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Abstract—While much of the current study on quantum programming languages—inherently supporting highertorde
computation employs low-level formalisms such as quantum computation—linearity provides a useful means of prohibit-
circuits, several high-level languages/calculi have been recently ing duplication of quantum data (“no-cloning”). Examples

proposed aiming at structured quantum programming. The .
current work contributes to the semantical study of such of such languages are found in [1]-[4]. However, the study

languages, by providing interaction-based semantics of a func- Of their semantics is still at its infancy. There are only a
tional quantum programming language; the latter is based on few denotational models proposed; among them is the one
linear Ia_mbda calculus_ and is equipped with featu_res like the jn [2] which, however, fail to support themodality (hence

! modality and recursion. The proposed denotational model graqre and duplication of classical data). In fact it seems

is the first one that supports the full features of a quantum to b bl to find a d tati | del id
functional programming language; we also prove adequacy 0 be an open problem to find a denotational model (aside

of our semantics. The construction of our model is by a from a term model) that supports full language features—
series of existing techniques taken from the semantics of the ! modality, recursion, etc.—of a quantum functional

classical computation as well as from process theory. The most programming language. See [3] for a survey and an axiomatic
notable among them is Girard’s Geometry of Interaction (Gol), study of such models

categorically formulated by Abramsky, Haghverdi and Scott. . .
The mathematical genericity of these techniques—Iargely due In this paper we present a new language and its de-

to their categorical formulation—is exploited for our move from  Notational model that supports its full features. The |aggu

classical to quantum. )\, is based on Selinger and Valiron’s [3]—in particular we
Keywords-quantum computation; lambda calculus; categori- Share their principle of “quantum data, classical contrel”
cal semantics; geometry of interaction; realizability but is modified for a better fit to our denotational model. We
also define its operational semantics and prove adequacy.
|. INTRODUCTION For the construction of the denotational model we employ

Computation and communication using quantum data hasseries of existing techniques in theoretical computer sci
attracted growing attention. On the one hand, quantum coence (Fig. 1). Namely: 1) a monad with an order structure
putation provides a real breakthrough in computing powerfer modeling branching, used in the coalgebraic study of
at least for certain applications—as demonstrated by Shoskite-based systems (e.g. in [5]); 2) Girar@gometry of
algorithm. On the other hand, quantum communication redfteraction (Gol)[6], categorically formulated by Abramsky,
izes “unconditional security” e.g. via quantum key digtrib Haghverdi and Scott [7], providing interaction-based, gam
tion. The latter is being even tested for practical use. like semantics for linear logic and computation; 3) the

The extensive research efforts on this new paradigm hakaalizability technique that turns an (untyped) combinatory
identified some challenges, too. On quantum computatiomgebra into a categorical model of a typed calculus (used
aside from a few striking ones such as Shor’s and quantug. in [8]); and 4) thecontinuation-passing style (CPS)
search algorithms, researchers are having a hard timegtrygemantics. In each stage we benefit from the fact that the
to find a new “useful” algorithm. On guantum commu-+elevant technique is formulated in the language of caiegor
nication, the unintuitive nature of quantum data becoméleory: the technique is originally for classical compiatat
an additional burden in the task of getting communicatiobut its genericity makes it applicable to quantum settings.
protocols right—which has proved extremely hard already Our semantics is based on so-calpetticle-style Goland
with classical data. hence on local interaction of agents, passing a token to each

Structured programmingand mathematically formulated other. This is much like igame semanticglO], [11]; our
semanticsre potentially useful tools to solve these problemslenotational model, therefore, has a strong operationatrfla
Structured programming often leads to discovery of ing&e are currently working on extracting abstract machines fo
nious algorithms; well-formulated semantics would previdquantum computation, much like in [12]. Our model is also
a ground for proving a communication protocol correct. one answer to the question “Quantum Gol?” raised in [13].

Towards this direction, there have been proposed sev- Organization of the paperin §ll we fix the notations
eral high-level languages tailored for quantum compder quantum computation and briefly describe the semantical
tation. Among them are those based dmear - techniques used later. I8l we introduce thequantum
calculus while A-calculus is a prototype of functional branching monad® on Sets, from whose Kleisli category



K¢(Q) we obtain the categorfPERg. We introduce our
languageg )\, in §1V, which is interpreted inPERg in §V
with the help of a continuation monad. Finally §VI we
present operational semantics and prove adequacy.

Definition 1.4 (Quantum operation, QO)A quantum oper-
ation (QO) from anm-dim. system to am-dim. system is
a mapping€ : D,, — D,, subject to the following axioms.

1) (Trace condition)tr[€(p)] € [0, 1] for any p € D,,.

Due to space limitation, most proofs as well as a few 2) (Linearity) Let(p;):c; be a family ofm-dim. density

technical definitions are deferred to an extended versiéh [1 matrices; and(p;)ic; be a probability subdistribu-
tion (meaning}", p; < 1). Then:E(> ;. pipi) =
[I. PRELIMINARIES > icr Pi€(pi) -

3) (Complete positivity) An arbitrary “extension” & of
the formZ, ® € : M, ® M,,, — M, ® M, carries a
We follow Kraus’ formulation [15] of quantum mechanics, positive matrix to a positive one.

which is by now standard and is used in e.g. [1], [16]. Dughe set of QOs from am-dim. system to am-dim. one

to the limited space we only list definitions and results thahall be denoted b@O,, ,,.

are used later; for proofs and more detailed explanation, ou ' ) o

principal reference is the standard textbook [16, Chap. 3 & e extend the ordeL in Def. II.2 in a pointwise manner

Chap. 8]. NotationsZ,, denotes then x m identity matrix; to obtain an order between QOs. This is done also in [1].

