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Abstract

Categories with algebraic structure—the most prominent example being monoidal
categories—satisfy equational axioms only up-to coherent isomorphisms. Therefore
they are pseudo algebras. We extend Lawvere’s functorial semantics to such pseudo
structure: in contrast to standard strict algebras which are identified with product-
preserving functors, pseudo algebras are product-preserving pseudo functors. This
identification paves a way to a uniform theory of pseudo algebras. To demonstrate its
use we prove a lifting result of pseudo algebraic structure to a category of coalgebras,
a result that is crucial in our coalgebraic study of software components with the
microcosm principle.

1 Introduction

In this note we describe the details of our approach to categories with algebraic
structure. They are fundamentally different from “algebras” in the usual sense:
they satisfy equational axioms only up-to coherent isomorphisms. Therefore
they are pseudo algebras, following the categorical tradition of naming pseudo
notions.

To start with, our representation of algebraic structure is by a Lawvere the-
ory [12,10], that is, a category L with finite products with its objects freely
generated by the terminal category 1. It is standard that a set with L-structure
is identified with a functor

L −→ Sets
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which preserves finite products; thus semantics of L is given by such functors.

For a category with L-structure, replacing Sets by CAT is not enough: equa-
tional axioms are represented as commutative diagrams in L; and they are
carried to diagrams in CAT that commute on-the-nose. Therefore a functor
L → CAT necessarily satisfy equational axioms up-to identity. We have to
relax this requirement.

In this note we find the relaxed requirement to be a finite product preserving
pseudo functor L → CAT. Pseudo functors (see e.g. [3]) are almost func-
tors but they preserve identities and composition only up-to coherent isomor-
phisms; hence they carry a commutative diagram in L to a diagram in CAT
filled in with an isomorphism.

The idea is quite straightforward, and for “monoidal” theories (instead of
Lawvere theories that are cartesian) the same idea has been already employed
in Segal’s categorical approach to conformal field theory [16]. However for our
application we want to be able to handle Lawvere theories—algebraic structure
with the cartesian context—and preservation of finite products is a delicate
issue in pursuing the idea of using pseudo functors.

We provide a rigorous definition when a pseudo functor is finite product pre-
serving, i.e., a definition of pseudo L-algebra, which we would prefer to call
L-category. Justifying the definition is the main goal of §2: to this goal, we
first define pseudo algebras in a conventional way, for algebraic structure spec-
ified by algebraic specification (Σ, E) that is simply a pair of operations and
equational axioms. Pseudo (Σ, E)-algebras are called (Σ, E)-categories ; stan-
dard examples such as monoidal categories are obviously instances of (Σ, E)-
categories.

Then we prove that there is a equivalence between the 2-category of (Σ, E)-
categories and that of L(Σ,E)-categories, where L(Σ,E) is the Lawvere theory
induced by (Σ, E). Note that the relationship (equivalence) is stronger than
biequivalence, a standard “being the same” relation between 2-categories. This
result will justify identifying pseudo algebras with pseudo functors.

In its course almost any single notion is accompanied by a coherence condition
that needs to be taken care of. We give them a rigorous account. For example
we formulate the coherence condition for (Σ, E)-categories in terms of equa-
tional logic; this for example yields as its instance the coherence condition for
monoidal categories. (To be precise, what is yielded is the consequence “every
diagram commutes” of the coherence theorem e.g. in [14, §VII.2])

In §3 we use our formalization of pseudo algebra to prove a result that, when
an endofunctor F : C → C is “lax-compatible” with the L-structure of C,
then the L-structure lifts to the category Coalg(F ) of F -coalgebras. This is a
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crucial result in our coalgebraic study [6] of software components in the setting
of the microcosm principle.

1.1 Related work

The definition of pseudo algebra in [5] looks equivalent to ours. His definition
is for algebraic structure specified by a Lawvere theory (as is ours) but a
Lawvere theory is thought of rather as a clone, that is a generalized form of
operad (see e.g. [13,4]). Consequently the definition’s pseudo functorial aspect
is (at least) not emphasized.

In the same reference [5] the relationship of his definition of pseudo algebra
(for a Lawvere theory) to pseudo algebras for a 2-monad is elaborated. For
the latter the standard reference is [2]. For our application of the component
calculus, it is important that we can accommodate the microcosm principle
(see [1,7]): the same algebraic structure is carried once by a category C, and
another time by an object X ∈ C. To this end Lawvere theories are more
useful than (2-)monads as representation of algebraic structure.

1.2 Notations

A signature Σ as a presheaf Σ : N → Sets. Here N denotes the set of natural
numbers, considered as a discrete category. The set of Σ-terms, with varying
numbers of variables, then forms a presheaf TΣ : Nat → Sets, where Nat is
the category of natural numbers and functions between them (a full subcate-
gory of Sets). Note that the domain Nat of TΣ is extended from that of Σ,
namely N. For example, if Σ has a binary operation σ ∈ Σ(2), then the term
(

x0, x1, x2 ⊢ σ(x0, σ(x1, x2))
)

resides in TΣ(3). Along the arrow ! : 3 → 1 in
Nat, it is mapped to

(

x0 ⊢ σ(x0, σ(x0, x0))
)

∈ TΣ(1) .

We emphasize that operations, terms and formal equality between terms are
all under certain variable environments x0, . . . , xn−1 ⊢ · · · , although we often
omit an environment when there is no risk of confusion.
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2 Pseudo Algebra via Pseudo Functor

We concentrate on the one-sorted setting; extension to the many-sorted setting
is straightforward.

2.1 (Σ, E)-category

First we present the definition of (Σ, E)-category. The definition is fairly
straightforward—although writing down the coherence condition requires some
work. This is the notion that we would like to describe later alternatively in
more categorical terms, namely by pseudo functors.

A (Σ, E)-category is a category equipped with interpretation of operations in
Σ:

JσKC : C
n −→ C

for each n ∈ N and σ ∈ Σ(n). Here C
n is a shorthand for the n-fold product

(· · · ((C×C)×C)× · · ·×C). We will often denote JσKC by JσK when the base
category C is evident.

Moreover these interpreted operations must satisfy the equations in E up-to
coherent isomorphisms. To put it rigorous, we need to fix some notations.

Definition 2.1 The interpretation J KC of operations has an obvious exten-
sion to an arbitrary Σ-term t ∈ TΣ(n). Concretely, for each i ∈ [0, n − 1] and
σ ∈ Σ(m),

Jx0, . . . , xn−1 ⊢ xiKC := C
n πi−→ C ,

Jx0, . . . , xn−1 ⊢ σ(t0, . . . , tm−1)KC := C
n 〈Jt0KC,...,Jtm−1KC〉

−→ C
m JσKC

−→ C .
(1)

Here the tupling notation 〈f0, . . . , fm−1〉 is again a shorthand for 〈. . . 〈〈f0, f1〉, f2〉 . . . , fm−1〉.

