbitrary presheaves on graded categories).

Definition 4 (Graded Category). A category C is graded if it comes equipped with a functor
F : C → ω (where ω is the category with objects n ∈ N and arrows generated by the order on N)
that reflects identities. The dimension of an object c ∈ C is F (c).

The notion of dimension can be extended to presheaves on C: the empty presheaf has
dimension 0, and a non-empty presheaf X has dimension d where d is the greatest integer such
that there is an object c ∈ C with X(c) 6= ∅.

Proposition 1. Finitely presentable presheaves over graded categories have finite dimension.

Proof. Assume that U is finitely presentable, and let Ui be the subpresheaf of U defined by:

Ui(c) =

{
U(c) if c has dimension at most i
∅ otherwise

(Ui is indeed a presheaf because C is graded).
We define the following filtered diagram:

U0
⊆→ U1

⊆→ ...
⊆→ Un

⊆→ ...

whose colimit is U . Since U is finitely presentable, this means that idU : U → U must factor
through one of the Uis. Therefore, U has finite dimension.

Definition 5 (Category of elements). The category of elements el(F ) of a presheaf F : Cop →
Set has:

• objects: pairs (c, x) where c is an object of C and x ∈ F (c)

• morphisms: u : (c, x)→ (c′, x′) if u : c→ c′ is a morphism of C such that F (u)(x′) = x.

Oftentimes, we omit the c in (c, x), as it is obvious from the context or non-important.
In all the cases we have in mind, the category C is even simpler: not only is it graded, but

also, for any object c ∈ C, C(−, c) is finite. In this case, finitely presentable presheaves are
exactly the presheaves whose categories of elements are finite.

Proposition 2. If C is graded and for any c ∈ C, C(−, c) is finite, then the finitely presentable
presheaves are exactly the presheaves whose categories of elements are finite.

Proof. To prove this, we will use an equivalent characterization of finitely presentable objects
(this characterization is proven equivalent in [?]), which is that its hom-functor preserves di-
rected colimits (the characterization is the same as for filtered limits, namely that there is a
factorization that is essentially unique, but with directed diagrams).

Let us prove both implications of the proposition:

• assume that X is finitely presentable: first, we want to show that X is colimit of its
subpresheaves Xi with finite categories of elements. Since C is graded and for any c ∈ C,
C(−, c) is finite, each representable presheaf has a finite category of elements, therefore, if
there is a cocone from (Xi)i to some Y , there is a morphism from X to Y that commutes
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with this cocone (the cocone itself, because it contains the representabale presheaves, gives
the image of each element of X).

Moreover, this is a directed diagram, so X is a directed colimit of this diagram. Therefore,
idX : X → X must factor through one of the Xis, so X has a finite category of elements.

• assume that X has a finite category of elements: let (Di
fi→ C)i∈I be a directed colimit

and k : X → C; we want k to factor through one of the Dis. Take an element xn ∈ X(cn),
we know that there is a jn such that kcn(xn) lies in the image of fjn . Since X has a finite
category of elements x1, ..., xN and the diagram is filtered, we can find an m ∈ I such
that each Djn

gn→ Dm, therefore k factors through Dm.

To show that this factorization is essentially unique, it is sufficient to show that for any
d, d′ ∈ Di(c), if (fi)c(d) = (fi)c(d

′), then there is j ∈ I and g : Di → Dj such that
gc(d) = gc(d

′), which is a property of directed colimits in Set [?], and since colimits are
computed pointwise, it is also true for presheaves.

2.3 Factorization Systems

Though factorization systems are not used to prove anything written in this report, they are
a key elements to proving one of the playground axioms (namely that the vertical codomain
functor of the double category of plays is a fibration). Though it is not proved yet for the
join-calculus, we contributed a little bit by correcting a proof by Joyal.

Definition 6 (Factorization System). A pair (L,R) of classes of maps in a category C is a
factorisation system if the following conditions are satisfied:

• every morphism f : A → B admits a factorisation f = pu : A → C → B with u ∈ L and
p ∈ R and this factorisation is unique up to unique isomorphism;

• the classes L and R contain the isomorphisms and are closed under composition.

A B

C

D

u

v

p

i

q

Figure 1: Illustration of the
uniqueness condition

L is called the left class andR the right class. The uniqueness
condition in the definition means that for any pair of (L,R)-
factorization of f , f = pu : A → C → B and f = qv : A →
D → B, there is a unique isomorphism i : C → D such that the
diagram in Figure 1 commutes.

Definition 7 (Left and Right Cancellation Properties). A class
M of maps has the left cancellation property if for all u : A→ B,
v : B → C, if vu ∈M and v ∈M, then u ∈M.

Dually, a classM of maps has the right cancellation property
if for all u : A → B, v : B → C, if vu ∈ M and u ∈ M, then
v ∈M.

Proposition 3. The intersection of the classes of a factorization system (L,R) in a category
C is the class of isomorphisms. Moreover, L has the right cancellation property and R has the
left cancellation property.

For the proof, see Joyal’s CatLab [?].

Definition 8 (Orthogonality). A map u : A → B in a category C is left orthogonal to a map
f : X → Y (or f is right orthogonal to u) if every commutative square such as the one in
Figure 2 has a unique diagonal filler d : B → X (du = x and fd = y). We denote this relation
by u⊥ f .
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B

A

Y

X

y

d
u

x

f

Figure 2: A commutative
square and its diagonal filler

If M is a class of maps of C, we denote by M⊥ (respectively
⊥M) its right (respectively left) orthogonal complement, i.e. the
class of maps right (respectively left) orthogonal to all maps in
M.

Proposition 4. Let M be a class of maps in C. Then M⊥
is closed under limits, composition, base changes and it has the
left cancellation property. Dually, ⊥M is closed under colimits,
composition, cobase changes and it has the right cancellation property.