At denotes a matrix!’s adjoint (i.e. conjugate transpose). Definition 11.5 (OrderC onQO,, ,,). Given&, F € QO,, ,.,
A quantum state-a state of a quantum-dynamic system—we haveS C  if and only if£(p) C F(p) for eachp € D,y,.

is represented by @ensity matrix For us such a system The latterC is the Lowner partial order (Def. 11.2).

will consist of N qubits, in which case the system 3¢'-

dimensional.

A. Quantum Computation

Proposition 11.6. The orderC on QO,, ,, is anw-CPO.
Definition I1.1 (Density matrix) An m-dimensional density Proof. See [14, Appendix AJ; also [1, Lem. 6.4]. -
matrix is anm x m matrix p € C™*™ which is positive and B. Monads for Branching

satisfiestr(p) € [0, 1]. Here [0, 1] denotes the unit interval.

; ; . - The notion ofmonadis standard in category theory. In
The set of allm-dim. density matrices is denoted y,,. gory 4

computer science, after Moggi [17], the notion has been
Note that we allow density matrices with trace less than  used for encapsulatingomputational effectn functional

The following order is standard and used e.g. in [1], [L16programming. One such monatl appears in this paper—
at the last stage, as a part of a categorical model.

Definition 1.2 (Lowner partial order) The orderC on the  There is another monag@—called thequantum branching
setD,, of density matrices is defined by:C o if and only  monag—that marks the beginning of our development. The
if o — p is a positive matrix. idea is drawn from the coalgebraic study of state-based

The following fact is crucial in this work. It is proved in [1, SYStems;  in particular from the use of a mon&don
Prop. 3.6] using a translation into quadratic forms; in [143€ts for modeling branching e.g. in [5]. Some examples

Appendix A] we present another proof using matrix norm2f B are: 1) thelift monad £LX = 1 + X modeling
potential nontermination; 2) th@owerset mona@® modeling

Lemma I1.3. The relationC in Def. II.2 is a partial order. nondeterminism; and 3) theubdistribution monaddDX =
Moreover it is anw-CPO: an increasing chain has the least{q : X — [0,1] | 3, d(z) < 1} modeling probabilistic
upper bound. O branching.

A feature of such a “branching” mondsl is that its Kleisli
categoryK((B) is w-CPO enriched. This feature is used for
identifying a final coalgebra ik¢(B); the latter turns out
to be a fully abstract semantic domain for (execution-trace
based)trace semanticsor state-based systems. See [5].

| Monad B for branching|

J Take the Kleisli category

|Traced monoidal categon|y C. Geometrv of Int .
Int-construction, [9] Categorical ’ y of Interaction
Gol [7] Girard's Geometry of Interaction (Goljg] is an interpre-
tation of linear logic in terms of dynamic information flow.
Its spirit is close to that of the game-based interpretation

| Compact closed categoty

JFind a reflexive object

|Li”ear combinatory a'gebf3| of computation [10], [11]. Later, Abramsky, Haghverdi and
1Take PER 4, the category of partial equivalence relations Scott [7] worked on a categorical foundation of Gol and
| Linear category that models Computaﬂbn isolated some axiomatic properties of a categ@rgn which

one can build a Gol interpretation. Such a categdry
Figure 1. The construction of the model (together with some auxiliary data) is calledGal situation



in [7]: among other conditions, a crucial one is tHatis Let us elaborate on such Kleisli category z
a traced symmetric monoidal category (TSM[B]. Then K¢(B). We look at it as a category @iping. An "L~
applying what they call th&ol constructiong—isomorphic arrow? f : X -+ Y in K¢(B) is understood as
to theInt-construction[9]—yields a compact closed categorya bunch of pipes, withX |-many entrances and "4 ™
G(C) of “bidirectional computations” or “(stateless) games.]Y |-many exits> The pipes are where particle (o’F toklér)
The resulting categorg(C) comes close to a categoricalruns through.

model of linear logic—a so-calledinear category [18], According to the choice of a monal, different “branch-
[19]—but not quite, lacking an appropriate operator foing” of such pipes is allowed. WittB = id each entrance
modeling the! modality. A step ahead is taken in [7]: theyz € X is connected to a unique exit = f(z): a token
extract alinear combinatory algebra (LCAfrom G(C). The entering atz is led to the unique exif(z). WhenB = L a
notion of LCA is a variation opartial combinatory algebra pipe can be “stuck” or “looped”: a token enteringzaimay
(PCA) and corresponds to a Hilbert-style axiomatization afot come out. Whe3 = P a pipe can branch into multiple
linear logic, including thé modality. ones, with one entrance connected to possibly multiples exit

B. The Quantum Branching Monad

, Our road-map is (see Fig. 1): we fix a branching monad
_ Roughly speaking, an LCA can be thought of as a coIIecB; then after some steps we obtain a categBlR. 4 that
tion of untyped closed lineak-terms. LCAs are, therefore, n,,qe|s jinean-calculus. For additional features of a calculus
for |nterpretlnguntypedcalcu!l. ) (such as nondeterminism) we would need corresponding

What turns such a combinatory algebra into a model @t,ctures in the ingredients—ultimately in the morfad

a typed calculus is the technique aalizability. It dates  por our purpose, therefore, we shall introduce a branching
back to Kleene; we shall be based on its formulation fo“r}ﬂonadg that supports “quantum branching.” In an arrow in
in [8]. It goes as follows. Starting from an LCA, we define K£(Q) thought of as piping, a token that runs through is not

the categoryPER 4 of partial equivalence relations (PER) simply a particle any more but is a quantum state now.
on A; a PER onA is roughly a subset ofA with some

of its elements mutually identified. An arrow &ER4 is Definition Ill.1 (The monadQ). The quantum branching

represented by aodec € Al monad @ : Sets — Sets is defined as follows. On objects,
To turn PER 4 into a model of a typed lineak-calculus X — e 0