The interpreted operations JσKC must satisfy equations up-to isomorphisms,
that is, for each equation (x0, . . . , xn−1 ⊢ s = t) ∈ E we have a natural
isomorphism

C
n

JsKC

JtKC

∼=⇓γt
s C . (2)

Let us describe the coherence condition to which the above mediating iso-
morphisms are subject. We denote by ∼ the formal equality relation between
terms, derived from the given set E of equations. That is, ∼ is derived us-
ing the following axioms. The axiomatization is a common one for equational
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logic.

(s = t) ∈ E
s ∼ t

(Ax)
s′ ∼ t′ s0 ∼ t0 · · · sn−1 ∼ tn−1

s′[s0/x0, . . . , sm−1/xm−1] ∼ t′[t0/x0, . . . , tm−1/xm−1]
(Cong)

s ∼ s (Refl) s ∼ t t ∼ u
s ∼ u (Trans)

t ∼ s
s ∼ t

(Symm)

Here s′[s0/x0, . . . , sm−1/xm−1] in (Cong) denotes (simultaneous) substitution
for an m-ary term x0, . . . , xm−1 ⊢ s′.

We assign, to each derivation tree D composed by these rules, a natural isomor-
phism γD inductively as follows. The left column shows the last rule applied
in D.

(s = t) ∈ E
s ∼ t

(Ax) =⇒ γD := γt
s from (2) ;

D′

s′ ∼ t′
D0

s0 ∼ t0 · · ·
Dn−1

sn−1 ∼ tn−1

s′[s0/x0, . . . , sm−1/xm−1] ∼ t′[t0/x0, . . . , tm−1/xm−1]
(Cong)

=⇒ γD := C
n

〈Js0K,...,Jsm−1K〉

〈Jt0K,...,Jtm−1K〉

⇓〈γD′ ,...,γDm−1
〉

Js′[s0/x0,...,sm−1/xm−1]K
=

Jt′[t0/t0,...,tm−1/tm−1]K

=

C
m

Js′K

Jt′K

⇓γD′ C ;

s ∼ s (Refl) =⇒ γD := id ;

D1
s ∼ t

D2
t ∼ u

s ∼ u (Trans)
=⇒ γD := γD2 • γD1 ;

D1
t ∼ s
s ∼ t

(Symm)
=⇒ γD := γ−1

D .

Here • denotes vertical composition of natural transformations. It is obvious
that, when D is a derivation of s ∼ t, then the assigned natural isomorphism
γD is of the type JsKC ⇒ JtKC. For the rule (Cong) we used the following fact.

Lemma 2.2 Let x0, . . . , xm−1 ⊢ t′ be a Σ-term with m variables, and x0, . . . , xn−1 ⊢
ti be ones with n variables, for each i ∈ [0,m − 1]. For the interpretation of
terms defined in Def. 2.1, we have

J t′[t0/x0, . . . , tm−1/xm−1] KC = C
n 〈Jt0K,...,Jtm−1K〉

C
m Jt′K

C .

PROOF. By induction of the construction of the term t′. 2

5



Now we are ready to state the coherence condition.

Condition 2.3 If D and D′ are two derivation trees of the same equality
s ∼ t, then γD = γD′.

Assuming this coherence condition, the notation γt
s is valid not only for an

equational axiom (s = t) ∈ E but also for any formal equality s ∼ t that is
derived from axioms in E. In particular, well-definedness of γt

s is guaranteed.

We have thus characterized the class of “every diagram” that should commute,
by means of equational reasoning. To summarize:

Definition 2.4 ((Σ, E)-category) A (Σ, E)-category is a triple

(

C, {JσKC}σ∈Σ, {γt
s}(s=t)∈E

)

which we will often denote simply by (C, J KC, γ). Here:

• C is a locally small category;
• JσKC : C

n → C is a functor for each n ∈ N and each operation σ ∈ Σ(n);
and

• γt
s : JsKC ⇒ JtKC : C

n → C is a natural isomorphism for each equation
(s = t) ∈ E. These must satisfy the coherence condition (Cond. 2.3); hence
giving rise to a natural isomorphism γt

s for each derived formal equality
s ∼ t.

It follows immediately from the coherence condition (Cond. 2.3) that:

γs
s = id ; γu

t • γt
s = γu

s ; and (γt
s)

−1 = γs
t . (3)

These equations correspond to the rules (Refl), (Trans), and (Symm), re-
spectively.

We proceed to introduce suitable notions of morphism of (Σ, E)-categories,
and transformations between them. They altogether form a 2-category (Σ, E)-CAT.

Definition 2.5 (Morphism and transformation for (Σ, E)-categories)
A morphism (C, J KC, γ) → (D, J KD, δ) of (Σ, E)-categories is a functor
F : C → D equipped with

• a natural isomorphism Fσ, for each operation σ ∈ Σ(n), of the following
type.

C
n F×n

JσKC

D
n

JσKD⇐
=∼=
Fσ

C F D
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Here F×n is a shorthand for the n-fold product (· · · ((F×F )×F )×· · ·×F ). 1

These Fσ’s have an obvious extension Ft to an arbitrary Σ-term t, defined
by induction on construction of t. Namely (see also Def. 2.1),

Fxi
:= id ,

Fσ(t0,...,tm−1) :=

C
n F×n

〈Jt0KC,...,Jtm−1KC〉 ⇓〈Ft0 ,...,Ftm−1 〉
D

n

〈Jt0KD,...,Jtm−1KD〉

C
m F×m

JσKC ⇓Fσ

D
m

JσKD

C F D

Due to these natural isomorphisms {Fσ}σ∈Σ, the functor F “preserves alge-
braic structure up-to isomorphisms.” They are subject to the following coher-
ence condition:

• for each equation (s = t) ∈ E, we have the following 2-cells equal.

C
n F×n

JtKC ⇐
γt

s
JsKC

D
n

JsKD⇐
=∼=

Fs

C F D

=

C
n F×n

JtKC

D
n

JsKD⇐
δt
s

JtKD⇐
=∼=

Ft

C F D

Here γt
s and δt

s are natural isomorphisms up-to which C and D satisfy the
equation s = t (Def. 2.4).

It is easy to see that, once this coherence holds for each (s = t) ∈ E, it
also holds for any formal equality s ∼ t derived from E.

A transformation between such morphisms is a natural transformation ϕ :
F ⇒ G, subject to the coherence condition:

• for each operation σ ∈ Σ(n), the following 2-cells are equal.

C
n

F×n

⇓ϕ×n

G×n

JσKC

D
n

JσKD

⇐Gσ

C
G

D

=

C
n

F×n

JσKC

D
n

JσKD
⇐Fσ

C

F

⇓ϕ

F

D

Example 2.6 Let us take the usual specification for monoids as (Σ, E) with
two operations (unit and multiplication) and equations (associativity and unit
law). Then the 2-category (Σ, E)-CAT is that of monoidal categories, strong
(as opposed to strict or lax/oplax) monoidal functors, and monoidal transfor-
mations.