Proof. Most of the proof can be found in Joyal’s CatLab [?]. However, the proof that M⊥ is
closed under limits is wrong, as it relies on the fact that the functor Sq(u,−) : CI → [I× I,Set]
preserves limits, where I is the category 0→ 1 and, for u : A→ B and f : X → Y , Sq(u, f) is
the following square:

C(B, Y ) C(A, Y )

C(B,X) C(A,X)
− ◦ u

f ◦ −

− ◦ u

f ◦ −

However, this assumption is wrong, as the following example shows. Let us work in the
partial order category generated by the following graph:

X

X1

X2

A

Y

Y1

Y2

B

Its category of morphisms has for objects pairs (x, y) with x ≤ y and there is a morphism
(x, y) → (x′, y′) when x ≤ x′ and y ≤ y′. In this category, we verify that (X,Y ) is a product
of (X1, Y1) and (X2, Y2), but Sq((A,B), (X,Y )) is not a product of Sq((A,B), (X1, Y1)) and
Sq((A,B), (X2, Y2)) because:

Sq((A,B), (X,Y )) =
∅ → ∅
↓ ↓
∅ → ∅

Sq((A,B), (X1, Y1)) = Sq((A,B), (X2, Y2)) =
∅ → ∅
↓ ↓
1 → 1

and limits are computed pointwise in functor categories.
Here’s an alternative proof of the fact that M⊥ is closed under limits.
We redefine Sq(u,−) : CI → [I,Set] (note that its type has changed). For u : A → B and

f : X → Y :

Sq(u, f) =

{
C(B,X) → [I, C](u, f)

d 7→ (du, fd)

and this new functor Sq(u,−) preserves limits: since limits are computed pointwise in presheaf
categories, we only have to verify it for each point:

• for 0: the functor is equal to [I, C] dom−→ C
y′B−→ Set (where y′B is the covariant Yoneda

functor at B), which preserves limits as a composite of functors that preserve limits;

• for 1: the functor is equal to [I, C] y′u−→ Set, which preserves limits.
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O ⊗

⊗

Figure 3: The graphical representation of an interaction net

The rest of the proof is similar to that of Joyal, since u⊥ f if and only if Sq(u, f) is an isomor-
phism and isomorphisms of C form a full reflexive subcategory of [I,Set].

The following theorem by Bousfield [?] gives a way to build factorization systems:

Theorem 3. In a locally presentable category, given a class T of morphisms, (⊥(T ⊥), T ⊥)
forms a factorization system.

3 Plays in MLL

3.1 MLL Interaction Nets

Definition 9. An MLL interaction net is given by:

• a finite set of tensor gates and a finite set of par gates, each gate has three ports numbered
1, 2, and 3;

• a finite set of wires that form a pseudo partition (a partition in which empty sets are
authorized) of the ports, with each wire containing 0, 1 or 2 ports (wires that are empty
sets of ports are called loops).

There is a nice graphical representation of MLL interaction nets. For example, the one
shown in Figure 3 represents an interaction net with a single par gate, two tensor gates, and
six wires partitioning the ports.

Graphically, the reduction rule of MLL interaction nets is the following (there is a for-
mal definition, but it is not intuitive and can easily be found after having seen the graphical
definition):

⊗O → •

It may be applied in any “context”, that is, as long as there is a wire regrouping the 1st
port of a par gate and the 1st port of a tensor gate, the rule can be applied, e.g., if the rule is
applied to the interaction net in Figure 3, we get:

⊗
•

= ⊗
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The next subsection aims at giving a categorical formalism to describe MLL interaction nets
and their reductions.

3.2 The Base Double Category

Here, we define the base pseudo double category D for MLL. It is a sub-double category of the
pseudo double category of cospans over some presheaf category.

We start by defining the base category C on which we will take presheaves.
Consider the graph GC with

• four vertices: ∗, O, ⊗ and cut;

• edges s1, s2, s3 : ∗ →O, s1, s2, s3 : ∗ → ⊗, p :O→ cut and t : ⊗ → cut.

Now, we define C to be the free category on GC , modulo the relations:

p ◦ si = t ◦ si i ∈ {1, 2, 3}

The intuition behind this construction is the following.
The object ∗ represents wires in MLL interaction nets.
The object O represents par gates. The morphisms s1, s2, s3 are the three ports of each

gate, so each associates a wire to each gate (in a presheaf U over this category, the arrows are
functions U(si) : U(O) → U(∗), so they do associate wires to gates). The object ⊗ represents
tensor gates, and the morphisms si the three ports of the gate.

The object cut represents a cut-elimination step in the MLL interaction net. The morphisms
p and t show that both a par gate and a tensor gate are part of the cut-elimination step. The
equality p◦s1 = t◦s1 means that, for a cut-elimination step to occur, the par gate and the tensor
gate have to face each other. The other two equations are more complicated to understand, but
their utility will be demonstrated later.

We equip the objects of C with a dimension: ∗ has dimension 0, O and ⊗ have dimension
1 and cut has dimension 2. A channel is an object of dimension 0, a player is an object of
dimension 1, and a move is an object of dimension greater than 1.

A position is a presheaf of dimension at most 1 such that at most two gates point to a given
wire, an interface is a presheaf of dimension 0.

Note that, for each object c of C, C(−, c) is finite and that, with the definition of dimension
above, C is a graded category.

We give concrete examples of positions and plays in the next subsection.

X

U

Y

X ′

U ′

Y ′

t

h

s

k

l

t′

s′

Figure 4: A double cell

Now, consider the pseudo double category [?] D0 with:

• positions as objects;

• natural transformations h : X → Y that are injective above
dimension 0 (the components of h are injective, except pos-
sibly h∗) as horizontal morphisms;

• cospans Y → U ← X in Ĉ as vertical morphisms;

• the commutative diagrams shown in Figure 4 as double
cells, where h, k and l injective above dimension 0.

This forms a pseudo double category with the following compo-
sitions:

8



• the horizontal composition is obvious (it is the composition of natural transformations);

• the vertical composition is the composition of cospans in categories with pushouts, i.e.

the composition of Z
s′→ V

t′← Y and Y
s→ U

t← X is Z
gs′−→ U • V ft←− X, where U • V is

defined by the pushout:

Y

U

V

U • V

s

t

f

g

This composition is associative only up to isomorphism, which is why D0 is a pseudo
double category;

• the horizontal composition of double cells is given by the composition of natural transfor-
mations;

• the vertical composition of double cells is given by the composition of cospans and the
universal property of the pushout.

