
Semantics of Higher-Order Quantum Computation via Geometry of Interaction

Ichiro Hasuo
Dept. Computer Science, University of Tokyo, Japan

Naohiko Hoshino
RIMS, Kyoto University, Japan

Abstract—While much of the current study on quantum
computation employs low-level formalisms such as quantum
circuits, several high-level languages/calculi have been recently
proposed aiming at structured quantum programming. The
current work contributes to the semantical study of such
languages, by providing interaction-based semantics of a func-
tional quantum programming language; the latter is based on
linear lambda calculus and is equipped with features like the
! modality and recursion. The proposed denotational model
is the first one that supports the full features of a quantum
functional programming language; we also prove adequacy
of our semantics. The construction of our model is by a
series of existing techniques taken from the semantics of
classical computation as well as from process theory. The most
notable among them is Girard’s Geometry of Interaction (GoI),
categorically formulated by Abramsky, Haghverdi and Scott.
The mathematical genericity of these techniques—largely due
to their categorical formulation—is exploited for our move from
classical to quantum.

Keywords-quantum computation; lambda calculus; categori-
cal semantics; geometry of interaction; realizability

I. I NTRODUCTION

Computation and communication using quantum data has
attracted growing attention. On the one hand, quantum com-
putation provides a real breakthrough in computing power—
at least for certain applications—as demonstrated by Shor’s
algorithm. On the other hand, quantum communication real-
izes “unconditional security” e.g. via quantum key distribu-
tion. The latter is being even tested for practical use.

The extensive research efforts on this new paradigm have
identified some challenges, too. On quantum computation,
aside from a few striking ones such as Shor’s and quantum
search algorithms, researchers are having a hard time trying
to find a new “useful” algorithm. On quantum commu-
nication, the unintuitive nature of quantum data becomes
an additional burden in the task of getting communication
protocols right—which has proved extremely hard already
with classical data.

Structured programmingand mathematically formulated
semanticsare potentially useful tools to solve these problems.
Structured programming often leads to discovery of inge-
nious algorithms; well-formulated semantics would provide
a ground for proving a communication protocol correct.

Towards this direction, there have been proposed sev-
eral high-level languages tailored for quantum compu-
tation. Among them are those based onlinear λ-
calculus: while λ-calculus is a prototype of functional

programming languages—inherently supporting higher-order
computation—linearity provides a useful means of prohibit-
ing duplication of quantum data (“no-cloning”). Examples
of such languages are found in [1]–[4]. However, the study
of their semantics is still at its infancy. There are only a
few denotational models proposed; among them is the one
in [2] which, however, fail to support the! modality (hence
erasure and duplication of classical data). In fact it seems
to be an open problem to find a denotational model (aside
from a term model) that supports full language features—
the ! modality, recursion, etc.—of a quantum functional
programming language. See [3] for a survey and an axiomatic
study of such models.

In this paper we present a new languageqλℓ and its de-
notational model that supports its full features. The language
qλℓ is based on Selinger and Valiron’s [3]—in particular we
share their principle of “quantum data, classical control”—
but is modified for a better fit to our denotational model. We
also define its operational semantics and prove adequacy.

For the construction of the denotational model we employ
a series of existing techniques in theoretical computer sci-
ence (Fig. 1). Namely: 1) a monad with an order structure
for modeling branching, used in the coalgebraic study of
state-based systems (e.g. in [5]); 2) Girard’sGeometry of
Interaction (GoI)[6], categorically formulated by Abramsky,
Haghverdi and Scott [7], providing interaction-based, game-
like semantics for linear logic and computation; 3) the
realizability technique that turns an (untyped) combinatory
algebra into a categorical model of a typed calculus (used
e.g. in [8]); and 4) thecontinuation-passing style (CPS)
semantics. In each stage we benefit from the fact that the
relevant technique is formulated in the language of category
theory: the technique is originally for classical computation
but its genericity makes it applicable to quantum settings.

Our semantics is based on so-calledparticle-style GoIand
hence on local interaction of agents, passing a token to each
other. This is much like ingame semantics[10], [11]; our
denotational model, therefore, has a strong operational flavor.
We are currently working on extracting abstract machines for
quantum computation, much like in [12]. Our model is also
one answer to the question “Quantum GoI?” raised in [13].

Organization of the paper:In §II we fix the notations
for quantum computation and briefly describe the semantical
techniques used later. In§III we introduce thequantum
branching monadQ on Sets, from whose Kleisli category

Kℓ(Q) we obtain the categoryPERQ. We introduce our
languageqλℓ in §IV, which is interpreted inPERQ in §V
with the help of a continuation monad. Finally in§VI we
present operational semantics and prove adequacy.

Due to space limitation, most proofs as well as a few
technical definitions are deferred to an extended version [14].

II. PRELIMINARIES

A. Quantum Computation

We follow Kraus’ formulation [15] of quantum mechanics,
which is by now standard and is used in e.g. [1], [16]. Due
to the limited space we only list definitions and results that
are used later; for proofs and more detailed explanation, our
principal reference is the standard textbook [16, Chap. 3 &
Chap. 8]. Notations:Im denotes them×m identity matrix;
A† denotes a matrixA’s adjoint (i.e. conjugate transpose).

A quantum state—a state of a quantum-dynamic system—
is represented by adensity matrix. For us such a system
will consist of N qubits, in which case the system is2N -
dimensional.

Definition II.1 (Density matrix). An m-dimensional density
matrix is anm×m matrix ρ ∈ C

m×m which is positive and
satisfiestr(ρ) ∈ [0, 1]. Here [0, 1] denotes the unit interval.
The set of allm-dim. density matrices is denoted byDm.

Note that we allow density matrices with trace less than1.
The following order is standard and used e.g. in [1], [16].

Definition II.2 (Löwner partial order). The order⊑ on the
setDm of density matrices is defined by:ρ ⊑ σ if and only
if σ − ρ is a positive matrix.

The following fact is crucial in this work. It is proved in [1,
Prop. 3.6] using a translation into quadratic forms; in [14,
Appendix A] we present another proof using matrix norms.

Lemma II.3. The relation⊑ in Def. II.2 is a partial order.
Moreover it is anω-CPO: an increasing chain has the least
upper bound.

MonadB for branching

Take the Kleisli category

Traced monoidal category

Int-construction, [9]

Compact closed category

Find a reflexive object

Linear combinatory algebraA

TakePERA, the category of partial equivalence relations

Linear category that models computation

Categorical
GoI [7]

Figure 1. The construction of the model

Definition II.4 (Quantum operation, QO). A quantum oper-
ation (QO) from an m-dim. system to ann-dim. system is
a mappingE : Dm → Dn subject to the following axioms.

1) (Trace condition)tr[E(ρ)] ∈ [0, 1] for any ρ ∈ Dm.
2) (Linearity) Let (ρi)i∈I be a family ofm-dim. density

matrices; and(pi)i∈I be a probability subdistribu-
tion (meaning

∑

i pi ≤ 1). Then: E
(
∑

i∈I piρi

)

=
∑

i∈I piE(ρi) .
3) (Complete positivity) An arbitrary “extension” ofE of

the form Ik ⊗ E : Mk ⊗ Mm → Mk ⊗ Mn carries a
positive matrix to a positive one.