1 Unlike the case of C
n, the notation Fn is confusing since it can also be taken as

the n-fold composition F ◦ F ◦ · · · ◦ F . Hence the notation F×n.
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In particular (Σ, E)-categories in this case are the same thing as monoidal
categories. When we look at their definitions, the latter’s “coherence condition”
requires commutativity of a smaller class of diagrams (the pentagon and the
other); however the coherence theorem for monoidal categories (see e.g. [14,
§VII.2]) ensures that “every diagram commutes”—every diagram in a larger
family which we specified in terms of equational reasoning (Cond. 2.3).

Remark 2.7 A symmetric monoidal category is not a (Σ, E)-category for the
specification (Σ, E) for commutative monoids! The coherence condition re-
quires that sX,X = id : X⊗X

∼=→ X⊗X, which is stronger than the requirement
for symmetric monoidal categories. This is what is referred to as “symmetry
is not commutativity.”

2.2 L-category

The notion of (Σ, E)-category was the formalization of a “pseudo algebra”
carried by a category, in a rather conventional manner. Now we introduce its
“Segalic” formalization [16,9] that uses pseudo functors. Later in §2.3 we will
show that these two formalizations are indeed equivalent.

Let L be a Lawvere theory.

Definition 2.8 (L-category) An L-category is a pseudo functor

C : L −→ CAT

which is “finite product preserving” in the following sense:

(1) for each n ∈ L,

Cn = (C1)n = (· · · ((C1 × C1) × C1) × · · · × C1) ;

(2) for each n ∈ L and i ∈ [0, n − 1],

C(n
πi−→ 1) = (C1)n πi−→ (C1) ,

where πi on the right is the i-th projection in CAT. More precisely, πi :
(· · · (C1 × C1) × · · · × C1)−→C1 is given by

πi =







πr ◦ (πl)
n−i (2 ≤ i)

πn−1
l (i = 1)

where πl and πr are left- and right-projections from a binary product;
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(3) Let us denote by Cb,a the mediating iso 2-cell up-to which C : L → CAT
preserves composition b ◦ a.

min L

a

n
b

k

in CAT Cm
Ca

C(b◦a)Cn

Cb

=⇒
Cb,a

∼=

Ck

(4)

We require that, when b is a projection πi : n → 1 (with i ∈ [0, n − 1]),
the mediating 2-cell Cπi,a is the identity:

Cπi,a = id : Cπi ◦ Ca =⇒ C(πi ◦ a) .

Note that this is not only asserting the equality Cπi ◦ Ca = C(πi ◦ a);
but also the chosen mediating isomorphism Cπi,a is the identity.

We also require that when b = id, the mediating 2-cell Cid,a is the
identity.

Remark 2.9 In the definition, the codomain of a pseudo functor C need not
be CAT; it can in fact be any 2-category with chosen cartesian structure. We
will not need such generality.

Formalizing a suitable notion of pseudo functor preserving finite products
might seem straightforward, but the actual conditions above are in fact quite
delicate. One can even find them somewhat arbitrary; we now look at their
equivalent conditions and consequences.

Lemma 2.10 Assuming a pseudo functor C : L → Sets satisfies the condi-
tions (1–2) in Def. 2.8, (3) is equivalent to the following one.

(3’) Let p be a basic morphism in L, that is, one in the image of the embedding
Natop → L. In yet other words, it is a morphism made up using only
projections and diagonals.

Then the pseudo functor C preserves composition of the form p ◦ a
up-to identity, that is,

Cp,a = id : Cp ◦ Ca =⇒ C(p ◦ a) .

PROOF. Since a projection πi is a basic morphism, obviously (3’) implies
(3). We shall prove the converse.

A basic morphism p : n → k in L is identified with an arrow n → k in Natop,
and further with an arrow k → n in Nat; this is a function. We shall denote
all these three by the same symbol p. Then obviously we have

p = 〈πp(0), πp(1), . . . , πp(k−1)〉 : n → k in L,
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where p’s in the subscripts are for the function from [0, k − 1] to [0,m − 1].

Now let a : m → n be an arrow in L and i ∈ [0, k − 1]. We have

Cn
Cp

⇓ Cp,a
Ck

πi

Cm
Ca

C(p◦a)
C1

=
Cn

Cp

⇓ Cp,a
Ck

Cπi

Cm
Ca C(p◦a)

C(πp(i)◦a)

⇓ Cπi,p◦a

C1
by (3)

=
Cn

Cp

⇓ Cπi,p
C(πp(i))

Ck
Cπi

Cm
Ca

C(πp(i)◦a)

⇓ Cπp(i),a

C1
by coh. cond.

= id by (3).

Since this holds for each i ∈ [0, k−1], the 2-cell Cp,a is the tuple 〈id, . . . , id〉 =
id. 2

A pseudo functor in general preserves identities only up-to isomorphisms. How-
ever, additional conditions on L-categories force strict preservation.

Lemma 2.11 Given an L-category C : L → CAT, as a pseudo functor it is
equipped with an iso 2-cell

Cn : idCn

∼==⇒ C(idn)

up-to which it preserves the identity. This Cn is in fact the identity; in partic-
ular C(idn) = idCn.

PROOF. When n = 0, C0 is a (chosen) terminal object, so that there is
exactly one arrow C0 → C0.

When n = 1, the coherence condition on the mediating 2-cells of C requires
the following 2-cells equal.

C1

idC1 Cid
C1
⇒

Cid

Cid1,id1
⇒

C1

Cid

C1

=

C1

Cid Cidid
⇒

C1

By the condition (3) in Def. 2.8 we have Cid1,id1 = id; and we have C(id1) =
idC1 due to the condition (2) in Def. 2.8. This proves that the 2-cell C1 in the
diagram above is also the identity. The case when n ≥ 2 is similar. 2

It was part of the definition that we have Cid,a = id, that is, postcomposition
of an identity is preserved on-the-nose. So is precomposition.
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Lemma 2.12 For an L-category C : L → CAT, the mediating iso 2-cell Cb,id

(see (4)) is the identity.

PROOF. By the coherence condition we have

Cn

idCn Cid
Cn
⇒

Cb

Cb,idn
⇒

Cn

Cb

Cm

=

Cn

Cb Cbid
⇒

Cm

.

By Lem. 2.11 Cn = id; hence we have Cb,idn = id. 2

We now introduce suitable 1-cells and 2-cells for the 2-category of L-categories.

Definition 2.13 (Morphism of L-categories) A morphism from an L-category
C : L → CAT to D is a pseudo (or “strong”) natural transformation F from
C to D:

L

C

D

⇓F CAT

that is “finite product preserving” in the following sense:

• For each a : n → m in L, let us denote by Fa the natural isomorphism that
fills in the pseudo naturality diagram of F . That is,

nin L

a

m

Cn
in CAT Fn

Ca ⇓
Fa

∼=
Dn

Da

Cm Fm
Dm

(5)

We require that, for a projection a = πi : n → 1, the mediating 2-cell Fπi
is

the identity.

The “finite product preservation” condition has the following consequence.
Therefore a morphism of L-categories is really a functor F : C1 → D1 that
preserves L-structure up-to coherent isomorphism.