Let us call the following cospan (on the left) a seed, where the position O↔ ⊗ is obtained as
the pushout on the right and the morphism t′ is obtained by universal property of the pushout:

O↔ ⊗

cut

2 · ∗

t′

[p ◦ s2, p ◦ s3]

∗ ⊗

O O↔ ⊗

cut

s1

s1 t

p

t′

Note that the seed hints the fact that we should have p ◦ s2 = t ◦ s2 and p ◦ s3 = t ◦ s3, so that
the morphism 2 · ∗ → cut we chose is not arbitrary.

The intuition behind the seed is that it is a move that goes from an initial position (the
bottom position of the cospan) to a final position (the top position of the cospan), and that the
bottom position is the minimal position necessary so that the move can be played. We show in
the next subsection what these positions concretely correspond to in MLL interaction nets and
how cut does indeed model cut-elimination.

I

X M Y

Figure 5: Canonical inter-
face

From here on, the construction of the pseudo double category
of plays D is automated.

The canonical interface of a seed Y → U ← X is the pull-
back of t along s in dimension 0. It obviously comes with the
commuting diagram shown in Figure 5.

A move can be played in an arbitrary position, as long as
there is a copy of the seed corresponding to the move in it. The
intuition behind the canonical interface is that it represents the channels that may link the seed
to the rest of the position. Again, we will give concrete examples of how this works in the next
section.
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In the case of cut, we get that I = 4 · ∗, i.e. that there are four wires that may link the
initial position of the seed to the rest of the position when a cut-elimination step occurs, which
is what we were expecting (there are four wires that can link the initial position to the rest of
an interaction net). Had we not forced that p ◦ s2 = t ◦ s2 and p ◦ s3 = t ◦ s3, we would have
found that I = 2 · ∗, which is not what we were expecting.

I0
X0

M0

Y0

Z

X

M

Y

Figure 6: Construction of a move

A move is a cospan obtained by pushout of a seed (in the
case of MLL, there is only one seed) along some h : I → Z
in D0

h (such that X is a position) as shown in Figure 6,
where the dotted arrows are obtained by universal property
of pushout.

Proposition 5. In the diagram above, Y is a position.

Definition 10 (Play). A play is any cospan that is isomor-
phic to a (possibly empty) composite of moves. We note D
the sub-double category of D0 obtained by restricting vertical
morphisms to plays.

3.3 An Example

To give an idea of why what we call positions indeed represent MLL interaction nets, let us
give an example of a net, show what the corresponding presheaf is, and compute its category
of elements.

Let us take the position shown in Figure 3.
This position corresponds to the following presheaf X on C:
X(∗) = {∗1, ∗2, ∗3, ∗4, ∗5, ∗6}, X(O) = {p}, X(⊗) = {t1, t2}, X(cut) = ∅
p · s0 = t1 · s0 = ∗2, p · s1 = p · s2 = ∗0, t1 · s1 = ∗3, t1 · s2 = t2 · s1 = ∗4, t2 · s2 = ∗5, t2 · s0 = ∗6

where x · s is a notation for X(s)(x).
X corresponds exactly to the interaction net above, as it exactly encodes the fact that there

are 6 wires, 1 tensor gate and 2 par gates, and how the gates are connected to the wires (we
assume that s0 is the “front” port, s1 the “bottom” port and s2 the “top” port).

But there is a visual way to represent a presheaf, that is to compute its category of elements.
If we do this for X, we find the following category:

∗1 ∗2
∗3

∗4

∗5
∗6

p t1

t2s2

s1

s0 s0

s1

s2
s1

s2 s0

which is exactly another representation of the MLL interaction net in Figure 3.

Now, let us show what O ↔ ⊗ is. By construction of pushout in presheaf categories, it
consists of a par gate and tensor gate, whose ports s0 point to the same wire. Therefore, it is
exactly the initial position for a cut-elimination step. 2 · ∗ is just a position with two wires,
exactly the final position in a cut-elimination step.

Remember that the canonical interface for cut is 4 · ∗, which we will abusively denote as a
set {a, b, c, d}. We can also write X(∗) = {a, b, c, d, e} (t · s1 = a, t · s2 = b, p · s1 = c, p · s2 = d,
and t · s0 = p · s0 = e) and Y (∗) = {a, c}. The morphisms from the canonical interface to X
and Y that commute with the morphisms in the seed are l : I → X, l(x) = x, and k : I → Y ,
k(a) = k(d) = a, k(b) = k(c) = c.
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Now, we give a simple example of play to illustrate how the category of plays D indeed
corresponds to reductions in MLL interaction nets.

O⊗

•

→

The base position is described by the presheaf X: X(∗) = {a, b, e}, X(O) = {p}, X(⊗) =
{t}, p · s0 = t · s0 = a, p · s1 = t · s1 = b, p · s2 = t · s2 = e.

The canonical interface for the cut move is {a, b, c, d}, with the morphisms. If we pushout
the seed along the morphism f : {a, b, c, d} → {a, b}, f(a) = f(c) = a, f(b) = f(d) = b, we have
the diagram:

{a, b, c, d}
O↔ ⊗

cut

{a, c}

{a, b}
X

M

Y

By construction of pushouts in presheaf categories, the bottom-right presheaf in the diagram
above is indeed X (because it is O ↔ ⊗ in which c is identified with a and d with b). And,
by construction of pushouts in presheaf categories, the top position Y is {a, b, c, d} where c
is identified with a and d with b (by {a, b, c, d} → {a, b}), but a is also identified with d (by
{a, b, c, d} → {a, c}), so Y = {a}, i.e. a single wire, which is what we were expecting.

4 Plays in Join-Calculus

4.1 The Join-Calculus

The join-calculus is a process calculus that gives a model of concurrency. It has the same expres-
sive power as the asynchronous π-calculus, up to their weak output-only barbed congruences
[?].