The set of QOs from anm-dim. system to ann-dim. one
shall be denoted byQOm,n.

We extend the order⊑ in Def. II.2 in a pointwise manner
to obtain an order between QOs. This is done also in [1].

Definition II.5 (Order⊑ on QOm,n). GivenE ,F ∈ QOm,n,
we haveE ⊑ F if and only if E(ρ) ⊑ F(ρ) for eachρ ∈ Dm.
The latter⊑ is the L̈owner partial order (Def. II.2).

Proposition II.6. The order⊑ on QOm,n is an ω-CPO.

Proof. See [14, Appendix A]; also [1, Lem. 6.4].

B. Monads for Branching

The notion ofmonad is standard in category theory. In
computer science, after Moggi [17], the notion has been
used for encapsulatingcomputational effectin functional
programming. One such monadT appears in this paper—
at the last stage, as a part of a categorical model.

There is another monadQ—called thequantum branching
monad—that marks the beginning of our development. The
idea is drawn from the coalgebraic study of state-based
systems; in particular from the use of a monadB on
Sets for modeling branching, e.g. in [5]. Some examples
of B are: 1) the lift monad LX = 1 + X modeling
potential nontermination; 2) thepowerset monadP modeling
nondeterminism; and 3) thesubdistribution monadDX =
{d : X → [0, 1] | ∑x d(x) ≤ 1} modeling probabilistic
branching.

A feature of such a “branching” monadB is that its Kleisli
categoryKℓ(B) is ω-CPO enriched. This feature is used for
identifying a final coalgebra inKℓ(B); the latter turns out
to be a fully abstract semantic domain for (execution-trace
based)trace semanticsfor state-based systems. See [5].

C. Geometry of Interaction

Girard’s Geometry of Interaction (GoI)[6] is an interpre-
tation of linear logic in terms of dynamic information flow.
Its spirit is close to that of the game-based interpretations
of computation [10], [11]. Later, Abramsky, Haghverdi and
Scott [7] worked on a categorical foundation of GoI and
isolated some axiomatic properties of a categoryC on which
one can build a GoI interpretation. Such a categoryC

(together with some auxiliary data) is called aGoI situation

in [7]: among other conditions, a crucial one is thatC is
a traced symmetric monoidal category (TSMC)[9]. Then
applying what they call theGoI constructionG—isomorphic
to theInt-construction[9]—yields a compact closed category
G(C) of “bidirectional computations” or “(stateless) games.”

The resulting categoryG(C) comes close to a categorical
model of linear logic—a so-calledlinear category [18],
[19]—but not quite, lacking an appropriate operator for
modeling the! modality. A step ahead is taken in [7]: they
extract alinear combinatory algebra (LCA)from G(C). The
notion of LCA is a variation ofpartial combinatory algebra
(PCA) and corresponds to a Hilbert-style axiomatization of
linear logic, including the! modality.

D. Realizability

Roughly speaking, an LCA can be thought of as a collec-
tion of untyped closed linearλ-terms. LCAs are, therefore,
for interpretinguntypedcalculi.

What turns such a combinatory algebra into a model of
a typed calculus is the technique ofrealizability. It dates
back to Kleene; we shall be based on its formulation found
in [8]. It goes as follows. Starting from an LCAA, we define
the categoryPERA of partial equivalence relations (PER)
on A; a PER onA is roughly a subset ofA with some
of its elements mutually identified. An arrow ofPERA is
represented by acodec ∈ A.1

To turn PERA into a model of a typed linearλ-calculus
(i.e. a linear category) one needs operators like⊗, ⊸ and !
onPERA. They can be defined by “programming in untyped
linearλ-calculus”—it is much like encoding pairs and natural
numbers in theλ-calculus. See [8] for details.

III. T HE QUANTUM BRANCHING MONAD

A. Background

The starting point of our development is Jacobs’ observa-
tion [21] that relates: monads for branching (§II-B, used in
coalgebraictrace semantics) andtracedmonoidal categories
that appear in categorical GoI (§II-C).

The examples of a TSMCC in GoI [7] are divided into two
groups: thewave-styleones whereC’s monoidal structure is
given by products×; and theparticle-styleones where it
is given by coproducts+. The latter includes: the category
Pfn of sets and partial functions;Rel+ of sets and binary
relations; andSRel of measurable spaces and stochastic
relations. These are, in fact, (close to) the Kleisli categories
for the “branching” monads in§II-B. Generalizing this obser-
vation, Jacobs [21] proves that a monadB for branching—
i.e. a monad onSets with order enrichment, subject to some
additional conditions—has its Kleisli categoryKℓ(B) traced
monoidal, with+ being its monoidal structure.

1Another standard technique is to useω-sets(also calledassemblies) in
place of PERs. This is done for LCAs in [20].

f

...

.........

x x'

y y'

↓ ↓

↓↓

Let us elaborate on such Kleisli category
Kℓ(B). We look at it as a category ofpiping. An
arrow2 f : X p→ Y in Kℓ(B) is understood as
a bunch of pipes, with|X|-many entrances and
|Y |-many exits.3 The pipes are where aparticle (or token)
runs through.

According to the choice of a monadB, different “branch-
ing” of such pipes is allowed. WithB = id each entrance
x ∈ X is connected to a unique exity = f(x): a token
entering atx is led to the unique exitf(x). WhenB = L a
pipe can be “stuck” or “looped”: a token entering atx may
not come out. WhenB = P a pipe can branch into multiple
ones, with one entrance connected to possibly multiple exits.

B. The Quantum Branching MonadQ
Our road-map is (see Fig. 1): we fix a branching monad

B; then after some steps we obtain a categoryPERA that
models linearλ-calculus. For additional features of a calculus
(such as nondeterminism) we would need corresponding
structures in the ingredients—ultimately in the monadB.

For our purpose, therefore, we shall introduce a branching
monadQ that supports “quantum branching.” In an arrow in
Kℓ(Q) thought of as piping, a token that runs through is not
simply a particle any more but is a quantum state now.

Definition III.1 (The monadQ). The quantum branching
monadQ : Sets → Sets is defined as follows. On objects,

QX =
{

c : X →
∏

m,n∈N

QOm,n

∣

∣

∣ the trace condition (1)
}

where thetrace conditionis:
X

x∈X

X

n∈N

tr
[(

c(x)
)

m,n
(ρ)
]

≤ 1 , ∀m ∈ N, ∀ρ ∈ Dm. (1)

Here (c(x))m,n is the (m,n)-component of c(x) ∈
∏

m,n QOm,n. On arrows, givenf : X → Y we define
Qf : QX → QY as follows. Forc ∈ QX, y ∈ Y :

(

(Qf)(c)(y)
)

m,n
:=

P

x∈f−1({y})

(

c(x)
)

m,n
. (2)

As for the monad structure, its unitηX : X → QX is:

(

ηX(x)(x′)
)

m,n
:=

(

Im if x = x′ andm = n,
0 otherwise.

(3)

HereIm is the identity map;0 is the constant QO to0. The
multiplication µX : QQX → QX is defined by:

(

µX(γ)(x)
)

m,n
:=

X

c∈QX

X

k∈N

(

c(x)
)

k,n
◦
(

γ(c)
)

m,k
. (4)

The QO
(

c(x)
)

k,n
◦
(

γ(c)
)

m,k
on the RHS is thesequential

compositionof QOs.