Lemma 2.14 Components of a morphism F : C → D of L-categories are
completely determined solely by its 1-component. Specifically, let us denote F ’s
1-component F1 : C1 → D1 (which is a functor) also by F . Then a component
Fn : Cn → Dn is the n-fold product F×n of F .

Cn
Fn

Dn

(C1)n

F×n=(···(F×F )×···×F )
(D1)n
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PROOF. Obvious from Def. 2.13 and the condition (2) in Def. 2.8. 2

Definition 2.15 (Transformation for L-categories) A transformation ϕ :
F ⇒ G : C → D between morphisms of L-categories is a modification between
strong natural transformations

L

C
ϕ

D

F⇓ ⇛ ⇓G CAT .

The coherence condition for modifications, as well as the product preservation
property of F and G, again forces components of ϕ to be determined by its
1-component. That is, since we have

nin L

πi

1

Cn
F×n

=
πi

in CAT
Dn

πi

C1
F

G

⇓ϕ1 D1

=

Cn
F×n

G×n

⇓ϕn

=
πi

Dn

πi

C1
G

D1

;

this forces ϕn to be equal to (ϕ1)
×n, the n-fold product of ϕ1.

Given a Lawvere theory L, L-categories, morphisms and transformations form
a 2-category. We denote it by L-CAT.

2.3 Equivalence between (Σ, E)-categories and L(Σ,E)-categories

Now we shall show that the two formalizations of “pseudo algebra” carried by a
category—rather conventionally as (Σ, E)-category and using pseudo functors
as L-category—are in fact equivalent.

To put it precisely, let (Σ, E) be a (one-sorted) algebraic specification, and
L(Σ,E) be the Lawvere theory induced by (Σ, E). An arrow a : n → 1 in L(Σ,E)

is identified with [t], an n-ary Σ-term

x0, . . . , xn−1 ⊢ t

modulo the formal equality ∼ derived from the axiom set E. An arrow n → m
in L(Σ,E) is a m-fold tuple of such. The following will be the main statement
in this section; its precise formulation (with a minor side condition) is later in
Thm. 2.29.

The 2-categories (Σ, E)-CAT and L(Σ,E)-CAT are equivalent.

The statement itself calls for some explanation. In category theory, when one
goes to one higher dimension (from sets to categories, or from categories to
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2-categories) the weakest possible notion of being “the same” is weakened.
In a set two elements are “the same” when they are identical. In a category,
isomorphisms between objects give a weaker (and usually more appropriate)
notion of being “the same.” Further, in a 2-category the weakest notion is
equivalence; and biequivalence (see e.g. [15]) in a 3-category, etc. Categories
themselves are organized in a 2-category, so two categories are “the same”
when they are equivalent; 2-categories are “the same” when they are biequiv-
alent.

As to Thm. 2.29, since (Σ, E)-CAT and L(Σ,E)-CAT are 2-categories, the
weakest possible form of the result that they are “the same” asserts that they
are biequivalent. This in fact might follow easily from well-known coherence
results. In Thm. 2.29, however, we establish a stronger relation between them,
namely equivalence. Unfortunately it does not go as far as establishing an
isomorphism; the reason is explained later in Rem. 2.30.

2.3.1 A 2-functor Φ : L(Σ,E)-CAT → (Σ, E)-CAT

We start with describing a 2-functor Φ : L(Σ,E)-CAT → (Σ, E)-CAT. Later
it is shown to be faithful, full and surjective on objects, hence establishing an
equivalence of 2-categories.

On objects, given an L(Σ,E)-category C : L(Σ,E) → CAT, we define ΦC to be

• its underlying category is given by C1 ∈ CAT;

• its interpretation JσKΦC of an operation σ ∈ Σ(n) is given by (C1)n C[σ]
−→ C1,

C’s action on an arrow [σ] : n → 1 in L(Σ,E). Recall that [ ] denotes taking
a quotient modulo ∼, the formal equality derived from axioms in E.

To describe γt
s up-to which an equation (s = t) ∈ E holds, we need some

preparation.

We have defined JσKΦC := Cσ, for each operation σ ∈ Σ(n). As in Def. 2.1,
the interpretation J KΦC is extended to interpretation JtKΦC of any Σ-term t
in an inductive manner.

Now we shall introduce, for each Σ-term x0, . . . , xn−1 ⊢ t, a natural isomor-
phism γt.

(C1)n

JtKΦC

C[t]

∼=⇓γt C1 (6)

Here both of JtKΦC and C[t] are “interpretation of a term t” induced by C;
the former being built up inductively from the interpretation of operations
JσKΦC = Cσ, and the latter simply being C’s action on arrows. When C is
a strict functor they are exactly the same; now because C is only a pseudo
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functor they are only essentially the same, that is, the same up-to the coherent
isomorphism γt.

Definition 2.16 (Natural isomorphism γt) Given an L(Σ,E)-functor C, a
natural isomorphism γt (see (6)) is defined inductively on the construction of
a term t.

• If t is a variable x0, . . . , xn−1 ⊢ xi, the term t is a projection πi : n → 1 as
an arrow in L(Σ,E). Hence

C[t] = Cπi = πi by Def. 2.8(2),

JtKΦC = πi by Def. 2.1.

We set γxi
:= id in this case.

• If t is a composed term x0, . . . , xn−1 ⊢ σ(t0, . . . , tm−1) with σ ∈ Σ(m), we
set γt to be the following composed 2-cell.

γσ(t0,...,tm−1) := C1n

〈Jt0K,...,Jtm−1K〉

〈C[t0],...,C[tm−1]〉=C〈[t0],...,[tm−1]〉

⇓〈γt0 ,...,γtm−1 〉

Jσ(t0,...,tm−1)K

=

C([σ(t0,...,tm−1)])

⇓ C[σ],〈[t0],...,[tm−1]〉

C1m JσK=C[σ]
C1 ;

here the upper square commutes due to Def. 2.1; γti is already defined by
the induction hypothesis; and the natural isomorphism C[σ],〈[t0],...,[tm−1]〉 is the
one up-to which the pseudo functor C preserves composition.

The natural isomorphism γt : JtKΦC ⇒ C[t], thus defined for each Σ-term t, is
compatible with substitution (cf. Lem. 2.2).

Lemma 2.17 Let x0, . . . , xm−1 ⊢ t′ be a Σ-term with m variables, and x0, . . . , xn−1 ⊢
ti be ones with n variables, for each i ∈ [0,m − 1]. Then we have

γt′[t0/x0,...,tm−1/xm−1] = C1n

〈Jt0K,...,Jtm−1K〉

〈C[t0],...,C[tm−1]〉=C〈[t0],...,[tm−1]〉

⇓〈γt0 ,...,γtm−1 〉

Jt′[t0/x0,...,tm−1/xm−1]K

=

C([t′[t0/x0,...,tm−1/xm−1]])=C([t′]◦〈[t0],...,[tm−1]〉)

⇓ C[t′],〈[t0],...,[tm−1]〉

C1m

Jt′K

C[t′]

⇓γt′ C1 .

PROOF. The upper square commutes due to Lem. 2.2. We prove the lemma
by induction on the construction of the term t′.