(i.e. a linear category) one needs operators tike— and! Q {C’ - H QO

onPER 4. They can be defined by “programming in untyped o

linear \-calculus’—it is much like encoding pairs and natura’here thetrace conditionis:

D. Realizability

the trace condition (]})
m,neN

numbers in the\-calculus. See [8] for details. SN trl(e@),,  (p)] <1, ¥meEN, Vp € D (1)
zeX neN ’

[1l. THE QUANTUM BRANCHING MONAD Here (c(z))m.n is the (m,n)-component of c(z) e

A. Background [, QO,,,. On arrows, givenf : X — Y we define

: QX — QY as follows. Force 9X,yeY:
The starting point of our development is Jacobs’ observg—f Q Q X,y

tion [21] that relates: monads for branchirfgl{B, used in (@NEOW),,, = Zecs1qun (@), - @
coalgebraidrace semantics) anttaced monoidal categories  ag for the monad structure, its unjty : X — QX is:
that appear in categorical GAI-C). . )

The examples of a TSMC in Gol [7] are divided into two (nx(@)(2)) = {Im if 2 =2" andm =mn, ?)
groups: thewave-styleones whereC’s monoidal structure is m’" 0 otherwise.

given by productsx; and theparticle-styleones where it Here7,, is the identity map( is the constant QO t6. The
is given by coproducts-. The latter includes: the categorymyltiplication iy : QOX — QX is defined by:
Pfn of sets and partial function®el, of sets and binary

relations; andSRel of measurable spaces and stochastic (“X(V)(“))m,n = Z Z(C(x))k,n ° (7(0))m,k' (4)

relations. These are, in fact, (close to) the Kleisli catiEgo ceQX heN

for the “branching” monads ifll-B. Generalizing this obser- The QO(c(x))k W © (’y(c))m . on the RHS is theequential
vation, Jacobs [21] proves that a monBdfor branching— compositionof QOs. ’

i.e. a monad orSets with order enrichment, subject to som
additional conditions—has its Kleisli categoky/(B) traced

monoidal, with+ being its monoidal structure.

%I [14, Appendix B] we prove that the sums in (2) and (4)
exist, as well as tha® is indeed a functor, and is a monad.

2We shall use+ to denote an arrow in a Kleisli category.

1Another standard technique is to usesets(also calledassembligsin 30ur piping gnalogy is not completely faithful: in a Kleisliraw f the
place of PERs. This is done for LCAs in [20]. two crossings\ and.X are identified, but are different as physical pipes.



Let us look at a Kleisli arrowf : X + Y as piping. Each is a linear combinatory algebra (LCA). Its application oper
entrancer € X is ready for an incoming tokep € D,, ator - and its!-operator are concretely as follows.
of any finite dimensionm. Such a token gives rise to one

7 a
outcoming token; however its exit can be any exit Y and N+N—+—N-—+
the quantum state associated with the token can be of an . N k N4 .
__q_ _ ) ) Ya-b.:trNﬁN N -+ N+ N = [d 7
finite dimensiomn € N. Then-dim. quantum state that is to Nb N
come out ofy, is ( f(x)(y)), . (p) € Dn. —+ N+N
v N-a
€ D | N—+N-N—+N-N ?
‘a = w = N
z —+ N o] -
l f |
L‘ld Lﬁj Herej : N+N = N: kandu: N-N = N : v are (choices of)
((F@@)n)) €IIPn  ((F@)),000)). isomorphisms irBets embedded iK/(Q), like in [7, §5.1].

n

The above are string diagrams in the TSMZ(Q).
The LCA combinators

Bayz = z(yz) Caxyz = (z2)y le =2

The trace condition (1) now reads:

ZZtr[(f(x)(y)>mn(p)]§1 , Ym, p. (5) Kely=ux Wzly=xz!yly Dlz==x
yEY neN ’ o=z Flzly =(zy)
are defined in the same way as in [#]. In fact, Ag is

The valuetr[(f(z)(y)),, ,(p)] is the (observational) proba-

bility with which a tokenp entering atr leads to am-dim.

token aty. Such values must add up to at masthis is (5). Further, through the standard realizability technique we
The compositiore of Kleisli arrows sequentially connectsobtain a model fotypedcalculi. See e.g. [8§2.1].

piping, one after another. See [14, Appendix B]. Definition IIl.6 (PER) A partial equivalence relation (PER)

The Tjoniﬁg mqlteebcil sat(;sﬂes th:“\h Cto?hd't'ﬁrs. :_n [Ztl]_overAQ is a symmetric and transitive relatioki on the set
équipped with a suitable order—so that the Kieist categor o. Thedomainof a PER|X]| is defined by|X| := {« |

Ke(Q) is a traced symmetric monoidal category (TSMC). (¢.2) € R} = {« | Jy. (z,y) € R}. Hence when restricted

Definition 111.2 (OrderC on QX). We endow the seQX to its domain,X is an equivalence relation: therefake can
with the pointwise extension of the order in Def. I1.5. be thought of as a subsgX| C Ao quotiented.