The syntax presented here is that of the core recursive join-calculus (which has the same
expressive power as the join-calculus, up to observational congruence [?]):

P = x〈u〉 | P |P | def D in P processes
D = x〈u〉 | y〈v〉B P definitions

where x, y, u and v are variable names taken from an infinite set of names.
In the term def x〈u〉 | y〈v〉BP in Q, the scope of x and y is the whole term, while the scope

of u and v is P .
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The defined variables of a definition D = x〈u〉 | y〈v〉B P are dv(D) = {x, y}.
The free variables of a process P are recursively defined in the following way:

fv(x〈u〉) = {x, u}
fv(P |Q) = fv(P ) ∪ fv(Q)

fv(def x〈u〉 | y〈v〉B P in Q) = (fv(Q) ∪ (fv(P )\{u, v}))\{x, y}

The structural congruence ≡ on these terms is the smallest relation such that for all processes
P , Q, R, S and definitions D and D′ such that dv(D) and dv(D′) only contain fresh variables:

P |Q ≡ Q |P
(P |Q) |R ≡ P | (Q |R)

P |def D in Q ≡ def D in P |Q
def D in def D′ in P ≡ def D′ in def D in P

P ≡α Q =⇒ P ≡ Q
P ≡ Q =⇒ P |R ≡ Q |R

P ≡ Q,R ≡ S =⇒ def J BR in P ≡ def J B S in Q

where ≡α is α-conversion (i.e., renaming of bound variables) and J is a join pattern x〈u〉 | y〈v〉.
Now, we define the transitions of this system as the smallest relation such that for every

definition D = x〈u〉 | y〈v〉BR:

x〈s〉 | y〈t〉 D−→ R {u← s, v ← t}

and, for every transition P
δ−→ P ′ (where δ is either a definition D or τ):

P |Q δ−→ P ′ |Q
def D in P

δ−→ def D in P ′ if fv(D) ∩ dv(δ) = ∅
def D in P

τ−→ def D in P ′ if δ = D

Q
δ−→ Q′ if P ≡ Q and P ′ ≡ Q′

The reduction relation is defined as the transitions of this labelled translation system that
are labelled by τ .

Here are some examples of processes written in core recursive join-calculus:

def x〈v〉 | y〈κ〉B κ〈v〉 in P
def once〈a〉 | y〈v〉B x〈v〉 in y〈1〉 | y〈2〉 | y〈3〉 | once〈a〉

The first one implements π-calculus-like channels, as values are sent on x and requests for values
are sent on y, to be matched using the definition. The second one implements some kind of
non-determinism, as only one of x〈1〉, x〈2〉, and x〈3〉 can be spawned, using once〈a〉 as a lock.

4.2 The Candidate Playground

Here, we define the base pseudo double category D that is the candidate playground for the
join-calculus. It is a sub-double category of the pseudo double category of cospans over some
presheaf category.

We start by defining the base category C on which we will take presheaves.
Consider the graph GC with vertices:

• a vertex ∗

12



• for every n ∈ N, a vertex [n]

• for every n ≥ 2, a vertex 〈n〉

• for every n ∈ N, vertices πln, πrn, πn, δln, δrn, δn, reacn, and freacn

• for every n ∈ N and every i, j ∈ {1, ..., n}, a vertex σn,j〈i〉

• for every n ∈ N, every p ∈ N, every i, j ∈ {1, ..., p}, every q ∈ N and every k,m ∈ {1, ..., q},
a vertex τn,p,j〈i〉,q,m〈k〉

and edges:

• for every vertex [n], edges s1, ..., sn : ∗ → [n]

• for every vertex 〈n〉, edges s1, .., sn : ∗ → 〈n〉

• for every vertex πln, edges s, t : [n]→ πln (idem for πrn)

• for every vertex πn, an edge l : πln → πn and an edge r : πrn → πn

• for every vertex δln, an edge t : [n]→ δln and an edge s : 〈n+ 2〉 → δln

• for every vertex δrn, an edge t : [n]→ δrn and an edge s : [n+ 2]→ δrn

• for every vertex δn, an edge l : δln → δn and an edge r : δrn → δn

• for every vertex reacn, an edge t : 〈n〉 → reacn and an edge s : [n+ 2]→ reacn

• for every vertex freacn, an edge f : reacn → freacn

• for every vertex σn,j〈i〉, an edge t : [n]→ σn,j〈i〉

• for every vertex τn,p,j〈i〉,q,m〈k〉, an edge d : freacn → τn,p,j〈i〉,q,m〈k〉, an edge l : σp,j〈i〉 →
τn,p,j〈i〉,q,m〈k〉, and an edge r : σq,m〈k〉 → τn,p,j〈i〉,q,m〈k〉

Now, we define C to be the free category on GC , modulo the relations:

t ◦ si = s ◦ si for any πln, π
r
n, δ

l
n, δ

r
n, reacn, i ∈ n

l ◦ s ◦ si = r ◦ s ◦ si for any δn, i ∈ {n+ 1, n+ 2}
l ◦ t = r ◦ t for any πn, δn

f ◦ d ◦ t ◦ sn−1 = l ◦ t ◦ sj f ◦ d ◦ t ◦ sn = r ◦ t ◦ sm
f ◦ d ◦ s ◦ sn+1 = l ◦ t ◦ si f ◦ d ◦ s ◦ sn+2 = r ◦ t ◦ sk

for any τn,p,j〈i〉,q,m〈k〉

The reasoning behind the construction of this category is the following.
The object ∗ represents channels on which the processes communicate.
The objects [n] are processes that can communicate on n channels, the si : ∗ → [n] repre-

sent the channels on which the process can communicate (since positions will be modelled as
presheaves, the si’s will go from a process to a channel).

The objects 〈n〉 are definitions that know n channels and listen on channels n − 1 and n,
the si’s represent the channels it knows.

The object σn,j〈i〉 represents a process that knows n channels and sends the name i on
channel j, i.e. that a process can be of the form x〈u〉.