In [14, Appendix B] we prove that the sums in (2) and (4)
exist, as well as thatQ is indeed a functor, and is a monad.

2We shall use p→ to denote an arrow in a Kleisli category.
3Our piping analogy is not completely faithful: in a Kleisli arrow f the

two crossings and are identified, but are different as physical pipes.

Let us look at a Kleisli arrowf : X p→ Y as piping. Each
entrancex ∈ X is ready for an incoming tokenρ ∈ Dm

of any finite dimensionm. Such a token gives rise to one
outcoming token; however its exit can be any exity ∈ Y and
the quantum state associated with the token can be of any
finite dimensionn ∈ N . Then-dim. quantum state that is to
come out ofy, is

(

f(x)(y)
)

m,n
(ρ) ∈ Dn.

f
.........

x

y y'

↓

↓↓

The trace condition (1) now reads:
X

y∈Y

X

n∈N

tr
[(

f(x)(y)
)

m,n
(ρ)
]

≤ 1 , ∀m, ρ. (5)

The valuetr
[(

f(x)(y)
)

m,n
(ρ)
]

is the (observational) proba-
bility with which a tokenρ entering atx leads to ann-dim.
token aty. Such values must add up to at most1; this is (5).

The composition⊙ of Kleisli arrows sequentially connects
piping, one after another. See [14, Appendix B].

The monadQ indeed satisfies the conditions in [21]—
equipped with a suitable order—so that the Kleisli category
Kℓ(Q) is a traced symmetric monoidal category (TSMC).

Definition III.2 (Order⊑ on QX). We endow the setQX
with the pointwise extension of the order in Def. II.5.

Theorem III.3. The monadQ on Sets satisfies the condi-
tion [21, Requirements 4.7]. Therefore by [21, Prop. 4.8],
Kℓ(Q) is partially additive. In particular by [22, Chap. 3],
(Kℓ(Q),+, 0) is a TSMC.

In [14, Appendix B] we spell out the condition [21, Require-
ments 4.7] and prove that it is satisfied.

C. A Linear Category via GoI and Realizability

A TSMC is a main ingredient of the notion ofGoI situation
in [7] (see§II-C). What are needed on top of it is a functorT
for interpreting the! modality, and a reflexive objectU that
would yield the carrier of an LCA. These can be provided
to Kℓ(Q) in the same way as toPfn ∼= Kℓ(L) andRel+ ∼=
Kℓ(P) done in [7]. See [14, Appendix B].

Theorem III.4. The triple
(

Kℓ(Q), N · , N
)

forms a GoI
situation [7, Def. 4.1].

Therefore we can use [7, Prop. 4.2]—in which theInt-
construction [9] plays an important role—to obtain an LCA.

Theorem III.5 (The quantum LCAAQ). The homset

AQ := Kℓ(Q)(N, N)

is a linear combinatory algebra (LCA). Its application oper-
ator · and its !-operator are concretely as follows.

a · b := trN

N,N









N + N
j

p−→ N
a
p−→

N
k
p−→ N + N

N+b
p−→ N + N









= a b

j

k

;

! a :=

(

N
v
p−→ N · N

N·a
p−→ N · N

u
p−→ N

)

= a

v

u

.

Herej : N+N ∼= N : k andu : N·N ∼= N : v are (choices of)
isomorphisms inSets embedded inKℓ(Q), like in [7, §5.1].
The above are string diagrams in the TSMCKℓ(Q).

The LCA combinators

Bxyz = x(yz) Cxyz = (xz)y Ix = x
Kx ! y = x Wx ! y = x ! y ! y D ! x = x
δ ! x = ! ! x F ! x ! y = !(xy)

are defined in the same way as in [7,§4]. In fact, AQ is
affine: it has the fullK combinator s.t.Kxy = x.

Further, through the standard realizability technique we
obtain a model fortypedcalculi. See e.g. [8,§2.1].

Definition III.6 (PER). A partial equivalence relation (PER)
over AQ is a symmetric and transitive relationX on the set
AQ. The domainof a PER|X| is defined by|X| := {x |
(x, x) ∈ R} = {x | ∃y. (x, y) ∈ R}. Hence when restricted
to its domain,X is an equivalence relation: thereforeX can
be thought of as a subset|X| ⊆ AQ quotiented.

PERs overAQ form a categoryPERQ. Its arrowX → Y
is defined to be an equivalence class of the PER

X ⊸ Y :=
{

(c, c′) | (x, x′) ∈ X ⇒ (cx, c′x′) ∈ Y
}

. (6)

We denote by[c] the equivalence class inX ⊸ Y to which
c ∈ AQ belongs. That is,[c] is an arrow that is “realized by
the codec.”

Theorem III.7. The categoryPERQ is a linear cate-
gory [18], [19], equipped with a symmetric monoidal struc-
ture (I,⊠) and a so-calledlinear exponential comonad!. The
latter means that! is a symmetric monoidal comonad (with
der : !X → X, δ : !X → ! !X, ϕ : !X ⊠ !Y → !(X ⊠ Y)
and ϕ′ : I → ! I) that is further equipped with monoidal
natural transformationsweak : ! X → I and con : !X →
!X ⊠ !X, subject to certain conditions.

Proof. By [8, Thm. 2.1]. See also Lem. V.2 later.

We use⊠ for the tensor product inPERQ; it is distinguished
from the tensor product of quantum states which we denote
by ⊗. We will discuss this issue shortly in Rem. IV.1.

IV. A QUANTUM λ-CALCULUS qλℓ

We introduce a new quantumλ-calculusqλℓ. The sub-
script ℓ stands for “local.”

Remark IV.1. The design ofqλℓ is based on Selinger and
Valiron’s in [3]. One big difference is as follows. In [3], the
type constructor⊗ in linearλ-calculus (“multiplicative and”)
also plays a role of the tensor product of quantum states.
Therefore the typeqbit⊗ qbit represents 2-qubit systems.
This leads to clean syntax; and their ingenious operational
semantics allows such double usage of⊗.

Unfortunately, this design is not suited for the current
style of semantics. While its reason is best observed on the
technical level, a rough intuition is as follows. In our particle-
style GoI semantics, a computation is like a game played by
passing a single token (i.e. a quantum state) around. Now
consider the combinationf ⊗ g : A ⊗ B → C ⊗ D of
two computationsf and g. It is the two gamesf and g
played at the same time; for the sake of compositionality
of the semantics the two games must be played separately
without affecting each other. This separation is violated by
the following program, valid in [3]:

⊢ EPR : qbit⊗ qbit

x : qbit ⊢ measx : bit y : qbit ⊢ meas y : bit
⊢ let 〈x, y〉 = EPR in 〈measx, meas y〉 : bit⊗ bit

whereEPR is the EPR pair(|00〉 + |11〉)/
√

2. The result of
measx : qbit ⊸ bit doesaffect that ofmeas y.

Our design choice is hence to separate⊗ for quantum
states from the type constructor⊠ for linear logic. In fact⊗
will not be visible since we letn-qbit stand forqbit⊗n.
The difference betweenn-qbit⊠m-qbit and(n+m)-qbit
is: the former stands for two (n- andm-qubit) quantum states
that arefor sure not entangled; the latter is for the composite
system in which two states arepossibly entangled.