o . PERs overd, form a categorfPER . Its arrowX — Y
Theorem 111.3. The monad® on Sets satisfies the condi- is defined to be an equivalence class of the PER

tion [21, Requirements 4.7]. Therefore by [21, Prop. 4.8], . , .,

Ke(Q) is partially additive. In particular by [22, Chap. 3], X =Y :={(c¢)|(z,a') e X = (cx,cd) €Y } . (6)
(KU(Q), +,0) is a TSMC. 1 We denote byic] the equivalence class i¥ — Y to which
In [14, Appendix B] we spell out the condition [21, Require< € Ag belongs. That is|c] is an arrow that is “realized by

affine it has the fullK combinator s.tKxy = x. O

ments 4.7] and prove that it is satisfied. the codec.”
) ) o Theorem IIl.7. The categoryPER is a linear cate-
C. A Linear Category via Gol and Realizability gory [18], [19], equipped with a symmetric monoidal struc-

A TSMC is a main ingredient of the notion ol situation ture (I, X) and a so-calledinear exponential comonddThe
in [7] (see§lI-C). What are needed on top of it is a functbr latter means that is a symmetric monoidal comonad (with
for interpreting the! modality, and a reflexive objedf that der:!X — X, :!X - 11X, o : I XXK!Y — (X XY)
would yield the carrier of an LCA. These can be provide@nd ¢’ : I — !T) that is further equipped with monoidal
to K/(Q) in the same way as tPfn = K/(£) andRel, = natural transformationsweak : ! X — I andcon : ! X —

KC¢(P) done in [7]. See [14, Appendix B]. !X X! X, subject to certain conditions.
Theorem 111.4. The triple (K/(Q), N-_, N) forms a Gol Proof. By [8, Thm. 2.1]. See also Lem. V.2 later. O
situation [7, Def. 4.1]. [0 We useX for the tensor product iPER g; it is distinguished

from the tensor product of quantum states which we denote

Therefore we can use [7, Prop. 4.2]—in which the- o g .
construction [9] plays an important role—to obtain an LCAF)y . We will discuss this issue shortly in Rem. IV.1.

IV. A QUANTUM A-CALCULUS gy

We introduce a new quantum-calculusg),. The sub-
Ag = KU(Q)(N,N) script ¢ stands for “local.”

Theorem IIl.5 (The quantum LCAAy). The homset



Remark IV.1. The design ofq)\, is based on Selinger and The typing rules are as in Table I. Thefe I', etc. denote
Valiron's in [3]. One big difference is as follows. In [3],&éh (unordered)contexts For a contextA = (x1 : A1,..., T :
type constructow in linear A-calculus (“multiplicative and”) A,,), ! A denotes(z; : 'Aq,...,z, : 4,,). The side
also plays a role of the tensor product of quantum statesndition ¢) stands for: an entry: : D in the contextl’,
Therefore the typegbit ® qbit represents 2-qubit systems.I'; or I'; never has a typ® of the form D =!E. That is,
This leads to clean syntax; and their ingenious operatiorgich a type E occurs only in! A. In the rule(Ax.2), cis a
semantics allows such double usagexof constant and itslefault typeA. is defined as in Table I. We
Unfortunately, this design is not suited for the currerghall writeII I A - M : A if a derivation treell derives
style of semantics. While its reason is best observed on tte type judgment. We writé- A = M : A if there exists
technical level, a rough intuition is as follows. In our pelg-  suchll, that is, the type judgment is derivable.
style Gol semantics, a computation is like a game played byBesides Rem

passing a single token (i.e. a quantum state) around. Non ) IV.1,. among th_e.de_S|gn choices ”."'"’.‘de for
consider the combinatiof @ g : A® B — C ® D of qA¢ are: 1) bound variables and injections have explicit type

two computationsf and g. It is the two gamesf and g labels; 2) weakening is only allowed for types of the form

| . )
played at the same time; for the sake of compositionalityA' One reason for these choices is so that Lem. V.21 holds.

of the semantics the two games must be played separately V. A DENOTATIONAL MODEL

without affecting each other. This separation is violatgd b )
the following program, valid in [3]: A. Type Constructors iPERo

- EPR : gbit © gbit In what follows, an element of the LCAg is often
x : gbit F measx : bit y : qbit  measy : bit designated by an untyped lineaterm. This is allowed due
Flet (z,y) = EPRin (meas z,meas y) : bit ® bit to combinatory completeness (see e.g. [8]).

whereEPR is the EPR pair(|00) + |11))/v/2. The result of Definition V.1. We introduce these combinators ity .
meas x : gbit —o bit doesaffect that ofmeas y.

Our design choice is hence to separatefor quantum
states from the type constructi for linear logic. In fact® . o
will not be visible since we leti-gbit stand forqbit®™. Pi:=Aw.wK  Left Projection,P|(Pzy) =«

The difference between-qbitXm-gbit and(n-+m)-qbit Pr:=dw.wK  Right Projection, P,(Pzy) =y

is: the former stands for twoxt andm-qubit) quantum states Recall that the fullk combinator is available iMg. Obvi-
that arefor sure not entanglgdthe latter is for the composite oysly: Pzy = Pa/y/ impliesz = 2/ andy = /.

system in which two states apossibly entangled

P:= Azyz.zzy Pairing ~
K:=KIl Weakening Kzy = y

o Lemma V.2. The categorfPER is a symmetric monoidal

A B:=n-qpit |!A|A—-B|T|AXB|A+ B, X&Y::{(ny,Pm’y’)’(z,x/) EXAy)eY},
with conventionggbit := 1-gbit andbit := T + T . L={()}, X —oY:=(see(6).