The object πn represents the move of a process that knows n channels and forks into two
different processes, i.e. that a process can be of the form P1 |P2 (πln and πrn are the left and
right “half-fork” moves, with l and r being morphisms that link a fork move to its left and right
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half-fork moves). The morphisms t (target) and s (source) represent respectively the player
before and after the move (note that “source” and “target” may sound counter-intuitive). We
require that t ◦ si = s ◦ si because the avatars of the forking player know exactly the same
channels as this player, and the fact that l ◦ t = r ◦ t is because πn is a forking move, so there
is only one player before the move is made.

The object δn represents the move of a process that knows n channels and forks into a
definition that listens on two new channels n + 1 and n + 2 and another process (the two
channels it creates are shared between the definition and the process), i.e. that a process can
be of the form def D in P (δln and δrn are the left and right half-fork moves). The morphism
equations required express exactly the same constraints as for πn, plus that the two new channels
are indeed shared between the definition and the process.

The object τn,p,j〈i〉,q,m〈k〉 represents the synchronization move between a definition that lis-
tens on channels n−1 and n and two processes that send the channel names i and k on channels
j and m respectively (reacn is the part of the synchronization that creates a new process from a
definition and freacn is here for technical purposes). The morphism equations required express
the fact that channels n−1 and n (on which the definition listens) are indeed channels j and m
(on which the names are sent) and that channels n+ 1 and n+ 2 of the newly created process
are channels i and k (that were sent to the definition).

We equip the objects of C with a dimension: ∗ has dimension 0, all [n] and 〈n〉 have dimension
1, all πln, πrn, δln, δrn, reacn and σn,j〈i〉 have dimension 2, all πn and δn have dimension 3, and all
τn,p,j〈i〉,q,m〈k〉 have dimension 4. A channel is an object of dimension 0, a player is an object of
dimension 1, and a move is an object of dimension greater than 1.

Note that for any c ∈ C, C(−, c) is finite, and that, with the definition of dimension
given above, C is a graded category. Therefore, finitely presentable presheaves are exactly
the presheaves with finite categories of elements. Plays represented by finitely presentable
presheaves may be understood as finite plays on finite positions.

We define positions as presheaves of dimension at most 1 and interfaces as presheaves of
dimension 0.

We define the pseudo double category D0 in the same way as in MLL. The construction of
D will also be the same as in MLL, the only thing that changes is what cospans the seeds are.

We define seeds to be the cospans shown in Figure 7, where the positions n |n, n+2Bn+2,

p
j〈i〉
 n

m〈k〉
 q, nDn+2, and nDn+2, p, q are defined as shown in Figure 8, and the corresponding

morphisms t′ and s′ are defined by the universal properties of these colimits.
Just like in the case of MLL, the canonical interface of a seed Y → U ← X is defined as the

pullback of t along s in dimension 0, and it has the same commuting diagram.
A move is a cospan obtained by pushout of a seed along some h : I → Z in D0

h in the same
way as in MLL.

A basic move is a move isomorphic to one of the seeds reacn, πln, πrn, δln, and δrn.

Definition 11 (Play). A play is any cospan that is isomorphic to a (possibly empty) composite
of moves. We note D the sub-double category of D0 obtained by restricting vertical morphisms
to plays.

Proposition 6 (Views). For any move Y → M ← X and player x : p → Y (where p = [n]
or p = 〈n〉), there exists a play p → V x,M ← px,M and double cell αx,M : V x,M → M with
dom(αx,M ) = x, which either is a basic move or has length 0, and which is unique up to
canonical isomorphism.
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〈n〉

reacn

[n+ 2]

[n]

δln

〈n+ 2〉

[n]

δrn

[n+ 2]

[n]

σn,j〈i〉

n · ∗

[n]

πln

[n]

[n]

πrn

[n]

t t t t t t

s s s t ◦ [si]i≤n s s

[n]

πn

n |n

[n]

δn

n+ 2B n+ 2

〈n〉

freacn

nD n+ 2

p
j〈i〉
 n

m〈k〉
 q

τn,p,j〈i〉,q,m〈k〉

nD n+ 2, p, q

l ◦ t = r ◦ t l ◦ t = r ◦ t f ◦ t t′

s′ s′ f ◦ s′ s′

Figure 7: Seeds in the join-calculus

Proof. A straightforward case analysis.

This is one of the playground axioms, known as the axiom of views, that was proved for the
join-calculus.

Proposition 7 (Right decomposition). Any double cell (in the middle), where B is a basic
move and M is a move, decomposes into exactly one of the forms (on the left and on the right):

X

Y

Z

X ′

Y ′

Z ′
h

U

B

k

U ′

M

α
=⇒ 

X

Y

Z

X ′

Y ′

Z ′
h

U

B

l

k

U ′

M

α1=⇒

α2=⇒

 

X

Y

Z

X ′

Y ′

Z ′
h

U

B

k

l

U ′

M

α1=⇒

α2=⇒

This is also one of the playground axioms, which has been proved in a general case with
some hypotheses on the shape of the seeds.

5 A General Correctness Criterion

In order to know when a cospan Y → U ← X is a play, it is useful to have a combinatorial
criterion. This criterion may be formulated and proved correct for a large class of games. In
this section, we present the definitions necessary to formulate the criterion and prove it. The
proof of the criterion is in appendix A.

We will assume that the base category C is graded, and “presheaf” will mean “finitely
presentable presheaf”.
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s
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δln

δrn

δn
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sj + sm
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n · ∗
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〈n〉 nD n+ 2

reacn

[si]i≤n

[si]i≤n s

t
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Figure 8: Auxiliary definitions for seeds

Definition 12 (Dimension). The dimension of an object c of C is F (c). Based on this notion
of dimension, the objects of C are partitioned into three classes:

• channels are objects ∗ of dimension 0;

• players are objects d of dimension 1;

• moves are objects m of dimension ≥ 2.

Remember that the base category we have given for the join-calculus is graded and that
the definitions of channels, players, and moves coincide with those we have given for the join-
calculus. The base category for MLL is graded as well.