Definition IV.2 (The calculusqλℓ). The typesof qλℓ are:

A,B ::= n-qbit | !A | A ⊸ B | ⊤ | A ⊠ B | A + B ,

with conventionsqbit := 1-qbit andbit := ⊤ + ⊤ .

The termsof qλℓ are:

M, N, P ::=
x | λxA.M | MN | 〈M, N〉 | ∗ |
let 〈xA, yB〉 = M inN | let ∗ = M inN |
inj

B
ℓ M | injA

r M |
matchP with (xA 7→ M | yB 7→ N) |
letrec fAx = M inN |
new |0〉 | measn+1

i | U | cmpm,n ,

with conventionstt := inj⊤ℓ (∗) andff := inj⊤r (∗) .

Herem,n ∈ N, i ∈ [1, n+1]; U is a2k ×2k unitary matrix,
for somek ∈ N; andA andB are types. The terms are almost
the same as in [3]; the additionalcompositionoperatorcmp
will have the typem-qbit ⊠ n-qbit ⊸ (m + n)-qbit,
embedding nonentangled states as possibly entangled states.

For typing, we employ the same subtype relation<: as
in [3] for taking care of the! modality. The rules that derive
<: are as in Table I. Here(∗) stands for the side condition
(n = 0 ⇒ m = 0).

The typing rules are as in Table I. There∆,Γ, etc. denote
(unordered)contexts. For a context∆ = (x1 : A1, . . . , xm :
Am), ! ∆ denotes(x1 : !A1, . . . , xm : !Am). The side
condition (†) stands for: an entryx : D in the contextΓ,
Γ1 or Γ2 never has a typeD of the formD = !E. That is,
such a type!E occurs only in! ∆. In the rule(Ax.2), c is a
constant and itsdefault typeAc is defined as in Table I. We
shall write Π
 ∆ ⊢ M : A if a derivation treeΠ derives
the type judgment. We write
 ∆ ⊢ M : A if there exists
suchΠ, that is, the type judgment is derivable.

Besides Rem. IV.1, among the design choices made for
qλℓ are: 1) bound variables and injections have explicit type
labels; 2) weakening is only allowed for types of the form
!A. One reason for these choices is so that Lem. V.21 holds.

V. A D ENOTATIONAL MODEL

A. Type Constructors inPERQ

In what follows, an element of the LCAAQ is often
designated by an untyped linearλ-term. This is allowed due
to combinatory completeness (see e.g. [8]).

Definition V.1. We introduce these combinators inAQ.

P := λxyz.zxy Pairing
K̄ := KI Weakening,K̄xy = y
Pl := λw.wK Left Projection,Pl(Pxy) = x
Pr := λw.wK̄ Right Projection, ,Pr(Pxy) = y

Recall that the fullK combinator is available inAQ. Obvi-
ously: Pxy = Px′y′ implies x = x′ andy = y′.

Lemma V.2. The categoryPERQ is a symmetric monoidal
closed category with the following operations.

X ⊠ Y :=
˘

(Pxy, Px′y′)
˛

˛ (x, x′) ∈ X ∧ (y, y′) ∈ Y
¯

,
I := {(I, I)} , X ⊸ Y := (see (6)).

Moreover, the monoidal unitI is final (i.e. terminal) in
PERQ.

The category has a linear exponential comonad! [8]:

!X := {(! x, ! x′) | (x, x′) ∈ X} , ![c] := [F(! c)]

where the latter!’s are from Thm. III.5. In particular, its
comonad structure is realized by the combinatorsD and δ.

The category also has binary products and coproducts: in
particular products are realized by a CPS-like encoding.

X × Y :=
˘

(Pk1(Pk2u), Pk′
1(Pk′

2u
′))

˛

˛

(k1u, k′
1u

′) ∈ X ∧ (k2u, k′
2u

′) ∈ Y
¯

,
X + Y :=

˘

(PKx, PKx′)
˛

˛ (x, x′) ∈ X
¯

∪
˘

(PK̄y, PK̄y′)
˛

˛ (y, y′) ∈ Y
¯

.

Proof. Straightforward; see e.g. [8], [20].

Logically, ⊠ is “multiplicative and”;× is “additive and.”

Lemma V.3. In PERQ we have canonical isomorphisms

!(X + Y) ∼= ! X + ! Y , ! ! X ∼= ! X , !(X ⊠ Y) ∼= ! X ⊠ ! Y ;

(∗)

!n k-qbit <: !m k-qbit
(k-qbit)

(∗)

!n ⊤ <: !m ⊤
(⊤)

A1 <: B1 A2 <: B2 (∗)

!n(A1 � A2) <: !m(B1 � B2)
(�) with � ∈ {⊠, +}

B1 <: A1 A2 <: B2 (∗)

!n(A1 ⊸ A2) <: !m(B1 ⊸ B2)
(⊸)

A <: A′

! ∆, x : A ⊢ x : A′
(Ax.1)

! Ac <: A

! ∆ ⊢ c : A
(Ax.2)

∆ ⊢ M : !n A

∆ ⊢ inj
B
ℓ M : !n(A + B)

(+.I1)

∆ ⊢ N : !n B

∆ ⊢ inj
A
r N : !n(A + B)

(+.I2)

! ∆, Γ1 ⊢ P : !n(A + B)
! ∆, Γ2, x : !n A ⊢ M : C
! ∆, Γ2, y : !n B ⊢ N : C

! ∆, Γ1, Γ2

⊢ matchP with (x!n A 7→ M | y!n B 7→ N) : C

(+.E), (†)

x : A, ∆ ⊢ M : B

∆ ⊢ λxA.M : A ⊸ B
(⊸.I1)

x : A, ! ∆ ⊢ M : B

! ∆ ⊢ λxA.M : !n(A ⊸ B)
(⊸.I2)

! ∆, Γ1 ⊢ M : A ⊸ B ! ∆, Γ2 ⊢ N : A

! ∆, Γ1, Γ2 ⊢ MN : B
(⊸.E), (†)

! ∆, Γ1 ⊢ M1 : !n A1 ! ∆, Γ2 ⊢ M2 : !n A2

! ∆, Γ1, Γ2 ⊢ 〈M1, M2〉 : !n(A1 ⊠ A2)
(⊠.I), (†)

! ∆ ⊢ ∗ : !n ⊤
(⊤.I)

! ∆, Γ2, x1 : !n A1, x2 : !n A2 ⊢ N : A
! ∆, Γ1 ⊢ M : !n(A1 ⊠ A2)

! ∆, Γ1, Γ2 ⊢ let 〈x!n A1

1 , x!n A2

2 〉 = M inN : A
(⊠.E), (†)

! ∆, Γ1 ⊢ M : ⊤ ! ∆, Γ2 ⊢ N : A

! ∆, Γ1, Γ2 ⊢ let ∗ = M inN : A
(⊤.E), (†)

! ∆, Γ, f : !(A ⊸ B) ⊢ N : C
! ∆, f : !(A ⊸ B), x : A ⊢ M : B

! ∆, Γ ⊢ letrec fA⊸Bx = M inN : C
(rec), (†)

Anew|0〉 := qbit

A
meas

n+1

i
:= (n + 1)-qbit ⊸ (bit ⊠ n-qbit) for n ≥ 1

Ameas1
1

:= qbit ⊸ bit

AU := n-qbit ⊸ n-qbit for a 2n × 2n matrix U
Acmpm,n

:= (m-qbit ⊠ n-qbit) ⊸ (m + n)-qbit

Table I
TYPING RULES FORqλℓ

therefore ! on PERQ is idempotent and strong monoidal;
it also preserves coproducts. Additionally, as in any linear
category:

!(X × Y) ∼= ! X ⊠ ! Y , (X + Y) ⊠ Z ∼= X ⊠ Z + Y ⊠ Z ,
I ⊸ X ∼= X , (X + Y) ⊸ Z ∼= (X ⊸ Z) × (Y ⊸ Z) .