14



When t′ = xi, a variable, we have

γt′[t0/x0,...,tm−1/xm−1] = γti

γt′ = γxi
= id by Def. 2.16

C[t′],〈[t0],...,[tm−1]〉 = Cπi,〈[t0],...,[tm−1]〉 = id by Def. 2.8(3)

therefore both the sides of the equality reduce to γti .

Let t′ be a composed term σ(s0, . . . , sk−1) with σ ∈ Σ(k) and x0, . . . , xm−1 ⊢ sj.
First we observe that the substitution distributes to subterms:

t′[t0/x0, . . . , tm−1/xm−1] = σ
(

so[~t/~x], . . . , sk−1[~t/~x]
)

. (7)

We use this in the following calculation, as well as the coherence condition on
the mediating 2-cells Cb,a of a pseudo functor C.

γt′[t0/x0,...,tm−1/xm−1] =

(C1)m
〈Js0K,...,Jsk−1K〉

(C1)n

〈Jt0K,...,Jtm−1K〉

C〈[s0[~t/~x]],...,[sk−1[~t/~x]]〉

⇓ 〈γs0[~t/~x],...,γsk−1[~t/~x]〉

⇓ C[σ],〈[s0[~t/~x]],...,[sk−1[~t/~x]]〉

(C1)k JσK=C[σ]
C1 by Def. 2.16

=

(C1)m

⇓ 〈−→γs〉

(C1)n
⇓ 〈−→γt〉

⇓ C
〈 ~[s]〉,〈 ~[t]〉

⇓ C[σ],〈[s0[~t/~x]],...,[sk−1[~t/~x]]〉

(C1)k JσK=C[σ]
C1 by ind. hyp.

=

(C1)m

⇓ 〈−→γs〉

⇓ C
[σ],〈 ~[s]〉

(C1)n
⇓ 〈−→γt〉

⇓ C
[σ]◦〈 ~[s]〉,〈 ~[t]〉

(C1)k JσK=C[σ]
C1 by coh. cond.

=

(C1)m

⇓ γt′

(C1)n
⇓ 〈−→γt〉

⇓ C
[σ]◦〈 ~[s]〉,〈 ~[t]〉

(C1)k JσK=C[σ]
C1 by Def. 2.16.

This concludes the proof. 2

We use this natural isomorphism γt : JtKΦC ⇒ C[t] to define a natural isomor-
phism γt

s : JsKΦC ⇒ JtKΦC up-to which an equation (s = t) ∈ E is satisfied in
the (Σ, E)-category ΦC.

Definition 2.18 (Natural isomorphism γt
s) Given an L(Σ,E)-category C :

L(Σ,E) → CAT and an equation (s = t) ∈ E, we define a natural isomorphism
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γt
s to be the following composite.

γt
s := (C1)n

JsKΦC

JtKΦC

C[s]=C[t]
⇓ γs

⇓ γ−1
t

C1

Here γs and γt are the ones introduced in Def. 2.16. We have C[s] = C[t]:
since s = t is in E as an axiom, we have [s] = [t] as arrows of L(Σ,E).

Finally, to summarize:

Definition 2.19 (Φ on 0-cells) Given an L(Σ,E)-category C : L(Σ,E) → CAT,
we define a (Σ, E)-category ΦC as follows (recall Def. 2.4).

• Its underlying category is given by C1 ∈ CAT.

• Its interpretation JσKΦC of an operation σ ∈ Σ(n) is given by (C1)n C[σ]
−→ C1,

C’s action on an arrow [σ] : n → 1 in L(Σ,E).
• The isomorphism γt

s—up-to which each equation (s = t) ∈ E is satisfied—is
as introduced in Def. 2.18.

Lemma 2.20 The isomorphisms {γt
s}(s=t)∈E indeed satisfy the coherence con-

dition (Cond. 2.3).

PROOF. We prove the following statement which yields the lemma imme-
diately:

For each derivation D of s ∼ t, we have

γD = (C1)n

JsKΦC

JtKΦC

C[s]=C[t]
⇓ γs

⇓ γ−1
t

C1 . (8)

The composite γ−1
t • γs was the definition of the 2-cell γt

s for equational
axioms; now we shall prove that the same composite determines γD for any
derivation.

We prove (8) by induction on derivation.

• When the last rule applied in D is the (Ax) rule, then

γD = γt
s by def. of γD

= γ−1
t • γs by Def. 2.18.
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• When D is of the form

D′

s′ ∼ t′
D0

s0 ∼ t0 · · ·
Dn−1

sn−1 ∼ tn−1

s′[s0/x0, . . . , sm−1/xm−1] ∼ t′[t0/x0, . . . , tm−1/xm−1]
(Cong)

we have

γD = (C1)n

〈Js0K,...,Jsm−1K〉

〈Jt0K,...,Jtm−1K〉

⇓〈γD′ ,...,γDm−1
〉 (C1)m

Js′K

Jt′K

⇓γD′ (C1) by def. of γD

= (C1)n
⇓〈γs0 ,...,γsm−1 〉

⇓〈γ−1
t0

,...,γ−1
tm−1

〉
(C1)m ⇓γs′

⇓γ−1
t′

(C1) by ind. hyp.

=

(C1)m

⇓γs′

(C1)n

⇓〈γs0 ,...,γsm−1 〉

⇓〈γ−1
t0

,...,γ−1
tm−1

〉

C[s′[~s/~x]]=C[t′[~t/~x]]
⇓C[s′],〈[s0],...,[sm−1]〉

⇓C−1
[t′],〈[t0],...,[tm−1]〉

(C1)

(C1)m ⇓γ−1
t′

(†)

= γ−1
t′[t0/x0,...,tm−1/xm−1] • γs′[s0/x0,...,sm−1/xm−1] by Lem. 2.17.

Here (†) is because, since s′ ∼ t′ and si ∼ ti we have C[s′],〈[s0],...,[sm−1]〉 =
C[t′],〈[t0],...,[tm−1]〉.

• The proof is obvious when the last rule in D is either (Refl), (Trans) or
(Symm). 2

We have described the action on objects of Φ : L(Σ,E)-CAT → (Σ, E)-CAT.
We proceed to its action on 1- and 2-cells.

Definition 2.21 (Φ on 1-cells) Given a morphism F : C → D of L(Σ,E)-
categories, we define a morphism

ΦF : ΦC −→ ΦD

of (Σ, E)-categories (cf. Def. 2.5) as follows.

• ΦF ’s underlying functor is F ’s 1-component F1 : C1 → D1.
• For each operation σ ∈ Σ(n), we need a natural isomorphism up-to which

ΦF preserves (interpretation of) σ. For this we simply take the pseudo
naturality 2-cell F[σ] of F :

nin L

σ

Cn
in CAT Fn=F×n

C[σ]=JσKΦC

Dn
D[σ]=JσKΦD⇐

=∼=
F[σ]

1 C1 F D1
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That is,

ΦF =
(

F1 : C1 → D1, {F[σ]}σ∈Σ

)

, (ΦF )σ = F[σ] .