The termsof g\, are: Moreover, the monoidal unif is final (i.e. terminal) in

PER,.
M,N,P := The category has a linear exponential comond8]:
x| Az M | MN | (M,N) | * | ) .
let (z?,yP) = MinN |let+ = M inN | IX ={(z,!2") [ (z,2") € X} , [ :=[F(lc)]

.. +B M| i LA M . .
e |.mJ" A | B where the latter!’s are from Thm. IIl.5. In particular, its
match Pwith (z” — M |y~ — N) | . . .

letrec fAz = Min N | comonad structure is reallz_ed by the combinatDrand 4. _
new|0) | meas] ! | U | cmp,,, , The category also has binary products and coproducts: in

with conventionstt :— inj}(*) and £ — inj:(*) ’ particular products are realized by a CPS-like encoding.

) . : : X x Y := { (Pki(Pkau), Pk} (Pkju')) |
. k k
Herem,n € N, i € [1,n+1]; U is a2" x 2% unitary matrix, (ku, Kiu') € X A (kyu, kyu') €Y } |

for somek € N; and A and B are types. The terms are almost X+ = { (PKz, PKz') | (z,2') € X}

th_e same as in [3]; the additionebmpositionoperatorcmp U{ (PKy,PKy) | (y,v/) € Y} .
will have the typem-qbit X n-gbit — (m + n)-gbit, ] _
embedding nonentangled states as possibly entangled.stdf&0f- Straightforward; see e.g. [8], [20]. O

For typing, we employ the same subtype relatianas Logically, X is “multiplicative and”; x is “additive and.”
in [3] for taking care of thé modality. The rules that derive
<: are as in Table I. Heréx) stands for the side condition
(n=0=m=0). X+Y)2IX+1Y, XX (XKRY)2IXKIY;

Lemma V.3. In PER, we have canonical isomorphisms



(*) (*)

T (7

(k-qbit)

IAT:FM:A—oB IAT:FN:A

" k-gqbit <: "™ k-qbit —.E
A1q<: Bi A, <(:1BQ (*) . 'A,T1, 2 MN : B ( ) ()
n pony (B)WIthBE{‘E,+} !A7F1FM1:!71A1 !A,PQFMQZ!”AZ
"(A1 @ Az) <:"™(B1 @ Bz) AT Tob (M M) A KA D, (1)
By <: A1 As<:By (%) o) PA, Ty, T b (M, M) : 1"(Ar K Ao)
I"(A; — Ag) <:!"™(B; — Bs) Are. T (7D
TA Do,z : " Ay 20 : "AF N A
A< A 1A, <: A Lo, 21 1,%2 2
— > (Axd Sfe S 2 ! .
Az Akx: A ( ) !AI—C:A(AX'2) 'A’Plki\{” (fhgfb) (X.E), (1)
AFM:I"A (+.11) IA, T, T b let (z) A1 2y *2) = MinN: A
At injPM :1"(A+ B) AT FM:T !A,FQ}—N:A(TE) )
AFN:I"B (4+.12) AT, ToFletx=MinN : A T
Ak inj?N :""(A+ B) IAT, f:Y(A—B)FN:C
AT, z:1"AFM: C IAJf:(A—B),z:A-M:B (re9), (1)
IAT1EP:1"(A+B) 'ATy:"BFN:C (+.E), (1) IA,T'Fletrec f* Pz =MinN:C '
TA T, Ty " A - Apeujoy = qbit
Fmatch Pwith(z® ©— M [y 7 — N):C wt1 = (n+1)-gbit —o (bit K n-gbit) for n > 1
rz: A AFM:B neasi . .
T (—o.l1) Apeast = gbit —o bit
Ak )\:rAl}iA f]\ZIOBB Ay = mn-gbit —o n-gbit for a 2" x 2" matrix U
T : (—o.ls) Aap, , = (m-gbit®n-gbit) — (m + n)-gbit

IAFAz?. M :1"(A — B)

Table |
TYPING RULES FORQ\y

therefore! on PER is idempotent and strong monoidal;

B. Quantum Mechanical Constructs PIER o

it also preserves coproducts. Additionally, as in any lineapefinition V.6 (CombinatorA).

category:

(X xY)2IXRIY |
XX,

(X4+Y)RZ2XRZ+YRZ,
(X+Y) o Z2(X - Z)x (Y —Z) .

Proof. See [14, Appendix D]. O

Using another pairing combinatér we obtain a different
“implementation” x of products. The merit ofc is that it
exhibits better order-theoretic properties; we will nebdn
for recursion. In contrast? enjoys a useful combinatorial
property: (Pxy)z = zay.

Definition V.4 (CombinatorP, binary productX x Y).
We defineP € Ag by the string diagram il/(Q)
shown top on the right. The triangles are N +
N 2 N : k in Thm. Ill.5. ThenPzy becomes as
shown bottom on the right. It is straightforwar
to write projectionsP,, P, for P; also conversion
combinatorsCp, _,—with Cp,_ s (Pay) = Pay—
and Cp,_ 5. We defineX x Y by replacingP by
Pin X xY (Lem. V.2).

x)

Lemma V.5. We have a canonical natural isomorphisinx
Y 5 X xY in PERg, realized usind,, . In what follows

we shall usex and x interchangeably. That is, we suppresso). A combinatorQ

use ofC,_p and Cp,_ ;. O

We defineA € Ag by the string diagram ilC¢(Q)

shown on the right. The triangles afe N+ N &

N : k in Thm. II.5. It satisfies:Azy = x © y,

where® denotes composition of arrows &&(Q).
N+1 N+1

Definition V.7 (CombinatorsQ,, Qu, Q‘Oi> , Qui) ). We

define the element®,,, Qu, Q' € Ao as follows. Here
N eN, pe Dy, UisanN x N unitary matrix, andi €

[1,N +1].

Qy, Qu, Qi N —= N in KU(Q); givena € Dy,

(Qp(k)(l))myn(o) = p®c ifk=IlAn=2".m

0 otherwise,
Quk)),, (o) =
UOUT®Z)0 ifk=1land3j. (n=m=2".j)
0 otherwise,
@Y @), (o) =

((0:] _10:) ® Z;) 0
if k=1land3j.(m =2 jAn=2".j)

0 otherwise.