Definition 13 (Seed). To each object m of C we associate a seed, that is a cospan of presheaves

Y
s
↪→M

t←↩ X, such that M is the representable presheaf y(m), where y is the Yoneda embedding

y : C → [Cop,Set], y(c) = C(−, c). Moreover, we ask that, for all seeds, (X + Y )(p)
[tp,sp]−→ M(p)

is surjective for all players and all channels p.
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Note that t and s have to be injective, which is true for all seeds in the base category for
the join-calculus, but not for that of MLL (because there are 5 wires in the initial position and
only 3 wires in cut).

Definition 14 (Core). Given a presheaf U , we say that µ is a core of U if µ is a move and for
any element x in el(U), if f : µ→ x in el(U), then x = µ and f = idµ.

Definition 15 (Consumed, Created, and Surviving Players). For every seed Y
s
↪→ M

t←↩ X,
we partition the set of players M(d) in the following way:

• consumed players: Co(M)(p) = tp(X(p))− sp(Y (p))

• created players: Cr(M)(p) = sp(Y (p))− tp(X(p))

• surviving players: Sr(M)(p) = tp(X(p)) ∩ sp(Y (p))

These notions are extended to cores in the obvious way.

Definition 16 (Initial and Final Players). We define the initial and final players and channels
of a presheaf U in the following way:

• a player (or a channel) is initial if it is not created by any core of U : Init(U)(p) = {x ∈
U(p) | @µ ∈ el(U), x ∈ Cr(µ)(p)};

• a player (or a channel) is final if it is not consumed by any core of U : Fin(U)(p) = {x ∈
U(p) | @µ ∈ el(U), x ∈ Co(µ)(p)}.

Definition 17 (Local 1-Injectivity). A presheaf U on C is locally 1-injective if for every seed

Y
s
↪→M

t←↩ X with canonical interface u : I →M and every corresponding core µ ∈ el(U) (seen
as a morphism µ : M → U), if x 6= y ∈M are such that µ(x) = µ(y), then x, y are in the image
of u.

Definition 18 (Core Separation). A presheaf U on C is core-separating if for all cores µ 6=
µ′ ∈ el(U), the pullback of µ along µ′ is a position.

Definition 19 (Past). The past of a seed Y
s
↪→ M

t←↩ X is the set past(M) = Σo∈CM(o) −
so(Y (o)). This notion is extended to cores: the past of a core µ ∈ el(U) is the set µ(past(M)).

Definition 20 (Causal Graph). Given a presheaf U on C, we define its causal graph GU in
the following way:

• its vertices are all the players, channels, and cores of U

• there is an edge:

– d→ µ for each core µ and player or channel d that is in Cr(µ)

– µ→ d for each core µ and player or channel d that is in Co(µ) ∪ Sr(µ)

– µ → µ′ for all cores µ 6= µ′ such that there is a player or a channel that is in
Co(µ) ∩ (Co(µ′) ∪ Sr(µ′))

Definition 21 (Source Linearity). A causal graph GU is source-linear if for all players d and
cores µ, µ′, if d→ µ and d→ µ′ in GU , then µ = µ′.

Theorem 4 (Correctness Criterion). A cospan Y
s
↪→M

t←↩ X is a play if and only if:
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• U is locally 1-injective and core-separating

• X contains exactly the initial players and channels

• Y contains exactly the final players and channels

• GU is source-linear and acyclic

6 Conclusion

Though the initial goal of the internship, which was to show that the join-calculus is an instance
of playgrounds, has not been achieved, most playground axioms have been proven for the join-
calculus. Moreover, significant steps have been taken to generalize the proofs of the playground
axioms to a large class of operational semantics.

An immediate direction for future research would be to indeed show that the join-calculus
is an instance of playground, and study the semantics given by that playground. Once this
is done, there would be three known instances of playgrounds (CCS, π, and join), so it would
be interesting to study the notion of morphisms between these playgrounds. Another direction
for future research would be to continue proving the playground axioms in the general case
for a large class of operational semantics. A last direction for research would be to find a
way to automatically build the seeds corresponding to an operational semantics (because their
construction is currently done by hand), so that the construction of a playground may become
completely automated.
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A Proof of the Correctness Criterion

The following lemmas are used to prove lemma 3, which is used in the proof of the correctness
criterion.

Lemma 1. Let U be a finitely presentable presheaf on C and m be a move in el(U). Then there
is a core µ such that m→ µ in el(U). If U is core-separating, then µ is unique.

Proof. We have proved in Proposition 1 that U has finite dimension. Let us show the lemma:
if there is no m1 6= m such that m → m1, then we can take µ = m, which is indeed a core.
Otherwise, we have found f1 : m→ m1. We can repeat this process so that either m1 is a core
or we find f2 : m1 → m2, and so on. This process will ultimately stop for some i ∈ N since
U has finite dimension and a new mj has dimension greater than that of all the previous ones

(because C is graded). Therefore, we have a core µ = mi and m
(fj)−→ µ.

If U is core-separating, then assume that there are cores µ 6= µ′ such that m → µ and
m→ µ′, then m is in the pullback of µ along µ′, which contradicts core separation.

Lemma 2. If U ∈ Ĉf , µ is a core of U and x a player in U(p) (or a channel in U(∗)), there is
a morphism f : x → µ in el(U) if and only if there is either an edge µ → x or an edge x → µ
in GU .

Proof. Here is the proof of both directions if x is a player (the proof is exactly the same if x is
a channel):

The reverse direction is obvious by construction of the causal graph and because the seeds
are representable.

Let us show ⇒: through the bijection between seeds and moves, f is in the image of a seed

Y
s
↪→ M

t←↩ X. Therefore, by surjectivity of (X + Y )(p)
[tp,sp]−→ M(p), x is in the image of X or

in that of Y , so, by construction of the causal graph, there is either an edge µ→ x or an edge
x→ µ in GU .

Lemma 3. Let U be a presheaf on C and µ be maximal in GU (i.e., there is no path from µ to
any other core). Assume the final players and channels of U form a presheaf Y and that U is
core-separating. Then for all c ∈ el(U), U(c)− past(µ) = (U ) µ)(c).

