Mathematical Semantics of Computer Systems, MSCS (4810-1168) Handout for Lecture 12 (2015/01/26)

Ichiro Hasuo, Dept. Computer Science, Univ. Tokyo http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro

1 Today's Agenda

We continue the last lecture and follow slides by Samson Abramsky (Oxford) found at www.math.helsinki.fi/logic/sellc-2010/course/LectureIII.pdf. See [2] for further details. There is a big body of literature on the λ -calculus, including [1, 3, 4].

- On conversion in λ -calculus
- Categorical Semantics, as a typed λ -calculus and Cartesian closed categories as examples

In the forthcoming lecture (Feb 9): Automata Theory Categorically, with Coalgebras.

2 Cartesian Closed Categories as Models of Typed λ -Calculus

Definition. Type judgment. Type derivation tree.

NB: we use the term calculus a la Church (where bound variables have explicit types).

Lemma. Each derivable type judgment has a unique derivation tree.

Definition. Cartesian closed category: a category with finite products and exponentials.

Definition. Interpretation $\llbracket_$ of typed λ -calculus. Interpreting types, type derivation trees, type judgments, and terms.

Definition. Substitution lemma: interpretation of s[t/x] is given by composition of arrows.

Definition. Conversion rules, including congruence rules.

Theorem. Soundness of categorical semantics: if $s =_{\beta\eta} t$, then $[\![s]\!] = [\![t]\!]$.

If we have time:

- The Curry-Howard correspondence; terms as proofs; conversion as proof normalization
- Subject reduction, strong normalization, recursion and observational equivalence

3 Report Assignments

Due: the beginning of the next lecture (2015/2/2) POSTPONED: no report assignment this time; the following question will be asked next time.

- 1. Prove the substitution lemma.
- 2. Let $f: A \to B$ be an arrow in a Cartesian closed category \mathbb{C} . It induces natural transformations: $A \times (_) \Rightarrow B \times (_)$, and $(_)^B \Rightarrow (_)^A$. Show that the adjunctions $A \times (_) \dashv (_)^A$ and $B \times (_) \dashv (_)^B$ are "compatible" with those natural transformations.
 - You first have to formalize what "compatibility" means.

References

- H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland, Amsterdam, 2nd rev. edn., 1984.
- [2] J. Lambek and P.J. Scott. Introduction to higher order Categorical Logic. No. 7 in Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, 1986.
- [3] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, vol. 149 of Studies in Logic and the Foundations of Mathematics. Elsevier Science Inc., New York, NY, USA, 2006.
- [4] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.