Mathematical Semantics of Computer Systems, MSCS (4810-1168) Handout for Lecture 10 (2015/01/05)
 Ichiro Hasuo, Dept. Computer Science, Univ. Tokyo
 http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro

Remember: we loosely follow [4], but it hardly serves as an introductory textbook. More beginnerfriendly ones include [1,5]; other classical textbooks include [6, 2]. nLab (ncatlab.org) is an excellent online information source.

1 On the Yoneda Lemma (Ctn'd)

- Cayley's representation theorem (recap)
- Generalizing a group (hence a monoid) to a category: an arrow becomes a function. How?
- Answer:

$$
\frac{X \longrightarrow X^{\prime} \text { in } \mathbb{C}}{\overline{\overline{\mathbb{C}}(\ldots, X) \Longrightarrow \mathbb{C}\left(_, X^{\prime}\right), \text { nat. trans. }}} \text { (the Yoneda lemma) }
$$

- The Yoneda embedding \mathbf{y} carries $X \in \mathbb{C}$ to a presheaf $\mathbf{y} X=\mathbb{C}\left(_, X\right)$
- A basic idea in category theory: the identity of objects do not matter; what matters is how an object is "related" to others
- The Yoneda embedding \mathbf{y} gives an abstract representation of an object X as "a guy to which another object Y has the set $\mathbb{C}(Y, X)$ of arrows"
- Listing up some guy's properties identifies the guy!
- Proof of the lemma that John proved in concrete terms:
a left adjoint, if it exists, is unique up-to natural isomorphisms
Lemma. Homfunctors preserve (co)limits.

2 Algebraic Semantics as a Precursor of Categorical Semantics

This section is essentially a brief recap of [3, Chap. 2], aimed also at the audience not familiar with formal logic.

2.1 The Word Problem

Consider the following "syntactic system."

- Terms are defined by the following BNF notation:

$$
\text { Terms } \ni t, t_{1}, t_{2} \quad::=\quad \mathrm{x} \in \operatorname{Var}|\mathrm{e}| t \cdot t \mid t^{-1}
$$

- The relation \sim between terms is defined inductively by the following rules.

$$
\begin{aligned}
& \overline{\left(t_{1} \cdot t_{2}\right) \cdot t_{3} \sim t_{1} \cdot\left(t_{2} \cdot t_{3}\right)} \text { (Associativity) } \\
& \overline{\mathrm{e} \cdot t \sim t} \text { (Unit-Left) } \overline{t \cdot \mathrm{e} \sim t} \text { (Unit-Right) } \\
& \overline{t^{-1} \cdot t \sim \mathrm{e}} \text { (InVERSE-LEFT) } \quad \overline{t \cdot t^{-1} \sim \mathrm{e}} \text { (InVERSE-RIGHT) } \\
& \overline{t \sim t} \text { (Reflexivity) } \quad \frac{t \sim s}{s \sim t} \text { (Symmetry) } \frac{t \sim s \quad s \sim u}{t \sim u} \text { (Transitivity) } \\
& \frac{t_{1} \sim s_{1} \quad t_{2} \sim s_{2}}{t_{1} \cdot t_{2} \sim s_{1} \cdot s_{2}}(\cdot \text {-Congruence }) \quad \frac{t \sim s}{t^{-1} \sim s^{-1}}\left(\left(\left(_{-}\right)^{-1} \text {-Congruence }\right)\right.
\end{aligned}
$$

Remark. (For those who are not familiar with formal logic) The "inductive definition of \sim by the rules" means that we have $t \sim s$ if and only if we can draw a (finite-height) proof tree using the rules, for example

$$
\frac{\overline{\left((x y)^{-1} x\right) y \sim(x y)^{-1}(x y)}(\text { Associativity }) \overline{(x y)^{-1}(x y) \sim e}}{\left((x y)^{-1} x\right) y \sim e} \text { (Inverse-LEFT) }
$$

Remark. (For those who are familiar with formal logic) The above is an equational theory of groups, formulated as usual in equational logic.

Now the question is: given terms s and t, can we know if $s \sim t$ holds? How? This problem is known as the word problem for groups.

Theorem (Novikov, 1955). The word problem for groups is undecidable.
Therefore there is no generic algorithm that decides the problem.

2.2 Use of Algebraic Semantics

For those of you who are familiar with abstract algebra or group theory, the following fact will come as trivial.
(\dagger) If there is a group G in which the terms s and t are not equal, then we know that $s \sim t$ does not hold.