Proof. Let us show both inclusions:

• the direction (U ) µ)(c) ⊆ U(c)− past(µ) is obvious;

• let us show that U(c)− past(µ) ⊆ (U ) µ)(c):

we only need to show that U − past(µ) forms a subpresheaf of U . Let us take x ∈
U(c′) − past(µ) and f : c → c′, and show that x′ = x · f 6∈ past(µ): let us assume that
x′ ∈ past(µ), we want to derive a contradiction.

Since C is graded and f cannot be the identity, x and x′ are one of the following:

– x is a move: by lemma 1, there is a core x̃ of U with a morphism g : x → x̃, now
there are two possible cases for x′:

∗ x′ is also a move: in this case, x′ is in the pullback of x̃ along µ, and we know
that x̃ 6= µ because x is not in past(µ), which contradicts core separation of U ;

∗ x′ is a player or a channel: in this case, by lemma 2, we know that there is either
an arrow x′ → x̃ or an arrow x̃→ x′ in GU :
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· if there is an arrow x′ → x̃ in GU : we have µ → x′ → x̃ in GU , which
contradicts maximality of µ in GU ;

· if there is an arrow x̃ → x′ in GU : we have µ → x′ and x̃ → x′ in GU , and
since x′ is in past(µ), there is an arrow µ→ x̃, which contradicts maximality
of µ in GU ;

– x is a player and x′ is a channel: since x′ 6∈ Y , we know that x 6∈ Y , therefore
there is a core µ′ such that x ∈ past(µ′). µ′ 6= µ (otherwise, x ∈ past(µ)), and since
x ∈ past(µ′) ⊆ µ′(t′(X ′)), we know that x′ = x · f ∈ µ′(t′(X ′)) as well, so there is
an edge µ′ → x′ in GU . Since x′ ∈ past(µ), there is an edge µ → µ′ in GU , which
contradicts maximality of µ in GU

The following lemmas prove that if Y
s
↪→ U

t←↩ X is a play, then it verifies the correctness
criterion.

Lemma 4. Let Y
s
↪→ U

t←↩ X be a play. Then U is locally 1-injective.

Proof. Decompose U into moves. Each core µ corresponds to exactly one such move, say M ′,
obtained by pushout of a seed M along some I → Z. By construction of pushouts in presheaf
categories, M ′ is obtained from M with identifications only occurring in the image of I.

Lemma 5. Let Y
s
↪→ U

t←↩ X be a play. Then U is core-separating.

Proof. Decompose U into moves. Each core corresponds to exactly such a move. Therefore,
µ 6= µ′ correspond to different moves. By construction of pushouts in presheaf categories, the
play is obtained by identifying only positions between the different moves, so the pullback of
two cores is a position.

Proof. Let us prove this by induction on the play Y
s
↪→ U

t←↩ X:

• if the play is empty: there is no core, so the property is obviously true

• if the play is Z
s′
↪→ U ′

t′←↩ Y s
↪→M

t←↩ X: let us take c ∈ U(∗):

– either c ∈ U ′(∗): if c = x · s:
∗ either x ∈ U ′(p): then the property holds by induction hypothesis

∗ or x ∈M(p)− U ′(p): then x ∈ past(µ0), so the property holds

– or c ∈M(∗)−U ′(∗): if c = x·s, then x 6∈ U ′(p), so x ∈M(p)−U ′(p), so x ∈ past(µ0),
so the property holds

Lemma 6. Let Y
s
↪→ U

t←↩ X be a play. Then X contains exactly the initial channels and
players and Y exactly the final channels and players.

Proof. Let us show that X contains exactly the initial players and channels.
Choose a decomposition of U into moves:
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X0 = X

X1

...

Xn

M1

M2

Mn

...

U

If x is in X, then it is in X0, ..., Xi for some i (because identifications can only occur between
Xj and Xj+1). Therefore, it is not in Cr(µ) for any core µ of U , so it is initial.

If x is initial, it is not in Cr(µ) for any core µ of U . Therefore, if it is in Xi, it is in Xi−1
and therefore in X0 = X. Since x is at least in one Xi, it is in X.

A similar reasoning shows that Y only contains final players and channels.

Lemma 7. Let Y
s
↪→ U

t←↩ X be a play. Then GU is source-linear.

Proof. Using the same kind of arguments as in lemma 6, if a player x is in Xi, then it is exactly
in Xj , ..., Xk for some j ≤ i ≤ k. Therefore, it may only be created by at most a single move,
which happens exactly when j ≥ 1, in which case it is created by Mj . This shows that GU is
source-linear.

Lemma 8. Let Y
s
↪→ U

t←↩ X be a play. Then GU is acyclic.

Proof. Choose a decomposition of U into moves. We can build the graph inductively in the
following way:

• add all the players and channels in the initial position and the edges between them (this
does not form a cycle since the only edges are from players to channels)

• add the core corresponding to M1 and all the edges from M1 to the vertices already in
the graph (notice that all the edges are indeed from M1, so it cannot create cycles)

• add all the players and channels in X1 and all the edges between them and the vertices
already in the graph (again, notice that, since we only added channels and players that
were created by the core corresponding to M1, all the edges are from them, so this cannot
create cycles)

• add the core corresponding to M2...

This construction shows that there is no cycle in GU .

Theorem 5 (Correctness Criterion). A cospan Y
s
↪→ U

t←↩ X is a play if and only if:

• U is locally 1-injective and core-separating

• X contains exactly the initial players and channels

• Y contains exactly the final players and channels

• GU is source-linear and acyclic
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Proof. Let us prove both directions. If Y
s
↪→ U

t←↩ X is a play, then it verifies the properties by
lemmas 4, 5, 6, 7 and 8.

Now assume Y
s
↪→ U

t←↩ X verifies the properties, let us show it is a play. We proceed by
induction on the number of moves in U .

• if there is no move in U , then U is a position, all players and channels are both initial and

final, so s and t are isomorphisms, so Y
s
↪→ U

t←↩ X is a play.

• if there is at least a move in U , we want to decompose Y
s
↪→ U

t←↩ X into Y
s′′
↪→ U ′

t′′←↩
Z

s′
↪→M

t′←↩ X with Z
s′
↪→M

t′←↩ X a move and Y
s′′
↪→ U ′

t′′←↩ Z that verifies the hypotheses
and such that U ′ contains strictly fewer moves than U .