In the definition ofQ,, @ denotes tensor product of matrices.
Q,, is such that an incoming token comes out of the same
pipe, with its state composed with In particularl € D,
comes out ap. In Qfgxl, (0;] __10;) denotes the projection
operator fromDy~ 11 t0 Dy~ that projects the-th qubit to
Nt € Ag is defined in the same way,
using (1;| _|1;).



Definition V.8 ([N-qbit],[bit]). For eachN € N we Definition V.11 (mult). We define a mamult : [0-gbit] X

define a PER/N-qbit] by: R — Rin PERg to be such that: it receivgse [0, 1] and a
. treet, and returns the trefewith each label in it multiplied by
[N-gbit] = {(Q,,Q,) [ p € Dan} . p. We can implement such a function by writing a coalgebra

In particular, [0-gbit] = {(Qy.Q,) | p € [0,1]} due to © whose carrier ig0-qbit] X R; see [14, Appendix E].
Def. II.1. This can be thought of as the unit inter¥@J1].  p_ Fixed Point Operator

A PER [bit] is defined to bd + I (see Lem. V.2). We shall interpret recursion i\, using the w-CPO
Lemma V.9 (CombinatorsUU,Prljg:)rl,Prf\{:gl). We define  structure of Ag; this is like in [23]. The proofs forgV-D
are found in [14, Appendix E].
UU — AQU, PrN+1 — AQN+1 PrN+1 — AQN+1

10:) 10:) 7 7 ILe) )" Lemma V.12 (Ao is an w-CPO) The setAg is an w-

Then we have, fop, o, U of suitable dimensions, CPO with L, by thew-CPO enriched structuré_ of K¢(Q)
B B (Thm. 111.3). Furthermore: 1) application: A2Q — Ag and

AQ,Qs = Qpao UoQy = Qu,ut I are continuous; and 2)L -a = L. O

Prit Qo = Quoilolo » P Qe = Quuiofny -
. . Definition V.13 (Admissible PER) A PERU € PERg is
C. Continuation Monad” said to beadmissiblef: 1) (L, L) € U for the least element

Our categorical modePER o further employs a monad | € Ag 2) (x;,y;) €U, 20 Ex1 C--- andyo Ey; C - -+
T the interpretation of a type judgmett - M : A will be implies (sup; z;, sup, y;) € U.
an arrow[A] — T[A]. It is in fact a continuation monad
T = (_ — R) — R with a suitable result typ&?; hence
our semantics is in the&ontinuation-passing style (CPS) Definition V.15 (Fixed point operator)Let U, X € PER,
Informally, the reason for this design choice is as follows.and f : !U X! X — U be an arrow. Further assume ttat

Think of the construcheas?! that measures one qubit; foris admissible. We defing’s fixed pointfix(f) : ! X — U as
the purpose of case-distinction based on the outcome, itfidlows. Letc be a code off. We definecy, ¢1,... € |1 X —o
desired thatneas] is of the typegbit — bit. Therefore U| by
we need a mona@d—with a probabilistic flavor—so that we .

7 . . . co =L ; cn+1 := the canonical code of

have [measi] : [qbit] — T'[bit]. o SRid o R i

For our Gol semantics based on local interaction, howevet, X — !X KIX — XXX "— UKIX =U .
a simple “probability distribution” monad (something lif2  gjce 17 is admissible andl - = — 1, ¢ = L is a valid
in §II-B)2wouId npt do. Ope eprgnau_on is as follows. Think.qq4e. By induction we can show thaj C ¢; C ---; since
of measy : 2-gbit —o bit X gbit: it takes a state of |y 7 is admissible its supremusup, ¢; belongs to the
a 2-qubit system; measures 'the first quplt; and rgturns Hﬁmain| I X —o U]. We definefix(f) := [sup; c; ].
outcome ¢t or £f) together with the remaining qubit. The
probability of observinget is tr[ ((01] _|01) ®Z2)p]; use of E. Interpretation
a naive “probability distribution” monad requires caldida pefinition V.16 (Interpretation of types)For eachg),-
of this probability. The calculation traces out the secon§pe 4, we assign[A] € PERo as follows, using the

qubit, destroying it and leaving it inept for further quamtu constructors in Lem. V.2. For base typdsy-qbit] is as
procedures. Another explanation is: naive interpretatdn , pef. v8.

meas? has the codomaibit ® qbit—with entanglement— [A4]
rather than the desired codomaint X gbit. ﬁTﬂ
Hence we need to postpone such calculation of probabili- [4 + B]

ties until the very end of computation. Use @intinuations Definition V.17 (Interpretation of<:). To each derivation

is a standard way to do so. For a result typewe take that of the subtype relatiofil I- A <: B (Def. IV.2), we can by

of complete binary trees with each edge labeled by a real, . : . . .
numberp € [0, 1]—obtained as a final coalgebra. Induction assign an arrofll] : [A] — [B] in PER using
der andé§ (Thm. II1.7).

Lemma V.14. For each XY, X — TY is admissible. [J

4]  [A — B]
[AR B]
[A] + [B]

[A] — T[B]
[Al X [B]

Lemma V.10 (The result typeR). The endofunctorF’ =
[oit] —o ([0-gqbit] x _) on PERg has a final coalgebra.
We denote it by : R = FR.

The technical core is in the interpretation of measurements
We explain its idea after the definition.

