Mathematical Semantics of Computer Systems, MSCS (4810-1168) Handout for Lecture 7 (2014/12/8)

Ichiro Hasuo, Dept. Computer Science, Univ. Tokyo http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro

Part I: Adjuction (ctn'd)

1 Today's Goals

1.1 Goal I: Abstract Interpretation via Adjunction

Identify the following framework of *abstract interpretation* [3] as an instance of adjunction. (Thanks are due to Kengo Kido for a nice introduction.)

Definition (Galois connection). Let L and \overline{L} be posets; and $\alpha: L \to \overline{L}$ and $\gamma: \overline{L} \to L$ be monotone functions. The pair (α, γ) is said to be a *Galois connection* if, for any $x \in L$ and $\overline{x} \in \overline{x}$,

 $\alpha(x) \leq_{\overline{L}} \overline{x}$ if and only if $x \leq_L \gamma(\overline{x})$.

Example (interval domain). Let

$$L := \mathcal{P}(\mathbb{N}) \quad \text{and} \quad \overline{L} := \{\emptyset\} \cup \{[l,r] \mid l, r \in \mathbb{N} \cup \{-\infty, \infty\}, l \le r\}$$

where each set is ordered by inclusion. Moreover,

 $\alpha(S) := [\min S, \max X] \text{ and } \gamma(\overline{S}) := \{n \in \mathbb{N} \mid n \in \overline{S}\}$.

Then the pair (α, γ) is a Galois connection.

1.2 Goal II: Quantifiers via Adjunction (à la Lawvere)

Let $f: X \to Y$ be a function, and 2^X and 2^Y be the posets of *predicates* over X and Y, respectively, whose orders are the inclusion order.

We think of the posets 2^X and 2^Y as categories. Then we have two adjunctions

2 Today's Agenda

2.1 Adjunction

Proposition. Characterization of adjuction by: 1) the universality of η (Def. 3.2 of [Lambek & Scott], intuitive for free monoids); 2) the triangular equalities (Def. 3.1 of [Lambek & Scott]).

Corollary. Adjoint transposes by units and counits.

- Lemma. 1. Adjoint functors determine each other uniquely up-to canonical natural isomorphisms. (Proof: by the Yoneda lemma)
 - 2. Composition of adjoints.

2.2 Limits as Adjoints

Definition. Functor category

Proposition. Limits give rise to an adjunction. So do colimits.

3 Exercises

1. Formulate and prove the following statement.

A right adjoint preserves limits.

- 2. Present concrete definitions of the monotone functions \exists_f and \forall_f in (1).
- 3. (Challenge! Not required) Prove the following: in an adjunction $F \dashv G$, G is faithful if and only if every component of the counit ε is an epi. [6, Thm. IV.3.1]

Hint: use the presentation of the adjoint transpose $(_)^{\wedge}$ by the counit ε .

Part II: the Yoneda Lemma

Remember: we loosely follow [4], but it hardly serves as an introductory textbook. More beginnerfriendly ones include [1, 5]; other classical textbooks include [6, 2]. nLab (ncatlab.org) is an excellent online information source.

4 Today's Goal

Familiarize yourself with the *Yoneda lemma*. Identify it as a category theory analogue of the *Cayley* representation theorem:

Theorem (Cayley). Every group G is isomorphic to a subgroup of $\pi(|G|)$.

5 Today's Agenda

5.1 Equivalence of Categories

Definition. Subcategory, faithful functor, full functor

Lemma. Any functor preserves isomorphisms. A full and faithful functor reflects isomorphisms.

Definition. Equivalence of categories

Proposition. Equivalence from a full, faithful and iso-dense functor.

5.2 The Yoneda Lemma

Definition. Covariance, contravariance

Theorem (Yoneda). The Yoneda lemma, the Yoneda embedding as a full and faithful functor

Definition. end, coend

Theorem. The Yoneda lemma, the (co)end form

Lemma. Ends as limits [6, Prop. IX.5.1]

Lemma. Homfunctors preserve (co)limits, hence also (co)ends

6 Exercises

1. Formulate the "naturality" of the Yoneda correspondence

$$\operatorname{Nat}(\mathbb{C}(\underline{\ },X),F) \cong FX$$

and prove it.

Report Assignment

Exercise 3.1, 3.2. (Exercise 3.3 is optional.) Due: 2014.12.22 (the beginning of the lecture)

References

- [1] S. Awodey. Category Theory. Oxford Logic Guides. Oxford Univ. Press, 2006.
- [2] M. Barr and C. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Available online.
- [3] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In R.M. Graham, M.A. Harrison and R. Sethi, editors, *Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977*, pp. 238–252. ACM, 1977.
- [4] J. Lambek and P.J. Scott. Introduction to higher order Categorical Logic. No. 7 in Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, 1986.
- [5] T. Leinster. Basic Category Theory. Cambridge Univ. Press, 2014.
- [6] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 2nd edn., 1998.