As described in Def. 2.5, the mediating isomorphism (ΦF )σ for each operation
σ is extended to one (ΦF )t for each term t, in an inductive manner. Note that
(ΦF )t—defined inductively on construction of a term t—is not exactly the
same as F[t] which is part of the definition of a pseudo natural transformation
F : C → D. They are, however, related via γt from Def. 2.16. This relationship
is used (Cor. 2.23) in proving that ΦF in Def. 2.21 indeed satisfy the coherence
condition (Def. 2.5).

Lemma 2.22 For each Σ-term t, we have the following natural isomorphisms
equal.

Cn
F×n

C[t] ⇐
γt

JtKΦC

Dn

JtKD⇐
=∼=

(ΦF )t

C1 F D1

=

Cn
F×n

C[t]

Dn

JtKΦD⇐
δt

D[t]
⇐
=∼=

F[t]

C1 F D1

Here δt is to D what γt is to C; see Def. 2.16.

PROOF. By induction on construction of a term t. When t is a variable xi,
then [t] : n → 1 as an arrow in L(Σ,E) is a projection πi. Therefore, due to
the finite product preservation in Def. 2.13, we have F[t] = id. By definition
the other 2-cells in the equation are all identities too; hence both sides are the
identity.

When t is a composed term σ(t0, . . . , tm−1), we proceed as follows.

(LHS) =

·

⇐
C

[σ],〈 ~[t]〉

⇐
〈~γt〉

⇓ 〈(ΦF )t0 ,...,(ΦF )tm−1 〉

·

·
⇓ (ΦF )σ=F[σ]

·

· ·

by def. of γt and (ΦF )t

=

·

⇐
C

[σ],〈 ~[t]〉

⇓ 〈F[t0],...,F[tm−1]〉

·
⇐
〈~δt〉

·
⇓ (ΦF )σ=F[σ]

·

· ·

by ind. hyp.

=

·

⇓ F[t]

·

⇐
D

[σ],〈 ~[t]〉

⇐
〈~δt〉

·

· ·

by coh. cond. on F

= (RHS) .

This concludes the proof.
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Corollary 2.23 The data ΦF = (F1, {F[σ]}σ∈Σ) in Def. 2.21 indeed satisfy
the coherence condition in Def. 2.5. That is, for each equation (s = t) ∈ E,
we have the follows 2-cells equal.

Cn
F×n

JtKΦC ⇐
γt

s
JsKΦC

Dn

JsKΦD⇐
=∼=

(ΦF )s

C1 F D1

=

Cn
F×n

JtKΦC

Dn

JsKΦD⇐
δt
s

JtKΦD

⇐
=∼=

(ΦF )t

C1 F D1

PROOF.

(LHS) =
·
⇐
γs

⇐
γ−1

t
⇓ (ΦF )s

·

· ·
by def. of γt

s

=
·

⇐
γ−1

t
⇓ F[s]

·
⇐
δs

· ·
by Lem. 2.22

=
·

⇓ (ΦF )t

·
⇐
δs

⇐

δ−1
t

· ·
by Lem. 2.22

= (RHS) . 2

Definition 2.24 (Φ on 2-cells) Given a transformation ϕ : F ⇒ G : C →
D for L(Σ,E)-categories, we define a transformation for (Σ, E)-categories (cf.
Def. 2.5)

Φϕ : ΦF =⇒ ΦG : ΦC −→ ΦD

to be ϕ’s 1-component

ϕ1 : F1 =⇒ G1 .

Lemma 2.25 The transformation Φϕ = ϕ1 in the definition indeed satis-
fies the coherence condition. That is, for each operation σ ∈ Σn we have the
following 2-cells equal.

Cn
F×n

⇓ (ΦF )σ
JσKΦC

in CAT
Dn

JσKΦD

C1
F

G

⇓ϕ1 D1

=

Cn
F×n

G×n

⇓(ϕ1)×n

⇓ (ΦG)σ

JσKΦC

Dn

JσKΦD

C1
G

D1

PROOF. Immediate from the coherence condition for ϕ : F ⇒ G as a 2-cell
in L(Σ,E)-CAT, and that ϕn = (ϕ1)

×n (see a remark in Def. 2.15). 2
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Obviously Φ’s action on 0-, 1- and 2-cells that we have introduced preserve
identities and composition. Therefore we have defined a 2-functor Φ : L(Σ,E)-CAT →
(Σ, E)-CAT.

2.3.2 Φ : L(Σ,E)-CAT → (Σ, E)-CAT is an equivalence

To prove our main goal (Thm. 2.29), we shall now establish that the 2-functor
Φ is an equivalence (Lem. 2.26 and 2.28).

Lemma 2.26 Φ is full and faithful as a 2-functor. That is, for any C,D in
L(Σ,E)-CAT, Φ’s action

ΦC,D : L(Σ,E)-CAT(C,D) −→ (Σ, E)-CAT(ΦC, ΦD)

is an isomorphism of categories.

PROOF. For ΦC,D, we construct its (local) inverse

ΨC,D : (Σ, E)-CAT(ΦC, ΦD) −→ L(Σ,E)-CAT(C,D) . (9)

In the sequel we denote ΨC,D simply by Ψ. Note that we are not aiming at a
global inverse Ψ : L(Σ,E)-CAT → (Σ, E)-CAT; this is purely for notational
convenience. Given a 1-cell F : ΦC → ΦD in (Σ, E)-CAT, we define ΨF :
C → D to be as follows.

• Its components are

(ΨF )n := F×n : Cn −→ Dn ;

• for each arrow a : n → 1 in L(Σ,E), the mediating isomorphism (ΨF )a (in
the diagram (5)) is defined to be the following composite.

(ΨF )a :=

Cn
F×n

Ca=C[t] ⇐
γt

JtKΦC

Dn

Da=D[t]JtKΦD
δ−1
t
⇐

⇐
∼=
Ft

C1 F D1

(10)

Here t is a Σ-term such that [t] = a; Ft is F ’s mediating isomorphism
extended to a term t (Def. 2.5); and γt and δt are induced by C,D : L(Σ,E) →
CAT as in Def. 2.16.

We have to check that (ΦF )a is well-defined; the above definition apparently
depends on the choice of the term t. Let s ∼ t, hence a = [s] = [t]. We have

·
⇐
γt

⇓ Ft

·
⇐
δ−1
t

· ·

(†)
=

·
⇐
γt

s

⇐
γt

⇓ Fs

·
⇐
δ−1
t

⇐
δs
t

· ·

(‡)
=

·
⇐
γs

⇓ Fs

·
⇐
δ−1
s

· ·
.

20



Here (†) holds due to the coherence condition in Def. 2.5; (‡) holds due to the
definition of γt

s for ΦC (Def. 2.18), namely γt
s = γ−1

t • γs.

As to the coherence condition for a pseudo natural transformation (compatibil-
ity with identities and composition in L(Σ,E)), showing that {(ΨF )a}a satisfies
it is easy. The proof uses the definition of γt (Def. 2.16). Thus we have shown
that ΨF : C → D is indeed a 1-cell in L(Σ,E)-CAT.