Definition V.18 (Interpretation of constantsfor a constant

Proof. See [14, Appendix E] 5 cin q), an arrow[c] : I — [A.] in PERg is as follows?
It is standard thal” := (_ — R) — R is a strong monad.
We will also need the following map. “Note that[c] is notT — T[A.]; this is because a constantan always

have the type A.. See (Ax.2) in Table | and its interpretation in Table II.



Forc = meas;“rl with n > 1, by transpose we need
[(n -+ 1)-gbit] B (([bit] X [n-gbit]) — R) > R . (7)

This can be obtained from the following map, usifts
fixed point property @ = [bit] — ([0-gbit] x R)) and
Lem. V.3.
[(n + 1)-gbit] X ([n-gqbit] —o R)*>
+[(n +1)-gbit] B ([n-qbit] — R)*?
Priory Bme Pl Bm ([ gbit] M ([n-gbit] —o R)
H +[n-qbit] X ([n-qbit] — R)

(Qoit)-Goi9) oquse] R

ev+tev

— R+ R
. vV ; [Az.2Qo
On the last lineQq denotesk — 1 "=
V denoting the unique arrow.
For c = meas?, by transpose we need

} [0-gbit], with

[qbit] © ([bit] — ) ™ R (®)
which we similarly obtain from the following composite.

[qbit] ® R*? + [qbit] K R*?
Pr|10>|2|7r£+Pr‘ll>®7r7
—

' [0-qbit] ® R + [0-qbit] X R
[(Qo,mult),(Qp,mult)] [[O-qblt]] % R 7

—

hereQq is the same as abovejult is from Def. V.11.

Definition V.19 (Interpretation of contexts)We fix an enu-
meration of variables, i.e. a predetermined linear order
between variables. Given an (unordered) context (x; :
Ai)ien,n), We define[A] € PERg by [A,)] X --- X
[Asm)], Whereo is a bijection s.ta, ;) < -+ < Ty(n)-

Definition V.20 (Interpretation of type judgments}ror each
derivationII IF A - M : A of a type judgment img\,, we
inductively assign an arrofI] : [A] — T[A] as in Table 1.
There some obvious elements are omitted: we wkitdn
place ofVKid, [M] in place of[A - M : A], etc. We denote
f's transpose byf". The strengthX XTY — T(XXY) is
denoted bytr; str’ stands fof’ XXY — T(XXY). For the
rule (rec) we use the fixed point operator from Def. V.15.

Lemma V.21. The interpretation[II I- A - M : A] does
not depend on the choice ®f. That is,[A - M : A] is
well-defined if the judgment is derivable.

Proof. See [14, Appendix F]. O

To compare with operational semantics (introduced in
short), thus obtained interpretatide - M : A] : [A] —
[4] is too fine. Hence we further extradt’s denotation
which is given by a probability distribution. We do so only
for closed termsM of type bit. This is standard: for non-
bit terms one will find distinguishing contexts of typet.

For the other constants (take transpose when necessarpafinition V.22 (Treesty, t, and test). We define trees

e-2Q0) (o
—

[new|0)] i= I " [abit]
[U] :== [n-qbit] L) [n-qbit] - T[n-qbit]
[emp,, ] :== [m-qbit] X [n-qbit] Dav- Al

[(m + n)-gbit] - T[(m + n)-qbit]
Here we used Lem. V.2 and Def. V.7.

The idea for[meas] '] is as follows. Let» > 1 and take

the mapm in (7); roughly its input is a tripl€p, fu, fz) with

to, tw,ts : I — R by:
to := (the tree whose labels are &l |

TANON T AN

Indeed, it is straightforward to write down af-coalgebra
(with its carrier3-I) that gives rise to such trees by finality.

We denote bytest the arrowl — ([bit] — R) such that:
tt — ty and ff — tg.

p € Dani1 and fy, fe : Don — R. Thenm'’s output is the Definition V.23 (Operationprob on trees) For each arrow
tree shown below on the left. We simply putas the labels t: I — R thought of as a tree, we defineob(t) € R? by:

on the depth one edges; the probabilities for obser\ing

or |1,) are implicitly passed down in the form of the trace Prob(t) := (3 {labels on edges going down-lgft

of the projected matrices.

0 0

0 0
mult(p, t)\ [ mult(q, t=)

Fe:(0ilp|0:) (£ (Lilp|1:)

When there is only one qubit left, we finally compute actu
probabilities. Takem’ in (8); its input is roughly a triple

(p,tw, ts) With p € Dy and treesy,, tsx € R. Letp = (0|p|0)

andq = (1|p|1) be probabilities; then what' returns is the

tree above on the right. Recall thatult(p, ) multiplies all
the labels of the input tree by.

This way we only generate edges with its labelThis is
no problem: once we supply trees with nonzero labels;as

andts above, we observe nonzero probabilities.
The rest of the definition is straightforward.

>~ {labels on edges going down-right

To be precise, “edges going down-left” means “obtained
by supplying by, b1,...,b,, and finally tt.” For example,
prob(ty) = (1,0) andprob(tg) = (0,1).

