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Part I: Adjuction (ctn’d)

1 Today’s Goals

1.1 Goal I: Abstract Interpretation via Adjunction

Identify the following framework of abstract interpretation [3] as an instance of adjunction. (Thanks
are due to Kengo Kido for a nice introduction.)

Definition (Galois connection). Let L and L be posets; and α : L → L and γ : L → L be monotone
functions. The pair (α, γ) is said to be a Galois connection if, for any x ∈ L and x ∈ x,

α(x) ≤L x if and only if x ≤L γ(x) .

Example (interval domain). Let

L := P(N) and L := {∅} ∪
{
[l, r]

∣∣ l, r ∈ N ∪ {−∞,∞}, l ≤ r
}

where each set is ordered by inclusion. Moreover,

α(S) := [minS,maxX] and γ(S) := {n ∈ N | n ∈ S} .

Then the pair (α, γ) is a Galois connection.

1.2 Goal II: Quantifiers via Adjunction (à la Lawvere)

Let f : X → Y be a function, and 2X and 2Y be the posets of predicates over X and Y , respectively,
whose orders are the inclusion order.

We think of the posets 2X and 2Y as categories. Then we have two adjunctions

2X

∃f

##

∀f

<<2Y .f−1⊥
⊥

oo (1)

2 Today’s Agenda

2.1 Adjunction

Proposition. Characterization of adjuction by: 1) the universality of η (Def. 3.2 of [Lambek &
Scott], intuitive for free monoids); 2) the triangular equalities (Def. 3.1 of [Lambek & Scott]).

Corollary. Adjoint transposes by units and counits.

Lemma. 1. Adjoint functors determine each other uniquely up-to canonical natural isomor-
phisms. (Proof: by the Yoneda lemma)

2. Composition of adjoints.
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2.2 Limits as Adjoints

Definition. Functor category

Proposition. Limits give rise to an adjunction. So do colimits.

3 Exercises

1. Formulate and prove the following statement.

A right adjoint preserves limits.

2. Present concrete definitions of the monotone functions ∃f and ∀f in (1).

3. (Challenge! Not required) Prove the following: in an adjunction F ⊣ G, G is faithful if and
only if every component of the counit ε is an epi. [6, Thm. IV.3.1]

Hint: use the presentation of the adjoint transpose ( )∧ by the counit ε.

Part II: the Yoneda Lemma
Remember: we loosely follow [4], but it hardly serves as an introductory textbook. More beginner-

friendly ones include [1, 5]; other classical textbooks include [6, 2]. nLab (ncatlab.org) is an
excellent online information source.

4 Today’s Goal

Familiarize yourself with the Yoneda lemma. Identify it as a category theory analogue of the Cayley
representation theorem:

Theorem (Cayley). Every group G is isomorphic to a subgroup of π(|G|).

5 Today’s Agenda

5.1 Equivalence of Categories

Definition. Subcategory, faithful functor, full functor

Lemma. Any functor preserves isomorphisms.
A full and faithful functor reflects isomorphisms.

Definition. Equivalence of categories

Proposition. Equivalence from a full, faithful and iso-dense functor.

5.2 The Yoneda Lemma

Definition. Covariance, contravariance

Theorem (Yoneda). The Yoneda lemma, the Yoneda embedding as a full and faithful functor

Definition. end, coend

Theorem. The Yoneda lemma, the (co)end form

Lemma. Ends as limits [6, Prop. IX.5.1]

Lemma. Homfunctors preserve (co)limits, hence also (co)ends
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6 Exercises

1. Formulate the “naturality” of the Yoneda correspondence

Nat
(
C( , X), F

) ∼= FX

and prove it.

Report Assignment
Exercise 3.1, 3.2. (Exercise 3.3 is optional.)
Due: 2014.12.22 (the beginning of the lecture)
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