Proof. See [14, Appendix D].

Using another pairing combinatorṖ we obtain a different
“implementation” ×̇ of products. The merit of×̇ is that it
exhibits better order-theoretic properties; we will need them
for recursion. In contrast,P enjoys a useful combinatorial
property:(Pxy)z = zxy.

Definition V.4 (CombinatorṖ, binary productX ×̇ Y).
We defineṖ ∈ AQ by the string diagram inKℓ(Q)
shown top on the right. The triangles arej : N +
N ∼= N : k in Thm. III.5. ThenṖxy becomes as
shown bottom on the right. It is straightforward
to write projectionsṖl, Ṗr for Ṗ; also conversion
combinatorsC

P7→Ṗ
—with C

P7→Ṗ
(Pxy) = Ṗxy—

and C
Ṗ 7→P

. We defineX ×̇ Y by replacingP by
Ṗ in X × Y (Lem. V.2).

x y

Lemma V.5. We have a canonical natural isomorphismX×
Y

∼=→ X×̇Y in PERQ, realized usingC
P7→Ṗ

. In what follows
we shall use× and ×̇ interchangeably. That is, we suppress
use ofC

P7→Ṗ
and C

Ṗ7→P
.

B. Quantum Mechanical Constructs inPERQ

Definition V.6 (CombinatorA).
We defineA ∈ AQ by the string diagram inKℓ(Q)
shown on the right. The triangles arej : N+N ∼=
N : k in Thm. III.5. It satisfies:Axy = x ⊙ y,
where⊙ denotes composition of arrows inKℓ(Q).

Definition V.7 (CombinatorsQρ, QU , Q
N+1
|0i〉

, Q
N+1
|1i〉

). We

define the elementsQρ,QU ,QN+1
|0i〉

∈ AQ as follows. Here
N ∈ N, ρ ∈ DN , U is an N × N unitary matrix, andi ∈
[1, N + 1].

Qρ, QU , QN+1
|0i〉

: N p−→ N in Kℓ(Q); given σ ∈ Dm,

`

Qρ(k)(l)
´

m,n
(σ) :=

(

ρ ⊗ σ if k = l ∧ n = 2N · m

0 otherwise,
`

QU (k)(l)
´

m,n
(σ) :=

(

(U()U† ⊗ Ij)σ if k = l and∃j. (n = m = 2N · j)

0 otherwise,
`

Q
N+1
|0i〉

(k)(l)
´

m,n
(σ) :=

8

>

<

>

:

`

〈0i| |0i〉 ⊗ Ij

´

σ

if k = l and∃j. (m = 2N+1 · j ∧ n = 2N · j)

0 otherwise.

In the definition ofQρ, ⊗ denotes tensor product of matrices.
Qρ is such that an incoming tokenσ comes out of the same
pipe, with its state composed withρ. In particular1 ∈ D1

comes out asρ. In Q
N+1
|0i〉

, 〈0i| |0i〉 denotes the projection
operator fromD2N+1 to D2N that projects thei-th qubit to
|0〉. A combinatorQN+1

|1i〉
∈ AQ is defined in the same way,

using 〈1i| |1i〉.

Definition V.8 (JN -qbitK,JbitK). For eachN ∈ N we
define a PERJN -qbitK by:

JN -qbitK :=
{

(Qρ,Qρ) | ρ ∈ D2N

}

.

In particular, J0-qbitK = { (Qp,Qp) | p ∈ [0, 1] } due to
Def. II.1. This can be thought of as the unit interval[0, 1].

A PER JbitK is defined to beI + I (see Lem. V.2).

Lemma V.9 (CombinatorsUU ,Pr
N+1
|0i〉

,Pr
N+1
|1i〉

). We define

UU := AQU , Pr
N+1
|0i〉

:= AQ
N+1
|0i〉

, Pr
N+1
|1i〉

:= AQ
N+1
|1i〉

.

Then we have, forρ, σ, U of suitable dimensions,

AQρQσ = Qρ⊗σ , UUQρ = QUρU† ,

Pr
N+1
|0i〉

Qσ = Q〈0i|σ|0i〉 , Pr
N+1
|1i〉

Qσ = Q〈1i|σ|1i〉 .

C. Continuation MonadT

Our categorical modelPERQ further employs a monad
T ; the interpretation of a type judgment∆ ⊢ M : A will be
an arrowJ∆K → T JAK. It is in fact a continuation monad
T = (⊸ R) ⊸ R with a suitable result typeR; hence
our semantics is in thecontinuation-passing style (CPS).
Informally, the reason for this design choice is as follows.

Think of the constructmeas1
1 that measures one qubit; for

the purpose of case-distinction based on the outcome, it is
desired thatmeas1

1 is of the typeqbit ⊸ bit. Therefore
we need a monadT—with a probabilistic flavor—so that we
haveJmeas1

1K : JqbitK → T JbitK.
For our GoI semantics based on local interaction, however,

a simple “probability distribution” monad (something likeD
in §II-B) would not do. One explanation is as follows. Think
of meas2

1 : 2-qbit ⊸ bit ⊠ qbit: it takes a stateρ of
a 2-qubit system; measures the first qubit; and returns its
outcome (tt or ff) together with the remaining qubit. The
probability of observingtt is tr

[

(〈01| |01〉⊗I2)ρ
]

; use of
a naive “probability distribution” monad requires calculation
of this probability. The calculation traces out the second
qubit, destroying it and leaving it inept for further quantum
procedures. Another explanation is: naive interpretationof
meas2

1 has the codomainbit⊗ qbit—with entanglement—
rather than the desired codomainbit ⊠ qbit.

Hence we need to postpone such calculation of probabili-
ties until the very end of computation. Use ofcontinuations
is a standard way to do so. For a result typeR, we take that
of complete binary trees with each edge labeled by a real
numberp ∈ [0, 1]—obtained as a final coalgebra.

Lemma V.10 (The result typeR). The endofunctorF =
JbitK ⊸ (J0-qbitK ×̇) on PERQ has a final coalgebra.
We denote it byr : R

∼=→ FR.

Proof. See [14, Appendix E].

It is standard thatT := (⊸ R) ⊸ R is a strong monad.
We will also need the following map.

Definition V.11 (mult). We define a mapmult : J0-qbitK⊠

R → R in PERQ to be such that: it receivesp ∈ [0, 1] and a
treet, and returns the treet with each label in it multiplied by
p. We can implement such a function by writing a coalgebra
c whose carrier isJ0-qbitK ⊠ R; see [14, Appendix E].