Now we describe Ψ = ΨC,D’s (see (9)) action on arrows, that is, on 2-cells in
(Σ, E)-CAT. Given

ϕ : F =⇒ G : ΦC −→ ΦD in (Σ, E)-CAT,

Ψϕ : ΨF ⇒ ΨG is given by the components

(Ψϕ)n := ϕ×n .

We need to check its coherence condition (as a modification). Let a : n → 1
be an arrow in L(Σ,E), and t be a Σ-term such that a = [t]. Then

·
⇓ (ΨF )a

·

· ⇓ϕ ·

(10)
=

·
⇐
γt

⇓ Ft

·
⇐
δ−1
t

· ⇓ϕ ·

(†)
=

·
⇐
γt

⇓ϕ×n

⇓ Gt

·
⇐
δ−1
t

· ·

(10)
=

· ⇓ϕ×n

⇓ (ΨG)a

·

· ·
.

Here (†) holds due to the coherence condition for ϕ as a 2-cell in (Σ, E)-CAT
(Def. 2.5). Functoriality of ΨC,D is obvious; thus we have described the functor
ΨC,D in (9).

It remains to be shown that ΨC,D is the inverse of ΦC,D. To show that ΦC,D ◦
ΨC,D = id we have to prove, among others, the equality (ΦC,DΨC,DF )σ = Fσ

of mediating isomorphisms. We have

(ΦC,DΨC,DF )σ
Def. 2.21

= (ΨC,DF )[σ]
(10)
=

·
⇐
γσ

⇓ Fσ

·
⇐
δ−1
σ

· ·

(†)
= Fσ ,

where (†) holds because γσ and δσ are identities for an operation σ, due to
Def. 2.16.

To show the other way ΨC,D ◦ ΦC,D = id, again the only nontrivial point
is the equality (ΦC,DΨC,DF )σ = Fσ of mediating isomorphisms. We have to
show, for each arrow a : n → 1 in L(Σ,E) and a term t such that a = [t],

Fa =
·

⇐
γt

⇓ (ΦF )t

·
⇐
δ−1
t

· ·
.

This is proved by induction on construction of a term t, using coherence
condition for F as a pseudo natural transformation and the definition of γt

(Def. 2.16). This concludes the proof of Lem. 2.26. 2
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We shall now show that the 2-functor Φ is surjective on objects; this together
with Lem. 2.26 will establish that Φ is an equivalence of 2-categories. For this,
however, we need the following (rather minor) side condition.

Condition 2.27 The set E of equational axioms does not derive equality of
two operations in Σ. That is, for each pair of distinct operations σ, τ ∈ Σ(n),
we never derive

x0, . . . , xn−1 ⊢ σ ∼ τ

from the axioms in E. In yet other words: the following composition of func-
tions is injective:

Σ(n) TΣ(n) TΣ(n)/E .

Lemma 2.28 Assume that an algebraic specification (Σ, E) satisfies Cond. 2.27.
Then the 2-functor Φ : L(Σ,E)-CAT → (Σ, E)-CAT is surjective on objects.

PROOF. Given a (Σ, E)-category

(

C, {JσKC}σ∈Σ, {γt
s}(s=t)∈E

)

,

we construct an L(Σ,E)-category

ΨC : L(Σ,E) −→ CAT

in the following way. Later ΨC is shown to be carried to C by Φ. The con-
struction involves the axiom of choice.

The action on objects of ΨC is as expected: n 7→ (C)n. On arrows: given an
arrow a : n → 1 in L(Σ,E),

• first we choose a representative term t ∈ TΣ(n) such that a = [t]. This is
under the following restriction:

when there exists an operation σ ∈ Σ(n) such that a = [σ],
then we choose this σ to be the representative of a.

(11)

By Cond. 2.27 such an operation σ is unique if it exists;
• then we let

(ΨC)(a) := JtKC : C
n −→ C .

We are left to specify the coherent isomorphisms (ΨC)b,a up-to which compo-
sition is preserved. Given two successive arrows

n
a

−→ m
b

−→ 1 in L(Σ,E),
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let a = 〈[s0], . . . , [sm−1]〉, b = [t] and b ◦ a = [u] be our choices of representa-
tives; hence

(ΨC) : a 7→ 〈Js0KC, . . . , Jsm−1KC〉 , b 7→ JtKC , b ◦ a 7→ JuKC .

Now we have

b ◦ a = [t] ◦ 〈[s0], . . . , [sm−1]〉

= [t ◦ 〈s0, . . . , sm−1〉] by the rule (Cong) of deriving ∼.

Therefore [t ◦ 〈s0, . . . , sm−1〉] = [u]; that is

t ◦ 〈s0, . . . , sm−1〉 ∼ u .

This makes the natural isomorphism γu
t◦〈s0,...,sm−1〉

(induced by a (Σ, E)-category
C, see Def. 2.4) available. We set this to be the mediating isomorphism (ΨC)b,a.
That is,

nin L

a

m
b

1

ΨC
7−→

in CAT C
n

(ΨC)(a)=〈Js0K,...,Jsm−1K〉

(ΨC)(b◦a)=JuKC
m

(ΨC)(b)=JtK

=⇒
γu

t◦〈s0,...,sm−1〉

∼=

C

The isomorphisms (ΨC)b,a thus defined satisfy the coherence condition (which
is part of the definition of pseudo functor) due to the coherence condition on
γ (Cond. 2.3). Therefore ΨC is indeed an L(Σ,E)-category.

It remains to be shown that Φ(ΨC) = C. Their base categories are obviously
the same. Their interpretation of operations is the same too, because

JσKΦΨC = (ΨC)(σ) = JtKσ

where t is the representative for [σ], which is forced to be σ by the restric-
tion (11). Finally, we have to show the equality between their mediating
isomorphisms for equations (s = t) ∈ E. The mediating isomorphism for
(s = t) ∈ E of Φ(ΨC) is given by the composite γ−1

t • γs, where γs and γt are
the natural isomorphisms induced by ΨC, see Def. 2.16.

JsKC

γs
=⇒ (ΨC)([s]) = (ΨC)([t])

γ−1
t=⇒ JtKC

Here let u be our choice of the representative term for [s] = [t], in defining
ΨC. Then we have (ΨC)([s]) = (ΨC)([t]) = JuKC. Moreover, it is easy to see
(by induction on construction of terms) that the natural isomorphism

JsKC

γs
=⇒ JuKC = (ΨC)([s])
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coincides with γu
s , the natural isomorphism accompanying a (Σ, E)-category

C (Def. 2.4). Therefore we have, using the equations (3),

γ−1
t • γs = (γu

t )−1 • γu
s = γt

u • γu
s = γt

s .

This concludes the proof. 2

Theorem 2.29 Assume that an algebraic specification (Σ, E) satisfies Cond. 2.27.
Then the 2-categories (Σ, E)-CAT and L(Σ,E)-CAT are equivalent.