%efinition V.24 (Denotation relatiory). We define a relation

Y between closedit-terms M —i.e. those terms for which
F M : bit is derivable—and pairs$p, ¢) of real numbers,
as follows. Such a termM/ gives rise to an arrowree(M) :

I— Rin PERg by:

1211 Y (pie] o RYRTbit] 2R . (9)
We setM Y (p,q) if prob(tree(M)) =
such(p, ¢) is uniquely determined by/.

(p,q). Obviously



[! AT ® ] & ] <A

[UAMAH . 1ap =2 a2 T T([4] — T[B]) ¥ T[A] ** T([4] — T[B]) B T[A])
[A] o1 B g T pr(([A] — T[B]) ® [A]) 224 T[B]
L TIA] TR <A” 7] (=] pajmrye e, st
1] 1a] 2 e pap "5 T A] + [BD) P o S S (1A ] B 1M [As])
+.1o| Similar LTI ([A] [[Azéﬂ)
[FE] naimrmrs] <2’ RS SN R =l T
(" ([A] + [B]) ® [! A] & T3] " [ A] 8 [T1] & [ra] <28 ,
T("[A] X [PA] R [To] + " [B] R [ A] R [I2]) T1"([A1] ¥ [As]) B [! A] ® [y o3
M e 2 o T("[A:] B 1"[A.] B [! A] ® [T2]) D8 714]
1] 2[4 — B] - T[4 — B] [TE] similar
P a] == et ap "R na - By rec] [ AR [I] 5 A]R [ A] R [r] Y
L T[I"(A — B)] A - B]RA] R [1] Y2 7C | where
! AT R 1([A] — T[B]) ™ (14] — TB])
Table Il

INTERPRETATION OF TYPE JUDGMENTS

VI. OPERATIONAL SEMANTICS AND ADEQUACY labeled by a real number froid, 1].

First we introduce small-step operational semantics, from g[(xz* M)V } —1 E[M[V/x]]
which we derive big-step semantics. The latter is given in  E[1et <:5 Py = (V,W)inM] —1 E[M[V/z,W/y]]
the form of probability distributions over theit type and Elletx =%inM] — E[y] ;
is to be compared with the denotational semantics. E[match (inj/V)with (z" 4 — M |y ¥ — N)]

i . . —1 E[M[V/x]]
Definition VI.1 (Extendedq),). For operational semantics, E[match (inj V) with ("4 — M |y" B — N
we extendg\,-terms by additional two sets of constants: —1 E[N[V/y]]

E[1letrec fA78z = M inN]

—1 B[Nz letrec fA8z = M in M/f]]
[meas!"+ (new p)] —1 B[ (1, new (0:]p]0:))]
[neas!"*!(newp) | 1 B {1, new (Lio|L.))]
[measl(newp)} — (0lploy E[tt]

{ easi(newp)] —appy B[]
E

newp for eachn € Nandp € Dan;
abort 4 for each typeA’.

Their default types areA,e,, := n-gbit for p € Dan;
Aavort ,, := A’. The interpretation[new p] is obvious (cf.
Def. V.18); that ofabort 4 is [L] : I — T[A].

We also introduce the following shorthands faretrec
with counters.” They do not contain actusdtrec.

tijtljtijtfjm

Ulnewp)| —1 E[new (Up)]
cmp,, ,,(new p,newo)| —1 E[new(p® 0)]

letrec® FA By — Min N = Nlab . Here M, N are terms,V, W are values anch > 1. The
lzti:znfl fAjB_x _ X;inN'__ [aborta—s/f] 5 reductions involvingnew p occur only when the dimensions
N[Az* letrec” fA=Bz — M in M/f] . match. The measurement rules always give rise to two

reductions in a pair (corresponding @ and |1)); they are
Definition VI.2 (Value, evaluation contextjThe valuesand sajid to be thepartner to each other.

evaluation contextsf q\, are defined in a standard way. An evaluationis a series of reductions.

VVl,Vz n= | Az M| (Vi Va) | * | Observe that the labep in reduction —, is like a
111Je V |inj'V |newp |meas!™ | U | cmp,, ,, ; probability but not quite: fronmeas?(new p) there are two
L)1 M) BV BN, M) —1 reductions, tmew (0;]p|0;) and tonew (1;|p|1;). Again,

E (V,[)]] Bl1et (a*,y") = [ Jin M] |

probabilities are implicitly carried by the trace values.

Next we derive, from the small-step semantics, big-step
semantics forbit-type closed terms. To handle recursion,
Here E[F] is the result of replacind’’s unique hole[_] by we follow the standard method and use explicit counters.
the expressiorf'.

1
E[lets=[]inN] | E[inj;[ ]]| Elinj;'[]] |
E[match[ Jwith(z? — M | y® — N)]

Definition VI.4 (Big-step semantics)For eachn € N we
Definition VI.3 (Small-step semantics)rhe reduction rules define a relation}™ between closetit-termsM and pairs
of g\, are defined in a standard way. Each reduction {®,q) of real numbers. This is by induction on



Forn =0, we set
t 4° (1,0), £ 1° (0,1), andM {° (0,0) for other M.

Forn + 1, if M has a reductiol/ —; M’ caused by a
rule other than the measurement rule, we set:

M " (p,q) it M' U™ (p,q) .

If M has a reduction/ —, N caused by the measuremen

rule, there is always its partner reductidf —,» N'. We set
it NU" (p,q) andN" 4" (v',¢')

Finally, we define a relatiofy by: M | (p, q) if

M U™ (rp+1'p g +1'q)

(p,q) =sup{ (p',¢') | M §™ (p,¢') for somen } ,

wheresup is with respect to the pointwise order jf, 1]2.
It is easy to see that for eacdd andn, there is only one
(p, q) such thatM |™ (p, q); hence the same fgf.

Theorem V1.5 (Adequacy) For any closedit-term M, we
have M | (p,q) if and only if M Y (p, q).

(8]

S. Abramsky and M. Lenisa, “Linear realizability and full
completeness for typed lambda-calculshn. Pure & Appl.
Logic, vol. 134, no. 2-3, pp. 122-168, 2005.

[9] A. Joyal, R. Street, and D. Verity, “Traced monoidal cate-

[10]

[11]

(12]

(13]

Proof. The proof and some lemmas (such as normalizatidi4]

for the recursion-free fragment) are in [14, Appendix F[J
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