D. Fixed Point Operator

We shall interpret recursion inqλℓ using the ω-CPO
structure ofAQ; this is like in [23]. The proofs for§V-D
are found in [14, Appendix E].

Lemma V.12 (AQ is an ω-CPO). The setAQ is an ω-
CPO with⊥, by theω-CPO enriched structure⊑ of Kℓ(Q)
(Thm. III.3). Furthermore: 1) application· : A2

Q → AQ and
! are continuous; and 2)⊥ · a = ⊥.

Definition V.13 (Admissible PER). A PER U ∈ PERQ is
said to beadmissibleif: 1) (⊥,⊥) ∈ U for the least element
⊥ ∈ AQ 2) (xi, yi) ∈ U , x0 ⊑ x1 ⊑ · · · andy0 ⊑ y1 ⊑ · · ·
implies (supi xi, supi yi) ∈ U .

Lemma V.14. For eachX,Y , X ⊸ TY is admissible.

Definition V.15 (Fixed point operator). Let U,X ∈ PERQ,
andf : !U ⊠ !X → U be an arrow. Further assume thatU
is admissible. We definef ’s fixed pointfix(f) : !X → U as
follows. Let c be a code off . We definec0, c1, . . . ∈ | ! X ⊸

U | by

c0 := ⊥ ; cn+1 := the canonical code of

!X
con−→ !X ⊠ !X

δ⊠id−→ ! !X ⊠ !X
![cn]⊠id−→ !U ⊠ !X

[c]→ U .

Since U is admissible and⊥ · x = ⊥, c0 = ⊥ is a valid
code. By induction we can show thatc0 ⊑ c1 ⊑ · · · ; since
!X ⊸ U is admissible its supremumsupi ci belongs to the
domain| ! X ⊸ U |. We definefix(f) := [supi ci].

E. Interpretation

Definition V.16 (Interpretation of types). For eachqλℓ-
type A, we assignJAK ∈ PERQ as follows, using the
constructors in Lem. V.2. For base types,JN -qbitK is as
in Def. V.8.

J! AK := !JAK JA ⊸ BK := JAK ⊸ T JBK
J⊤K := I JA ⊠ BK := JAK ⊠ JBK

JA + BK := JAK + JBK

Definition V.17 (Interpretation of<:). To each derivation
of the subtype relationΠ
 A <: B (Def. IV.2), we can by
induction assign an arrowJΠK : JAK → JBK in PERQ using
der andδ (Thm. III.7).

The technical core is in the interpretation of measurements.
We explain its idea after the definition.

Definition V.18 (Interpretation of constants). For a constant
c in qλℓ, an arrowJcK : I → JAcK in PERQ is as follows.4

4Note thatJcK is not I→ T JAcK; this is because a constantc can always
have the type! Ac. See (Ax.2) in Table I and its interpretation in Table II.

For c = meas
n+1
i with n ≥ 1, by transpose we need

J(n + 1)-qbitK ⊠ ((JbitK ⊠ Jn-qbitK) ⊸ R)
m
−→ R . (7)

This can be obtained from the following map, usingR’s
fixed point property (R

∼=→ JbitK ⊸ (J0-qbitK × R)) and
Lem. V.3.

„

J(n + 1)-qbitK ⊠ (Jn-qbitK ⊸ R)×2

+J(n + 1)-qbitK ⊠ (Jn-qbitK ⊸ R)×2

«

Pr
n+1

|0i〉
⊠πℓ+Pr

n+1

|1i〉
⊠πr

−→

„

Jn-qbitK ⊠ (Jn-qbitK ⊸ R)
+Jn-qbitK ⊠ (Jn-qbitK ⊸ R)

«

ev+ev
−→ R + R

[〈Q0,id〉,〈Q0,id〉]
−→ J0-qbitK × R .

On the last lineQ0 denotesR
∇→ I

[λx.xQ0]→ J0-qbitK, with
∇ denoting the unique arrow.

For c = meas1
1, by transpose we need

JqbitK ⊠ (JbitK ⊸ R)
m′

−→ R , (8)

which we similarly obtain from the following composite.

JqbitK ⊠ R×2 + JqbitK ⊠ R×2

Pr1|0〉⊠πℓ+Pr1|1〉⊠πr

−→ J0-qbitK ⊠ R + J0-qbitK ⊠ R
[〈Q0,mult〉,〈Q0,mult〉]

−→ J0-qbitK × R ;

hereQ0 is the same as above;mult is from Def. V.11.
For the other constants (take transpose when necessary):

Jnew|0〉K := I
[λx.xQ|0〉〈0|]

−→ JqbitK

JUK := Jn-qbitK
[UU]
−→ Jn-qbitK

η
−→ T Jn-qbitK

Jcmpm,nK := Jm-qbitK ⊠ Jn-qbitK
[λw.wA]
−→

J(m + n)-qbitK
η

−→ T J(m + n)-qbitK

Here we used Lem. V.2 and Def. V.7.

The idea forJmeasn+1
i K is as follows. Letn ≥ 1 and take

the mapm in (7); roughly its input is a triple(ρ, ftt, fff) with
ρ ∈ D2n+1 and ftt, fff : D2n → R. Thenm’s output is the
tree shown below on the left. We simply put0 as the labels
on the depth one edges; the probabilities for observing|0i〉
or |1i〉 are implicitly passed down in the form of the trace
of the projected matrices.

When there is only one qubit left, we finally compute actual
probabilities. Takem′ in (8); its input is roughly a triple
(ρ, ttt, tff) with ρ ∈ D2 and treesttt, tff ∈ R. Letp = 〈0|ρ|0〉
andq = 〈1|ρ|1〉 be probabilities; then whatm′ returns is the
tree above on the right. Recall thatmult(p,) multiplies all
the labels of the input tree byp.

This way we only generate edges with its label0. This is
no problem: once we supply trees with nonzero labels asttt
and tff above, we observe nonzero probabilities.

The rest of the definition is straightforward.

Definition V.19 (Interpretation of contexts). We fix an enu-
meration of variables, i.e. a predetermined linear order≺
between variables. Given an (unordered) context∆ = (xi :
Ai)i∈[1,n], we defineJ∆K ∈ PERQ by JAσ(1)K ⊠ · · · ⊠

JAσ(n)K, whereσ is a bijection s.t.xσ(1) ≺ · · · ≺ xσ(n).

Definition V.20 (Interpretation of type judgments). For each
derivationΠ
 ∆ ⊢ M : A of a type judgment inqλℓ, we
inductively assign an arrowJΠK : J∆K → T JAK as in Table II.
There some obvious elements are omitted: we write∇ in
place of∇⊠id, JMK in place ofJ∆ ⊢ M : AK, etc. We denote
f ’s transpose byf∧. The strengthX ⊠ TY → T (X ⊠ Y) is
denoted bystr; str′ stands forTX⊠Y → T (X⊠Y). For the
rule (rec) we use the fixed point operator from Def. V.15.

Lemma V.21. The interpretationJΠ
 ∆ ⊢ M : AK does
not depend on the choice ofΠ. That is, J∆ ⊢ M : AK is
well-defined if the judgment is derivable.