Take µ0 maximal in GU (possible since GU is acyclic) and let

I0

X0 M0 Y0

h0
l0

k0

t0 s0

be the corresponding seed with its canonical interface.

We define h : X0 → X to be the unique morphism such that

X0 X

M0 U

h

t0 t

µ0

commutes. It exists indeed because the image of µ0 ◦ t0 : X0 → U are initial players and
channels: be x0 ∈ X0 and let u0 = µ0(t0(x0)), if u0 is not initial, then there is a µ′ ∈ el(U)
such that u0 → µ′ in GU , but we know that µ0 →∗ u0 in GU by construction, which
contradicts the fact that µ0 is maximal in GU . It is unique because t is monic.

Now, we define X1 to be X to which the players in the image of X0 have been removed.
X1 is still a presheaf because it contains all the channels. Since colimits are computed
pointwise in presheaf categories, it is easy to see that X is the pushout of h0 : I0 → X0

and h1 = I0
h0−→ X0

h−→ X
⊆−1

−→ X1 (⊆−1 is well-defined on the image of I0).

Now, we define M and Z to be the following pushouts:

I0

M0

X1

M

h1

l0 t1

l

I0

Y0

X1

Z

h1

k0

k

We define t′ : X → M and s′ : Z → M by universal property of the pushout. What

we have constructed up to this point is a move Z
s′
↪→ M

t′←↩ X, as the following diagram
shows:
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I0
X0

M0

Y0

X1

X

M

Z

h

t′

s′

By the pushout lemma, the following diagrams are also pushouts:

X0

M0

X

M

h

t0 t′

l

M0

Y0

M

Z

s0

k

l

s′

Since we know that, by construction,

X0 X

M0 U

h

t0 t

µ0

commutes, by property of the pushout, we define µ : M → U . Now, we define U ′ =
U − past(µ0), which is a presheaf by lemma 3. We have the inclusion U ′ → U .

We define t′′ : Z → U ′ as Z
s′−→ M

µ−→ U
⊆−1

−→ U ′ (⊆−1 is well-defined on the image of Z
because the only players and channels in past(µ0) are in the image of X0\Y0 and this does

not intersect the image of Z) and s′′ : Y → U ′ as Y
s−→ U

⊆−1

−→ U ′ (⊆−1 is well-defined on
the image of Y because Y only contains final players and channels and the players and
channels in past(µ0) cannot be final).

Now, we want to show that

M U

Z U ′

s′

t′′

µ

⊆

is a pushout. By the pushout lemma, it is sufficient to show that

M0 U

Y0 U ′

s0

f = µ0 ◦ s0

µ0

⊆
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is a pushout. It is sufficient to show that:

– [µ0,⊆] is surjective

– if µ0(m) =⊆ (u), then there exists y such that s0(y) = m and f(y) = u

– if µ0(m) = µ0(m
′) 6∈ =(⊆), then m = m′

The first point is obvious (each u in U is either in the past of µ0 and therefore has an
antecedent by µ0 or not and is therefore in U ′), the second one is a simple case analysis
on whether x is in Y0 or not and the third one is true because elements that are not in
=(⊆) are not in I0 and therefore cannot be identified. Therefore, it is indeed a pushout.

Hence, Y → U ← X is indeed the composition of the cospans Y → U ′ ← Z and Z →
M ← X. Since it is obvious that U ′ contains strictly fewer moves than U , the only thing

left to show is that Y
s′′→ U ′

t′′← Z verifies the properties.

First, we need to show that s′′ and t′′ are injective. s′′ obviously is because s is.

To show that t′′ is injective, let us first show that µ is. Let us focus on the following
diagram:

X0 X

M0 M U

t

µ0

µ

Let us choose x and y in M such that µ(x) = µ(y) and show that necessarily x = y. Since
M is the pushout of X and M0, there are three possible cases:

– either x and y are both in X, in which case x = y by injectivity of t

– or x and y are both in M0, in which case, since U is locally 1-injective, x and y are
both in X0, so both in X, so x = y by injectivity of t

– x is in X\X0 and y is in M0\Y0, in which case µ(x) is initial, but µ(y) is not, which
is absurd.

From the fact that U ′ is a subpresheaf of U , it is obvious that U is locally 1-injective
and core-separating and that GU is source-linear and acyclic. We need to show that Z
contains exactly the initial players and channels of U ′ and Y the final ones.

Let us show that a player (or a channel) is in Z exactly when it is initial in U ′:

– take x ∈ Z, then either x is in X1 ⊆ X so it is initial in U and therefore initial in
U ′, or x is in Y0, in which case:

∗ either x is in Y0 ∩X0, so x is initial in U , hence initial in U ′

∗ or x is in Y0\X0, so there is an edge µ(x) → µ0 in GU , so, since GU is source-
linear, there is no edge µ(x) → µ′ in GU for µ′ 6= µ0. Hence, there is no arrow
µ(x)→ µ′ in G′U .

– take x initial in U ′, there is no edge µ(x)→ µ′ to a core µ′ in GU ′ , so:

∗ if µ(x) 6→ µ0 in GU , then x is initial in U , so in X, so there are three possible
cases:
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· x is in X1: then x is indeed in Z

· x is in X0 ∩ Y0: then x is indeed in Z

· x is in X0\Y0: then x is not in U ′, which is absurd.

∗ if µ(x)→ µ0 in GU , then x is in Y0\X0, so indeed in Z.

Let us show that a player (or a channel) is in Y exactly when it is final in U ′, that is to
say that final players (and channels) in U ′ are exactly the same as in U :

– if x is final in U , then it is obviously final in U ′

– if x is final in U ′, then there is no core µ′ of U ′ such that µ(x) ∈ Co(µ′), moreover,
µ(x) cannot be in Co(µ0) (otherwise it would be in past(µ0) and couldn’t be in U ′),
so it is also final in U .

Here is the diagram resuming the whole construction:

I0
X0

M0

Y0

X1

X

M

Z

h

t′

s′

U

U ′

Y

t

µ0

µ

s
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