Implicit here is the use of algebraic semantics.
Definition. Let G be a group and $V: \operatorname{Var} \rightarrow|G|$ be a function (here $|G|$ denotes the underlying set of G; we call the function V a valuation). The denotation $\llbracket t \rrbracket_{V}$ of a term t under V is an element of the group G defined in the obvious inductive way; namely

$$
\begin{aligned}
\llbracket x \rrbracket_{V} & :=V(x) & \llbracket \mathrm{e} \rrbracket_{V} & :=e_{G} \\
\llbracket t_{1} \cdot t_{2} \rrbracket_{V} & :=\llbracket t_{1} \rrbracket_{V} \cdot G_{G} \llbracket t_{2} \rrbracket_{V} & \llbracket t^{-1} \rrbracket_{V} & :=\left(\llbracket t \rrbracket_{V}\right)^{-1}
\end{aligned}
$$

Note here that the unit, the multiplication operator and the inverse operator on the left-hand sides are syntactic symbols; those on the right-hand sides are mathematical/semantical operators in the group G.

Now it is possible to "investigate" whether $s \sim t$ holds by looking at their semantics.

Theorem (soundness). If $s \sim t$ holds, then $\llbracket s \rrbracket_{V}=\llbracket t \rrbracket_{V}$ for any group G and any valuation $V: \operatorname{Var} \rightarrow|G|$.

Proof. Straightforward, by structural induction on the construction of proof trees.
You see that the quotation (\dagger) in the above is the (sloppily stated version of the) contraposition of the theorem. Therefore, to refute $s \sim t$, it suffices to find convenient G and V such that $\llbracket s \rrbracket_{V} \neq \llbracket t \rrbracket_{V}$.

2.3 Completeness and the Term Model

The obvious question that remains is: is the above "investigation method" complete, too? The answer is positive:

Theorem (completeness). Assume that $\llbracket s \rrbracket_{V}=\llbracket t \rrbracket_{V}$ for any group G and any valuation V : Var \rightarrow $|G|$. Then $s \sim t$ holds.

Proof. We can in fact construct a special group G_{0} by syntactic means-and a special valuation $V_{0}: \operatorname{Var} \rightarrow\left|G_{0}\right|$ that accompanies-such that $\llbracket s \rrbracket_{V_{0}}=\llbracket t \rrbracket_{V_{0}}$ if and only if $s \sim t$ holds.

Concretely:

- $\left|G_{0}\right|=\left\{[s]_{\sim} \mid s\right.$ is a term $\}$, where $[s]_{\sim}$ is the \sim-equivalence class of the term s
- Operations are defined syntactically, that is for example,

$$
\begin{equation*}
[s]_{\sim} \cdot G_{0}[t]_{\sim}=[s \cdot t]_{\sim} \tag{1}
\end{equation*}
$$

and so on. Note here that $\cdot G_{0}$ on the left-hand side is a semantical/mathematical entity (a group multiplication); in contrast • on the right-hand side is a syntactic entity (an operation symbol).

We have to check the following. These are all straightforward.

- \sim is an equivalence relation of terms. (This follows from the rules that define \sim)
- The operations in (1) are well-defined. (Follows from the Congruence rules)
- The set $\left|G_{0}\right|$, together with the operations defined as in (1), forms a group. (Easy)

We define the valuation V_{0} by

$$
\begin{equation*}
V_{0}(x):=[x]_{\sim} . \tag{2}
\end{equation*}
$$

Then it is straightforward by induction to show that $\llbracket s \rrbracket_{V_{0}}=[s]_{\sim}$. This establishes: $\llbracket s \rrbracket_{V_{0}}=\llbracket t \rrbracket_{V_{0}}$ if and only if $s \sim t$.

The group G_{0} that we constructed is often called a term model, since it consists of (equivalence classes of) terms. A term model is a complete model-in the sense that $\llbracket s \rrbracket_{V_{0}}=\llbracket t \rrbracket_{V_{0}}$ if and only if $s \sim t$-but a common problem with it is that equality in the term model is complicated (deciding it is as hard as deciding \sim itself!).

The term model G_{0}, in the current setting of an algebraic theory for groups, turns out to be isomorphic to the free group over the set Var of generators. It is called a free group since it satisfies the minimal set of equalities for it to be a group, in the sense that

$$
\llbracket s \rrbracket_{V_{0}}=\llbracket t \rrbracket_{V_{0}} \text { if and only if } s \sim t
$$

References

[1] S. Awodey. Category Theory. Oxford Logic Guides. Oxford Univ. Press, 2006.
[2] M. Barr and C. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Available online.
[3] I. Hasuo. Introduction to logic and computability. Course material for the undergraduate course Information Logic, 2014. Available on the web, www-mmm.is.s.u-tokyo.ac.jp/~ichiro/courseNotes/textbookInfLogic.pdf (restricted access from inside UTokyo).
[4] J. Lambek and P.J. Scott. Introduction to higher order Categorical Logic. No. 7 in Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, 1986.
[5] T. Leinster. Basic Category Theory. Cambridge Univ. Press, 2014.
[6] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 2nd edn., 1998.