Proof. See [14, Appendix F].

To compare with operational semantics (introduced in
short), thus obtained interpretationJ∆ ⊢ M : AK : J∆K →
JAK is too fine. Hence we further extractM ’s denotation
which is given by a probability distribution. We do so only
for closed termsM of type bit. This is standard: for non-
bit terms one will find distinguishing contexts of typebit.

Definition V.22 (Trees ttt, tff, and test). We define trees
t0, ttt, tff : I → R by:

t0 := (the tree whose labels are all0) ,
ttt := , tff := .

Indeed, it is straightforward to write down anF -coalgebra
(with its carrier3 · I) that gives rise to such trees by finality.

We denote bytest the arrowI → (JbitK ⊸ R) such that:
tt 7→ ttt andff 7→ tff.

Definition V.23 (Operationprob on trees). For each arrow
t : I → R thought of as a tree, we defineprob(t) ∈ R2 by:

prob(t) :=
(
∑ {labels on edges going down-left} ,
∑

{labels on edges going down-right}
)

To be precise, “edges going down-left” means “obtained
by supplying b0, b1, . . . , bn, and finally tt.” For example,
prob(ttt) = (1, 0) andprob(tff) = (0, 1).

Definition V.24 (Denotation relation.). We define a relation
. between closedbit-termsM—i.e. those terms for which
⊢ M : bit is derivable—and pairs(p, q) of real numbers,
as follows. Such a termM gives rise to an arrowtree(M) :
I → R in PERQ by:

I
∼=→ I ⊠ I

test⊠J⊢M :bitK−→ (JbitK ⊸ R) ⊠ T JbitK
ev→ R . (9)

We setM . (p, q) if prob(tree(M)) = (p, q). Obviously
such(p, q) is uniquely determined byM .

Ax.1 J! ∆K ⊠ JAK
∇
−→ JAK

JA<:A′K
−→ JA′K

η
−→ T JA′K

Ax.2 J! ∆K
∇
−→ I

ϕ′

−→ ! I
!JcK (cf. Def. V.18)

−→ !JAcK
η

−→ T !JAcK
T J! Ac<:AK

−→ T JAK

+.I1 J∆K
JMK
−→ T (!nJAK)

T !n κℓ−→ T !n(JAK + JBK)

+.I2 Similar

+.E J! ∆K ⊠ JΓ1K ⊠ JΓ2K
con,JP K
−→

T (!n(JAK + JBK)) ⊠ J! ∆K ⊠ JΓ2K
str,Lem. V.3

−→
T (!nJAK ⊠ J! ∆K ⊠ JΓ2K + !nJBK ⊠ J! ∆K ⊠ JΓ2K)
T [JMK,JNK]

−→ TTC
µ

−→ TC

⊸.I1 J∆K
JMK∧

−→ JA ⊸ BK
η

−→ T JA ⊸ BK

⊸.I2 J! ∆K
δ

−→ J!n+1 ∆K
!n(JMK∧)
−→ J!n(A ⊸ B)K

η
−→ T J!n(A ⊸ B)K

⊸.E J! ∆K ⊠ JΓ1K ⊠ JΓ2K
con,JMK,JNK

−→

T (JAK ⊸ T JBK) ⊠ T JAK
str′

−→ T ((JAK ⊸ T JBK) ⊠ T JAK)
T str
−→ TT ((JAK ⊸ T JBK) ⊠ JAK)

ev,µ
−→ T JBK

⊠.I J! ∆K ⊠ JΓ1K ⊠ JΓ2K
con,JM1K,JM2K

−→

T !nJA1K ⊠ T !nJA2K
str′, and thenstr,µ

−→ T (!nJA1K ⊠ !nJA2K)
Lem. V.3,µ
−→ T !n(JA1K ⊠ JA2K)

⊤.I J! ∆K
∇
−→ I

ϕ′

−→ ! I
δ,der
−→ !n I

η
−→ T !n I

⊠.E J! ∆K ⊠ JΓ1K ⊠ JΓ2K
con,JMK
−→

T !n(JA1K ⊠ JA2K) ⊠ J! ∆K ⊠ JΓ2K
Lem. V.3,str′

−→

T (!nJA1K ⊠ !nJA2K ⊠ J! ∆K ⊠ JΓ2K)
JNK,µ
−→ T JAK

⊤.E Similar

rec J! ∆K ⊠ JΓK
con,δ
−→ !J! ∆K ⊠ J! ∆K ⊠ JΓK

! fix(JMK∧)
−→

!JA ⊸ BK ⊠ J! ∆K ⊠ JΓK
JNK
−→ TC , where

J! ∆K ⊠ !(JAK ⊸ T JBK)
JMK∧

−→ (JAK ⊸ T JBK)

Table II
INTERPRETATION OF TYPE JUDGMENTS

VI. OPERATIONAL SEMANTICS AND ADEQUACY

First we introduce small-step operational semantics, from
which we derive big-step semantics. The latter is given in
the form of probability distributions over thebit type and
is to be compared with the denotational semantics.

Definition VI.1 (Extendedqλℓ). For operational semantics,
we extendqλℓ-terms by additional two sets of constants:

new ρ for eachn ∈ N andρ ∈ D2n ;
abortA′ for each typeA′.

Their default types are:Anew ρ := n-qbit for ρ ∈ D2n ;
AabortA′ := A′. The interpretationJnew ρK is obvious (cf.
Def. V.18); that ofabortA is [⊥] : I → T JAK.

We also introduce the following shorthands for “letrec

with counters.” They do not contain actualletrec.

letrec
0 fA⊸Bx = M inN := N [abortA⊸B/f] ;

letrec
n+1 fA⊸Bx = M inN :=

N [λxA.letrecn fA⊸Bx = M inM/f] .

Definition VI.2 (Value, evaluation context). The valuesand
evaluation contextsof qλℓ are defined in a standard way.

V, V1, V2 ::= x | λxA.M | 〈V1, V2〉 | ∗ |
inj

B
ℓ V | injA

r V | new ρ | measn+1
i | U | cmpm,n ;

E ::= [] | E[[]M] | E[V []] | E[〈[], M〉] |
E[〈V, []〉] | E[let 〈xA, yB〉 = [] inM] |
E[let ∗ = [] inN] | E[injB

ℓ []] | E[injA
r []] |

E[match [] with (xA 7→ M | yB 7→ N)]

HereE[F] is the result of replacingE’s unique hole[] by
the expressionF .

Definition VI.3 (Small-step semantics). The reduction rules
of qλℓ are defined in a standard way. Each reduction is

labeled by a real number from[0, 1].