PROOF. By Lem. 2.26 and 2.28. 2

Remark 2.30 The 2-functor Φ fails to be an isomorphism essentially due to
the choice that we have to make in defining ΨC in the proof of Lem. 2.28.
For example, take the usual specification for monoids (Expl. 2.6) as (Σ, E); in
defining its corresponding L(Σ,E)-category ΨC, we have to fix what

(ΨC)
(

3
[x0·(x1·x2)] = [(x0·x1)·x2]

1
)

: C
3 −→ C

should be. And there is no canonical choice between the following two candi-
dates (they are indeed different):

(X0, X1, X2) 7−→ X0 ⊗ (X1 ⊗ X2) or (X0 ⊗ X1) ⊗ X2 .

Instead of the 2-category of monoidal categories, what is isomorphic to L(Σ,E)-CAT
(for the current (Σ, E)) is that of unbiased monoidal categories, see [13].

3 Lifting L-structure to a category of coalgebras

In this section we obtain some elementary results on L-categories, one of which
is about lifting the L-structure on C to the one on the category Coalg(F ) of
F -coalgebras, for F : C → C.

Notation 3.1 In the previous section L-categories have been denoted by C,D, . . .
to distinguish them from (Σ, E)-categories. From now on we work exclusively
with L-categories since their formulation (more categorical) makes them eas-
ier to reason about. Consequently we shall denote L-categories by C, D, . . .
to emphasize that they are a category with pseudo L-structure. Accordingly
morphisms/transformations of L-categories (Def. 2.13, 2.15) shall be referred
to as L-functors and L-natural transformations, respectively. They are func-
tors/natural transformations that respect L-structure.
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Definition 3.2 (Lax/oplax L-functor) Let C, D be L-categories. A lax L-
functor F : C → D is a lax natural transformation

L

C

D

⇓F CAT .

That is, it is a morphism of L-categories (Def. 2.13) for which a naturality
diagram is filled in with a 2-cell that is not necessarily invertible.

nin L

a

m

Cn
in CAT Fn

Ca ⇓
Fa

Dn
Da

Cm Fm
Dm

An oplax L-functor is defined in a similar way, as an oplax natural trans-
formation. A strict L-functor is a (strict) natural transformation of the same
type.

Theorem 3.3 Let C be an L-category and F : C → C be a lax L-functor.
Then the category Coalg(F ) of coalgebras is an L-category in a canonical way.
Moreover, the forgetful functor U : Coalg(F ) → L is a strict L-functor.

The theorem is in fact a special case of Thm. 3.5 later, due to the following
well-known characterization. The notion of inserter comes from [11,17]; see
also [8].

Lemma 3.4 Given a category C and a functor F : C → C, the category
Coalg(F ) is an inserter Ins(id, F ) of the following diagram in CAT.

C
id

F
C 2

Theorem 3.5 Let C, D be L-categories, G : C → D be an oplax L-functor
and F : C → D be a lax L-functor. Then the inserter Ins(G,F ) is canonically
an L-category. Moreover, the forgetful functor U : Ins(G,F ) → C is a strict
L-functor.

PROOF. Let us denote the inserter by U and ρ as follows.

C
G

Ins(G,F )
U

U

⇓ ρ D
C F

We describe a L-category Ins(G,F ), that is a pseudo functor

Ins(G,F ) : L −→ CAT .
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On objects it carries n to (Ins(G,F ))n. For its action on an arrow a : n → 1
in L, consider the following 2-cell.

C
n Ca

G×n ⇓ Ga

C
G

Ins(G,F )n

U×n

U×n

⇓ ρ×n
D

n
Da D

C
n

Ca

F×n ⇓ Fa

C
F

(12)

Universality of the inserter Ins(G,F ) then induces a 1-cell Ins(G,F )n →
Ins(G,F ) which we define to be the pseudo functor’s action Ins(G,F )(a) on
a.

C
G

Ins(G,F )n Ins(G,F )(a)
Ins(G,F )

U

U

⇓ ρ D
C F

(13)

By the definition of inserter, it is the unique 1-cell such that:

• the two arrows Ins(G,F ) → C on the upper/lower edges of (12,13) are
equal, that is,

Ca ◦ U×n = U ◦ Ins(G,F )(a) ; (14)

• the composed 2-cell in (12) is equal to the one in (13).

Finite product preservation forces the action on a : n → m to be the tuple of
action on each component of a:

Ins(G,F )(a) = 〈 Ins(G,F )(π0 ◦ a), . . . , Ins(G,F )(πm−1 ◦ a) 〉 .

Now let n
a
→ m

b
→ 1 be successive arrows in L; we describe the mediat-

ing 2-cell Ins(G,F )b,a up-to which their composition is preserved. The action
Ins(G,F )(b ◦ a) is induced by the following 2-cell:

C
n C(b◦a)

G×n ⇓ Gb◦a

C
G

Ins(G,F )n

U×n

U×n

⇓ ρ×n
D

n D(b◦a) D

C
n

C(b◦a)

F×n ⇓Fb◦a

C
F

(15)

whereas Ins(G,F )(b) ◦ Ins(G,F )(a) is by

C
n Ca

G×n ⇓ Ga

C
m Cb

G×m ⇓ Gb

C
G

Ins(G,F )n

U×n

U×n

⇓ ρ×n
D

n
Da D

m
Db D

C
n

Ca

F×n ⇓ Fa

C
m

Cb

F×m ⇓ Fb

C
F

. (16)
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The relationship between the two is

· ∼=⇓Cb,a
· ·

· ·

·
∼=⇓Cb,a

⇓(15)

· ·

= (16)

which follows from the coherence condition on F and G as (op)lax natural
transformations. This modification Cb,a between the two cones (15,16) gives
rise to a 2-cell

Ins(G,F )b,a : Ins(G,F )(b) ◦ Ins(G,F )(a)
∼==⇒ Ins(G,F )(b ◦ a) .

by the 2-universality of the inserter Ins(G,F ). They satisfy the coherence
condition due to the coherence of Cb,a; thus we have obtained an L-functor
Ins(G,F ).

To show that the forgetful functor U : Ins(G,F ) → C is a strict L-functor,
we need to show that for each arrow a : n → 1 in L the following diagram
commutes (up-to identity).

Ins(G,F )n U×n

Ins(G,F )(a)

C
n

Ca

Ins(G,F )
U C

We have already derived this in (14) from the definition of Ins(G,F )(a). This
concludes the proof. 2

4 Future work

In this note we have stuck to a Lawvere theory L which is a (1-)category. For
defining L-category, however, there is no reason to do so. The definition works
all the same if L is a 2-category, and this extended expressive power allows us
to have a symmetric monoidal category as an example. (Note that symmet-
ric monoidal categories are not L-categories for the theory L of commutative
monoids; this is the well-known “symmetry vs. commutativity” issue) The
corresponding conventional notion of pseudo algebra—which is defined for op-
erations and equations—then becomes far more complicated; it has to account
for 1- and 2-operations and equations. The details are yet to be elaborated.

Acknowledgments The author is grateful to one of the referees of the pa-
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