E[(λxA.M)V] →1 E[M [V/x]]
E[let 〈xA, yB〉 = 〈V, W 〉 inM] →1 E[M [V/x, W/y]]
E[let ∗ = ∗ inM] →1 E[M]

E[match (injB
ℓ V) with (x!n A 7→ M | y!n B 7→ N)]

→1 E[M [V/x]]

E[match (injA
r V) with (x!n A 7→ M | y!n B 7→ N)]

→1 E[N [V/y]]
E[letrec fA⊸Bx = M inN]

→1 E[N [λxA.letrec fA⊸Bx = M inM/f]]
E[measn+1

i (new ρ)] →1 E[〈 tt, new 〈0i|ρ|0i〉 〉]
E[measn+1

i (new ρ)] →1 E[〈 ff, new 〈1i|ρ|1i〉 〉]
E[meas1

1(new ρ)] →〈0|ρ|0〉 E[tt]
E[meas1

1(new ρ)] →〈1|ρ|1〉 E[ff]
E[U(new ρ)] →1 E[new (Uρ)]
E[cmpm,n〈new ρ, newσ〉] →1 E[new (ρ ⊗ σ)]

Here M,N are terms,V,W are values andn ≥ 1. The
reductions involvingnew ρ occur only when the dimensions
match. The measurement rules always give rise to two
reductions in a pair (corresponding to|0〉 and |1〉); they are
said to be thepartner to each other.

An evaluationis a series of reductions.

Observe that the labelp in reduction →p is like a
probability but not quite: frommeas2

i (new ρ) there are two
→1 reductions, tonew 〈0i|ρ|0i〉 and tonew 〈1i|ρ|1i〉. Again,
probabilities are implicitly carried by the trace values.

Next we derive, from the small-step semantics, big-step
semantics forbit-type closed terms. To handle recursion,
we follow the standard method and use explicit counters.

Definition VI.4 (Big-step semantics). For eachn ∈ N we
define a relation⇓n between closedbit-termsM and pairs
(p, q) of real numbers. This is by induction onn.

For n = 0, we set

tt ⇓0 (1, 0) , ff ⇓0 (0, 1) , andM ⇓0 (0, 0) for otherM .

For n + 1, if M has a reductionM →1 M ′ caused by a
rule other than the measurement rule, we set:

M ⇓n+1 (p, q) if M ′ ⇓n (p, q) .

If M has a reductionM →r N caused by the measurement
rule, there is always its partner reductionM →r′ N ′. We set

M ⇓n+1 (rp + r′p′, rq + r′q′) if N ⇓n (p, q) andN ′ ⇓n (p′, q′).

Finally, we define a relation⇓ by: M ⇓ (p, q) if

(p, q) = sup
˘

(p′, q′) | M ⇓n (p′, q′) for somen
¯

,

wheresup is with respect to the pointwise order in[0, 1]2.
It is easy to see that for eachM and n, there is only one
(p, q) such thatM ⇓n (p, q); hence the same for⇓.

Theorem VI.5 (Adequacy). For any closedbit-termM , we
haveM ⇓ (p, q) if and only if M . (p, q).

Proof. The proof and some lemmas (such as normalization
for the recursion-free fragment) are in [14, Appendix F].

ACKNOWLEDGMENT

Thanks are due to Peter Selinger for a number of insightful
comments; to Kazuyuki Asada, Bart Jacobs, Phil Scott and
the anonymous reviewers for useful discussions and com-
ments; and to Andy Pitts for his ETAPS’07 talk that inspired
the current work. The second author is supported by JSPS
Research Fellowships for Young Scientists.

REFERENCES

[1] P. Selinger, “Towards a quantum programming language,”
Math. Struct. in Comp. Sci., vol. 14, no. 4, pp. 527–586, 2004.

[2] P. Selinger and B. Valiron, “On a fully abstract model for
a quantum linear functional language: (extended abstract),”
Elect. Notes in Theor. Comp. Sci., vol. 210, pp. 123–137, 2008.

[3] ——, “Quantum lambda calculus,” inSemantic Techniques in
Quantum Computation, S. Gay and I. Mackie, Eds. Cam-
bridge Univ. Press, 2009, pp. 135–172.

[4] Y. Delbecque and P. Panangaden, “Game semantics for quan-
tum stores,”Elect. Notes in Theor. Comp. Sci., vol. 218, pp.
153–170, 2008.

[5] I. Hasuo, B. Jacobs, and A. Sokolova, “Generic trace seman-
tics via coinduction,”Logical Methods in Comp. Sci., vol. 3,
no. 4:11, 2007.

[6] J.-Y. Girard, “Geometry of interaction I: Interpretation of
system F,” inLogic Colloquium 88, R. F. et al., Ed. North-
Holland, 1989, pp. 221–260.

[7] S. Abramsky, E. Haghverdi, and P. Scott, “Geometry of
interaction and linear combinatory algebras,”Math. Struct. in
Comp. Sci., vol. 12, no. 5, pp. 625–665, 2002.

[8] S. Abramsky and M. Lenisa, “Linear realizability and full
completeness for typed lambda-calculi,”Ann. Pure & Appl.
Logic, vol. 134, no. 2–3, pp. 122–168, 2005.

[9] A. Joyal, R. Street, and D. Verity, “Traced monoidal cate-
gories,” Math. Proc. Cambridge Phil. Soc., vol. 119(3), pp.
425–446, 1996.

[10] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full abstrac-
tion for PCF,” Inf. & Comp., vol. 163, no. 2, pp. 409–470,
2000.

[11] J. M. E. Hyland and C.-H. L. Ong, “On full abstraction for
PCF: I, II, and III,” Inf. & Comp., vol. 163, no. 2, pp. 285–408,
2000.

[12] I. Mackie, “The geometry of interaction machine,” inPOPL
’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. New York,
NY, USA: ACM, 1995, pp. 198–208.

[13] P. Scott, “Tutorial on geometry of interaction,” Tutorial talk at
FMCS 2004, 2004, slides available online.

[14] I. Hasuo and N. Hoshino, “Semantics of higher-order quantum
computation via geometry of interaction,” Extended version,
to appear in RIMS Preprints, April 2011.

[15] K. Kraus,States, effects and operations. Fundamental notions
of quantum theory, ser. Lect. Notes Phys. Springer-Verlag,
1983, vol. 190.

[16] M. A. Nielsen and I. L. Chuang,Quantum Computation and
Quantum Information. Cambridge Univ. Press, 2000.

[17] E. Moggi, “Notions of computation and monads,”Inf. &
Comp., vol. 93(1), pp. 55–92, 1991.

[18] G. M. Bierman, “What is a categorical model of intuitionistic
linear logic,” in Typed Lambda Calculi and Applications, ser.
Lect. Notes Comp. Sci., M. Dezani-Ciancaglini and G. Plotkin,
Eds., no. 902. Springer, Berlin, 1995, pp. 78–93.

[19] P. N. Benton and P. Wadler, “Linear logic, monads and the
lambda calculus,” inLICS, 1996, pp. 420–431.

[20] N. Hoshino, “Linear realizability,” inCSL, ser. Lect. Notes
Comp. Sci., J. Duparc and T. A. Henzinger, Eds., vol. 4646.
Springer, 2007, pp. 420–434.

[21] B. Jacobs, “From coalgebraic to monoidal traces,” inCoalge-
braic Methods in Computer Science (CMCS 2010), ser. Elect.
Notes in Theor. Comp. Sci., vol. 264. Elsevier, Amsterdam,
2010.

[22] E. Haghverdi, “A categorical approach to linear logic, geome-
try of proofs and full completeness,” Ph.D. dissertation, Univ.
of Ottawa, 2000.

[23] M. Abadi and G. D. Plotkin, “A per model of polymorphism
and recursive types,” inLICS. IEEE Computer Society, 1990,
pp. 355–365.

